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Online EV Scheduling Algorithms for Adaptive
Charging Networks with Global Peak Constraints
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Abstract—This paper tackles online scheduling of electric vehicles (EVs) in an adaptive charging network (ACN) with local and global
peak constraints. Given the aggregate charging demand of the EVs and the peak constraints of the ACN, it might be infeasible to fully
charge all the EVs according to their charging demand. Two alternatives in such resource-limited scenarios are to maximize the social
welfare by partially charging the EVs (fractional model) or selecting a subset of EVs and fully charge them (integral model). The
technical challenge is the need for online solution design since in practical scenarios the scheduler has no or limited information of
future arrivals in a time-coupled underlying problem. For the fractional model, we devise both offline and online algorithms. We prove
that the offline algorithm is optimal. Using competitive ratio as the performance measure, we prove the online algorithm achieves a
competitive ratio of 2. The integral model, however, is more challenging since the underlying problem is strongly NP-hard due to 0/1
selection criteria of EVs. Hence, efficient solution design is challenging even in offline setting. For offline setting, we devise a
low-complexity primal-dual scheduling algorithm that achieves a bounded approximation ratio. Built upon the offline approximate
algorithm, we propose an online algorithm and analyze its competitive ratio in special cases. Extensive trace-driven experimental
results show that the performance of the proposed online algorithms is close to the offline optimum, and outperform the existing
solutions.

Index Terms—Electric Vehicle, Online Scheduling, Approximation Algorithm, Competitive Analysis
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1 INTRODUCTION

TO promote quick adoption of renewable energy sources,
electrification of vehicles is a trend that has been glob-

ally advocated in recent years. According to a Bloomberg
report, EVs will account for more than half of the new
car sales by 2040 [1]. Consequently, it is expected that
demand from EV charging will constitute a considerable
portion of total demand. Currently, transportation consumes
29% of total energy in the US, while electricity production
consumes 40% [2].

EV charging demand is a typical example of a de-
ferrable load, and there is often considerable flexibility in
the charging schedule. This property makes the problem of
EV charging scheduling important and there is an extensive
research along this direction in the literature (see the recent
survey [3], and references therein). In most of the existing
works, the EV charging demand is treated as a constraint to
the problem in a low-load regime [4]. Motivated by rapid
proliferation of EVs, this work tackles the EV scheduling
in high-load regime, where given the aggregate charging
demand of the EVs and the peak constraints of the charging
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network, it is not feasible to fully charge all the EVs accord-
ing to their charging demand.

More specifically, this paper studies resource-
constrained EV charging scheduling in an adaptive
charging network (ACN) governed by a single operator in a
campus-scale location such as a university, a headquarters,
etc. [5]. A notable example is the Caltech ACN [6], [7]
where individual charging ports are organized into several
charging stations (CSs) which are dispersed in a charging
network with the capability of adaptive charging of the
EVs. The problem is different from EV charging scheduling
with capacity constraint in single station scenarios [2], [4],
[8]–[13] (we refer to Section 2 for detailed discussions on
related work), because of the essential need to respect the
aggregate peak demand of the ACN. Note that, the ACN
operator might limit the total power drawn from EVs to
control costs [14], [15], reserve the capacity for other loads,
and/or participate in demand-response programs.

We consider a scenario with multiple EVs where each
EV has different charging profile in terms of availability,
charging demand, charging rate limit, and valuation of
getting charged (for details see Section 3.1.2). We formulate
an online EV charging scheduling problem with the goal
of selecting and scheduling a subset of EVs such that: (1)
the charging demand of the selected EVs are (fully or
partially) satisfied; (2) the charging rate limit of EV batteries
are respected, (3) the global peak constraint of the ACN
is satisfied [7]; (4) the local peak constraint of each CS is
respected; and finally, (5) the total revenue obtained by the
valuation of the EVs is maximized.

There are two main challenges in the design and im-
plementation of scheduling algorithms for EVs satisfying
the goals mentioned above. Firstly, the problem calls for
online scheduling design. In practice, EVs arrive to the
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CS in online fashion and the scheduler has no information
about the arrival and demand of the future EVs. Secondly,
the underlying optimization problem in integral model is
strongly NP-hard even in offline case (see Section 5). This is
because the problem is a mixed integer linear problem and
a “time-expanded” extension of knapsack problem which is
known as a classic NP-hard problem. In this paper, we tackle
the challenge of online design by following competitive
algorithm design [16] and the challenge of NP-hardness by
pursuing approximation algorithm design [17] and make
the following contributions:

B We first consider a fractional model (where EVs can be
charged partially and the revenue is proportional accord-
ingly) and design an optimal offline scheduling algorithm.
We then develop an efficient online algorithm in which no
exact or stochastic information about the future EV arrivals
is given. Despite its simplicity, the algorithm is proved to be
2-competitive with optimal offline solution, i.e., the revenue
of the proposed online algorithm is at least 1/2 of the
offline optimum, regardless of input sequence. Even though
there are competitive algorithms in the literature for similar
problems, to the best of our knowledge, our algorithm is the
first 2-competitive algorithm which considers the charging
rate limits.

B We next study the more challenging scenario of the
integral model, where EVs must receive all their demand to
make revenue. We first propose a polynomial-time primal-
dual offline approximate algorithm. We analyze the approx-
imation ratio of the algorithm and by strengthening the
linear relaxed version of the mixed integer problem [18], we
obtain an approximation ratio of α = 1 +

∑m
j=1

pj

pj−qj .
s

s−1 ,
where pj is local peak constraint in station j, qj is the
maximum charging rate of the EVs in station j and s is a
slackness parameter. We highlight that when pj � qj and
s is large enough, then α ≈ m + 1, where m is the number
of stations in the ACN. Built on the basis of the offline
algorithm, we devise an online algorithm, and discuss its
competitive ratio in special cases.

B We conduct a set of simulations to evaluate the per-
formance of our proposed algorithms. The results of online
algorithms for both integral and fractional settings are close
to the optimum (within 90% and 94% for integral and frac-
tional models in a representative scenario). In addition, our
algorithm outperforms the existing scheduling algorithm in
Caltech ACN [7] by 35% for integral revenue model.

This paper represents follow-up work to our previous
study [19], where we address a simplified version of the
problems studied in this paper in fractional revenue model.
The competitive analysis in [19] is done under the assump-
tion that all EVs have the same maximum charging rate.
Also, [19] does not study the integral revenue model. In this
paper, we extend the results and propose a 2-competitive
online algorithm with no assumption on the input pa-
rameters. Also, this paper investigates both fractional and
integral models while considering global peak constraint
and addressing multiple charging station scenario. Last,
we consider more realistic trace-driven experiments in this
paper and compare the results to an existing real-world
scheduling algorithm.

2 RELATED WORK

There is an extensive work in the broad topic of EV de-
mand management and scheduling [3] such as as optimal
operations with EV coordination and congestion manage-
ment [20], [21], EV scheduling with incorporation of re-
newable energy, and energy storage systems [22], [23], and
pricing and bidding [24]. We focus on the literature related
to peak-constrained EV charging scheduling.

2.0.1 Peak-Constrained EV Charging Scheduling
There is an extensive literature on EV charging scheduling
problem focusing on single station [4], [8], while the local
and global peak constraints are omitted or only the local
peak is considered. As we discuss in Section 3.2, the global
optimal solution cannot be obtained by separately solving
the single station problems. Hence, those solutions cannot
be directly applied to the multiple station scenario with
global peak constraints.

Studies in [25]–[30] tackled charging scheduling problem
in multiple stations. The authors in [25] studied a global cost
minimization EV charging scheduling problem, without
taking into account the the maximum peak demand that
the system can tolerate. [28]–[30] considered an offline multi-
microgrid system with global peak constraint where each
microgrid has a station and the goal is to manage electricity
exchange between microgrids to minimize the operating
costs. The authors assume that required information about
EVs is available by forecast which may not represent a real
scenario.

The authors in [26] use a similar model as in this paper,
where both local and global peak constraints are considered.
However, the authors solve the single-slot problem, which
fails to provide a general solution taking into account EVs’
arrival and departure times as considered in our study.
Finally, as an alternative approach to control the peak [15],
[31], some studies directly target minimizing the peak [2].
Although the peak is minimized in above works, it cannot
guarantee that the minimized peak is tolerable by the ACN.

2.0.2 Scheduling Under Demand Uncertainty
A main challenge in EV scheduling problem is to cope with
demand uncertainty. Many studies including [2], [4], [9]–
[13], [32], [33] addressed online scheduling problem with
different objectives, including social welfare, station rev-
enue maximization, and maximum utilization of renewable
sources.

Our problem in this paper is unique from above works
in many respects. First, we study the problem in an ACN
where several stations exist, while none of the above studies
solve the problem under this setting. Second, the previous
algorithms do not work for both integral and fractional
charging models. In more relevant theoretical problems,
[10], [11] put no limit on the charging rate of EVs which
makes their solution impractical in real scenarios. Also, [2],
[4], [9]–[11] do not consider the peak limit of the station.
Finally, in [34], we considered a simplified EV charging
scheduling in fractional model without global peak con-
straints and devised heuristic algorithms (without compet-
itive and approximation analysis) with on-arrival commit-
ment for EVs to notify the amount that they can receive by
their departure.
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2.0.3 Worst-case Analysis in Similar Scheduling Problems

Similar underlying scheduling problems with slightly differ-
ent settings have been studied in the literature in both offline
and online settings. In offline setting, the problem is more
interesting under integral revenue model where the problem
becomes a combinatorial optimization problem and approx-
imation algorithms have been used to find effective solu-
tions. The performance of an approximation algorithm is
determined by its approximation ratio for offline algorithms.
On the other hand, competitive online algorithms are used
in the online setting and competitive ratio is the performance
metric which compares the algorithm’s result to the offline
optimal solution.

Offline integral model: Under integral revenue model,
[35] proposes an offline algorithm for scheduling of batch
jobs in cloud computing which is similar to EV schedul-
ing problem. It is assumed that all jobs are available to
be processed at time 0. The authors propose a C

C−k .
s

s−1 -
approximation algorithm where C is the cloud capacity and
s is the “slackness parameter” (see section 3.1.1 for the def-
inition). Similarly, [36] tackles the offline integral problem
and proposes a convex relaxation method to find a near-
optimal solution. No theoretical bound is provided for the
algorithm and the performance is examined by simulation
results. In this paper, we propose ICS for the EV scheduling
problem with slightly different settings in the constraint
sets, and tackle the problem in online setting and provide
approximation analysis under several scenarios.

Online fractional model: In our recent study [19], we
proposed two online algorithms referred to as WFAIR and
WRAND for EV scheduling problem. The proposed algo-
rithms provide a competitive ratio of 2 − 1/U where U is
”scarcity level”. However, the result only holds when all
EVs have the same maximum charging rate. Also, [19] does
not study the integral revenue model. In this paper, we
propose FOCS as an online algorithm. Moreover, the cur-
rent study investigates both fractional and integral revenue
model while considering total peak constraint in the formu-
lation and addressing multiple charging station scenario.
In another work [37], two simple and natural online algo-
rithms called FIRSTFIT and ENDFIT were developed and
are proved to be 2-competitive. FOCS is extension of these
algorithms by taking into account the maximum charging
rate of the EVs and multiple charging station scenario (see
“Remarks” at Section IV). As recent study, [38] provide
online algorithms for EV scheduling problem, however,
they do not take into account global peak constraint in the
underlying problem.

Online integral model: Another direction is to tackle online
scenario under integral revenue model, where the schedul-
ing problem becomes fundamentally more challenging. We
note that the integral scheduling problem is strongly NP-
Hard even in the offline case [39]. Due to combined online
and combinatorial challenges, there are very limited studies
in this category. [40] provides an online algorithm without
considering the maximum processing rate of the jobs where
its competitive ratio can be arbitrary bad depending on
“slackness” parameter. Our work extends this study for
multiple station scenario and considering maximum charg-
ing rate for the EVs.
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Fig. 1: System model [7].

3 SYSTEM MODEL AND PROBLEM FORMULATION

3.1 System Model
We consider a time-slotted system model in which the time
horizon is divided to T equal length slots t = {1, 2, . . . , T}
(e.g., T = 24 with time slots of 1 hour length).

3.1.1 Charging Network
Our charging network model is inspired by the Caltech
ACN [7] as illustrated in Fig. 1a. In the Caltech EV charging
network (located in a parking garage), electricity is dis-
tributed through a two-level transformer architecture from
a main switch panel to multiple EV switch panels (2 panels
in the current Caltech ACN). Each EV switch panel then
is connected to several chargers (≈25 chargers per panel
in the Caltech ACN). The total power drawn from the
main switch panel by the charging network has a power
limit of ptotal, that is determined by the facility operator to
control the costs, reserve the capacity for other loads, and/or
participate in demand-response programs. In other words,
ptotal, which we refer to it as the global peak, hereafter, limits
the maximum aggregate EV charging load at each time slot.

We assume that there are m EV switch panels that
represent m CSs. In addition to the global peak constraint,
each CS j has a capacity constraint on its total power drawn,
indicated by pj , and referred to it as the local peak constraint.
The value of pj is determined by the output power limit of
the transformers installed between the main switch panel
and EV switch panels and could be different for each EV
switch panel. It is often observed that the charging demand
of different CSs (EV switch panels in Fig. 1a) are well below
the local peak constraints. To increase the flexibility due
to heterogeneous charging demand of CSs, in the Caltech
ACN, the global peak constraint of the main switch can be
over-provisioned, i.e., ptotal is less than the aggregate local
peaks, (

∑
j pj ≥ ptotal). While this increases flexibility, it

also couples the problem of EV charging scheduling across
different CSs. Our solutions in this paper will be central-
ized ones which can be obtained through communication
between the CSs and a central server as illustrated in Fig.
1b.

3.1.2 EVs
There are n EVs in the system, indexed by i. EV i is rep-
resented by a charging profile 〈ai, di, vi, Di, ki〉 indicating



4

TABLE 1: Summary of key notations

Notation Description
T Number of time slots, indexed by t
m Number of CSs, indexed by j
n Number of EVs, indexed by i
ai Arrival time of EV i
di Departure time of EV i
Di Demand of EV i
vi Valuation of EV i for receiving its demand Di
ki Maximum charging rate of EV i
h(i) CS of EV i

qj Maximum ki among all EVs in CS j
pj Maximum aggregate charging rate in station j
ptotal Maximum aggregate charging rate of all stations
yti opt. variable, The amount that EV i is charged at t

its arrival time, departure time, willingness to pay, charging
demand, and maximum charging rate, respectively. More
specifically, the charging of EV i can be scheduled within
its availability window, [ai, di]. The charging rate at each
slot is bounded by ki, a parameter that depends on the
physical constraints of the battery and on-board charger. It
is assumed that the charging profile of each EV is feasible
with respect to its maximum charging rate and a slackness
parameter s ≥ 1, which is the minimum ratio between the
park time of the EV and its minimum charging time, i.e.,
Di ≤ ki(di − ai + 1)/s. The slackness parameter is imposed
to tune the flexibility of the charging scheduling. In extreme
case s = 1, the flexibility is minimum and the flexibility im-
proves as s increases. We assume that EV owners select their
CS, perhaps the nearest to them, and so the assignments
are given to the problem. Define h(i) as the CS of EV i.
Moreover, qj denotes the maximum ki among all EVs in CS
j, i.e., qj = maxh(i)=j ki. Finally, vi is the willingness to pay
of EV i to receive its entire demand Di before the departure
time di. Note that in resource-constrained EV scheduling in
ACN, it is not feasible to fulfill the entire demand of all EVs,
hence, the problem turns into a resource allocation one with
the goal of maximizing the aggregate value (a.k.a. utility)
obtained from the EVs. In this way, each user can announce
vi as its willingness to pay to get charged.

3.1.3 Revenue Models
We consider two revenue models: (i) Fractional revenue model:
In this model, the fractional charging is allowed, i.e., the
revenue from each EV is proportional to the fraction of the
demand that is fulfilled [12] (see Eq. (2)). We tackle this
model in Section 4. (ii) Integral revenue model: In this model,
EV i pays vi if it is fully charged and zero otherwise, i.e.,
there is no partial revenue for partial charging. This is the
model that is considered in [9], [10]. We tackle this model in
Section 5.

3.2 Problem Formulation
We formulate an optimization problem to schedule the
charging of the EVs with the objective of maximizing total
revenue obtained from charged EVs while respecting local
and global peak constraints. Note that each revenue model
makes the underlying optimization problem fundamentally
different. More specifically, the fractional charging model is

a linear problem. Integral revenue model, however, turns
the underlying charging scheduling problem to a Mixed
Integer Linear Program (MILP). The integer nature origi-
nates from the 0/1-selection decision on EVs. We formulate
Scheduling Problem for Adaptive charging Network (SPAN)
under fractional revenue model as follows:

SPAN : max
∑n

i=1

vi
Di

∑di

t=ai

yti

s.t.
∑di

t=ai

yti ≤ Di, ∀i, (1a)∑n

i=1
yti ≤ ptotal, ∀t, (1b)∑

i:h(i)=j
yti ≤ pj , ∀t, j, (1c)

yti ≤
ki
Di

∑di

t′=ai

yt
′

i , ∀i, t, (1d)

vars. yti ≥ 0, ∀i, t,

where yti is the amount that EV i is charged at slot t.
Constraint (1a) ensures that the aggregate amount received
by EV i is at most the demand Di. The global and local
peak constraints are represented by constraints (1b) and (1c),
respectively.

The constraint (1d) enforces the maximum charging rate
of EVs. The straightforward way to express this constraint
is to simply state that at each time slot t, the charging rate of
EV i should be less than or equal to its maximum charging
rate, i.e., yti ≤ ki,∀i, t. However, for the sake of effective
algorithm design for integral model and reducing the in-
tegrality gap of the relaxed linear problem, this constraint
is strengthened in the form of Eq. (1d). Note that in case
that the aggregated charging of EV i during its availability
window is equal to its demand, i.e.,

∑di

t′=ai
yt

′

i = Di,
Eq. (1d) reduces to the simple form of yti ≤ ki. This is a
natural way in approximation algorithm design to improve
the performance of the algorithms under linear-relaxation
based design [18].

The SPAN is an extension of formulated problem in [35]
where a job scheduling problem in cloud applications is
studied. It turns out that the resource allocation problem in
cloud systems and the EV charging scheduling problem in a
single station share similar structure. Indeed, each charging
profile in our scheduling problem can be seen as a job in
cloud system with a deadline, value, and CPU demand. The
SPAN, however, comes with an additional constraint (1b),
which makes it different from the problem in [35], such
that the existing solution will not work in the new setting.
More importantly, this paper studies both offline and online
solutions for the problem in both fractional and integral
settings, while [35] tackles only the offline integral model.

4 FRACTIONAL REVENUE MODEL

In the fractional model, the revenue of the CS from EV i is
directly proportional to the amount of resource that the EV
is received, i.e.,

vfi =

∑
t y

t
i

Di
vi, (2)

where vi is the gain, if the entire demand Di is fulfilled
and vfi is the fractional gain. We propose a simple algo-
rithm, called FCS, with low computational complexity of
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TABLE 2: Proposed algorithms and their properties.

Algorithm Revenue model Type Optimality Complexity
FCS fractional offline Optimal O(n2T + nT 2)

ICS integral offline
(

1 +
∑m
j=1

pj
pj−qj

. s
s−1

)
-approximate O(nT log T + n2T )

FOCS fractional online 2-competitive O(n2T )
IOCS integral online b(1 + p

p−q .
s
s−1

)-competitive, (m = 1) O(n2T )

O(n2T+nT 2) for the fractional model that finds the optimal
solution in offline setting. Note that even though linear
programs can be solved in polynomial time in general,
the complexity of our proposed algorithm is much lower
than the general linear program algorithms. Moreover, our
proposed offline algorithm applies a valley-filling strategy
to reduce the peak. A summary of proposed algorithms with
their complexity is given in Table 2.

4.1 Optimal Offline Design
In this section, we propose an optimal algorithm for offline
fractional model. As a natural solution, one may think of a
greedy algorithm as follows: at each time slot, charge the
EV(s) with highest unit-value and process others if only the
remaining resource cannot be allocated to the selected EV(s)
(e.g., due to maximum charging rate constraint or fulfill-
ment of the EVs’ demand). This approach is a popular, yet
straightforward method in the scheduling. However, it turns
out that this approach cannot provide an optimal solution to
the problem even in fractional revenue model. In fact, this
solution is only 2-approximation (i.e., the profit obtained by
the algorithm would be 1/2 of the optimum). As an intuition
of the proof think of two EVs in a single charging station
with power capacity p and v1

D1
− v2

D2
= ε where ε > 0 is

an arbitrary small number, a1 = a2 = 1, d1 = 2, d2 = 1
and D1 = D2 = k1 = k2 = p. Then, applying the simple
greedy, EV 1 will be selected at time slot 1 and EV 2 will
have no chance to get charged due to its deadline constraint
while EV 1 could wait until time slot 2 and still receive all
its demand.

We refer the proposed algorithm in this secion as the
FCS and summarize it as Algorithm 1. The FCS works in
two phases. In the first phase (Section 4.1.1), the algorithm
decides on the amount of resource to be allocated to each
EV within its availability window and reserves resources
accordingly. In this phase, the details of allocation is not
known. The actual resource allocation is done in the second
phase (Section 4.1.2) by setting variables yti .

Before discussing the details of the algorithm, we give
formally define the notion of “super interval” to facilitate
our algorithm design.

Definition 1. Time interval [δ, δ′] is a “super interval” for
interval [t, t′] if 1 ≤ δ ≤ t AND t′ ≤ δ′ ≤ T . More-
over, It,t′ is the set of all super intervals of interval It,t′ i.e.,
It,t′ = {[δ, δ′] : 1 ≤ δ ≤ t AND t′ ≤ δ′ ≤ T}.

The number of super intervals of an interval is at most
T 2 and at least one (for interval [1, T ]).

Let Ri be the amount of resource that is reserved for EV
i by the FCS and It,t′ as time interval [t, t′]. Then, assuming
that charging demands are sorted in non-increasing order of
their unit values, Ai

j(t, t
′) is the aggregate residual resource

Algorithm 1: FCS
Input: n EVs with their profile, local and global peak

constraints pj , j = 1, . . . ,m and ptotal

Output: Optimal scheduling under fractional model

1 Sort charging requests in non-increasing order of
their unit values, i.e., v1

D1
≥ v2

D2
≥ · · · ≥ vn

Dn

2 L ← ∅
3 //Phase I
4 for i = 1, . . . , n do
5 Ri ← min{Di,min

t,t′
Ai−1

h(i)(t, t
′),∀t, t′ : It,t′ ∈

Iai,di
}

6 if Ri > 0 then
7 Ai

h(i)(t, t
′)← Ai−1

h(i)(t, t
′)−Ri,∀t, t′ : [t, t′] ∈

Iai,di

8 L ← L ∪ i

9 //Phase II
10 Sort EVs in L in increasing order of their charging

flexibility i.e., (di−ai+1)ki

Di
, i ∈ L.

11 for i = 1, . . . , |L| do
12 Pick EV i from the sorted list L.
13 feasible←

(∑di

t=ai
min{ki, Ai−1

h(i)(t, t)}
)
−Ri

14 if feasible < 0 then
15 Re-allocate previously allocated EVs such

that feasible ≥ 0

16 Arbitrarily allocate Ri to EV i in its availability
window

in interval It,t′ at station j assuming that the reservation for
EVs 1 to i is accomplished. We now explain in detail each
phase of the algorithm.

4.1.1 Phase I-Reservation
In Line 1, the EVs are sorted in a non-increasing order of
their unit values. In Line 5, the FCS processes demand of
EV i, picked from top of the ordered list, and sets Ri as the
amount to be reserved for EV i which will be allocated in
Phase II. In Line 7, the residual resource of all intervals in
set Iai,di

decreases by Ri and EV i is added to the set of
selected EVs.

Lemma 1. Provided that for EV i we have

Ri ≤ min

{
Di,min

t,t′
Ai−1

j (t, t′),∀t, t′ : It,t′ ∈ Iai,di

}
(3)

with a dummy A0
j (t, t′) defined as A0

j (t, t′) = (t′ − t + 1) ×
min{ptotal, pj}, then there is a feasible allocation to allocate Ri to
EV i in its availability window [ai, di].

In Lemma 1, A0
j (t, t′) indicates the available resource

when no charging request is processed in It,t′ . In Eq. (3), the
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second term, i.e., mint,t′ A
i−1
j (t, t′), indicates the minimum

remaining resource in all super intervals of interval Iai,di
.

For i ≥ 1, Ai
j(ai, di) is defined as follows:

Ai
j(ai, di) =

{
Ai−1

j (ai, di)−Ri j = h(i),

Ai−1
j (ai, di) j 6= h(i).

The optimal value of Ri, i = 1, . . . , n is set according to
the following lemma:

Lemma 2. Given n EVs sorted in a non-increasing order of the
unit values, v1/D1 ≥ v2/D2 ≥ · · · ≥ vn/Dn, and the value of
Ri, where Ri is set after Ri−1, i = 2, . . . , n by Eq. (3), then,

Ri = min

{
Di,min

t,t′
Ai−1

h(i)(t, t
′),∀t, t′ : It,t′ ∈ Iai,di

}
,∀i,

is the optimal value for Ri.

4.1.2 Phase II- Allocation
Lemma 1 shows that there is a feasible scheduling to allocate
the reserved resources. However, despite its feasibility, it is
not straightforward to find such a schedule. For example, as-
sume that for EV i, Ri = 10 and ki = 4. It is possible that all
available resources are concentrated in a single time slot but
EV i cannot use more than 4 kWh of it. In this situation, the
previously allocated resources in interval Iai,di

should be re-
allocated such that the concentrated resources are dispersed
and we have

∑di

t=ai
σt ≥ Ri where σt = min{ki, Ai−1

h(i)(t, t)}
is the maximum resource that can be allocated to EV i at
time slot t. Since the total amount of allocated resource
does not change in the interval, such dispersion is possible
and can be done by a simple algorithm in which allocates
min{ki, Ai−1

h(i)(t, t)} starting from time slot t = ai until Ri

units is allocated. To further reduce the peak of the system,
we will develop SMARTALLOCATE algorithm (See Section 5)
which acts more intelligent so that Line 16 of the FCS can be
replaced by “Run SMARTALLOCATE(i, Ri)”.

Theorem 1. FCS is an optimal solution under fractional revenue
model.

The following theorem characterizes the complexity of
FCS.

Theorem 2. The time complexity of FCS algorithm is O(n2T +
nT 2) where n is the number of EVs and T is number of time
slots.

4.2 Online Scenario

In this section, we devise an algorithm for the scenario that
EVs arrive in online fashion. The scheduling decisions at
each time slot are made given the information of available
EVs and neither exact values nor stochastic modeling of
future arrivals is available. Our goal is to obtain a competitive
ratio for the online algorithm. A scheduling algorithm A
is c-competitive for c ≥ 1 if the revenue obtained by the
optimal offline algorithm is at most c times the algorithm
A’s revenue for any input sequence [16].

The proposed online algorithm for the fractional model,
referred to as FOCS, is listed as Algorithm 2. The FOCS is a
simple yet efficient algorithm that always selects EVs with
highest unit value to allocate as follows. First, the algorithm

sorts the available EVs at each time slot t based on their unit
value (Line 2). In this step, the algorithm breaks ties based
on EVs’ deadline i.e., if two EVs have the same unit value,
then the one with earliest deadline comes first in the sorted
list. Next, the FOCS selects one EV at a time from the sorted
list to allocate with maximum charging rate considering the
EV’s remaining demand, maximum charging rate, and peak
constraints (Lines 3-4). The allocation is continued until all
resources are allocated or there is no more EV that could
be allocated. The time complexity of the FOCS is O(n2T ),
determined by cost of its “for” loop multiplied by total
number of times that the algorithm needs to be run.

Algorithm 2: FOCS: ∀t ∈ {1, 2, . . . , T}

1 Mt ← The set of available EVs that not received their entire
demand by t

2 Sort EVs in setMt indexed by i = 1, . . . , |Mt|:
v1/D1 ≥ v2/D2 ≥ · · · ≥ v|Mt|/D|Mt|, where ties are
broken based on users’ deadline (giving priority to the users
with earliest deadline)

3 for i = 1, . . . , |Mt| do
4 yti ← min{ki, Di −

∑t
τ=ai

yτi , ph(i) −∑
i′:h(i′)=h(i) y

t
i′ , p

total −
∑
i′ y

t
i′}

Despite the simplicity of FOCS which makes it easy to
implement, its performance is sound and within a constant
factor of the offline optimum. We now proceed to analyze
the performance of the FOCS by first giving some prelimi-
naries.

Fix an optimal scheduling and let SFOCS,t and SOPT,t be
the sets of EVs selected by the FOCS and optimal solution
at time slot t, respectively. Let yti and zti be the charging rate
of EV i set by FOCS and OPT, respectively. We define ∆t

i as
follows:

∆t
i =

{
min{zti − yti , ri,t} i ∈ SOPT,t, z

t
i > yti ,

0 otherwise,
(4)

where ri,t is the remaining demand of EV i by the end of
time slot t. ∆t

i > 0 indicates that the optimal algorithm
allocated ∆t

i units more resources to EV i than the FOCS by
time slot t that could be feasibly allocated by FOCS to the
EV i. If for any EV i ∈ SOPT,t and time slot t ∈ T we have
yti = zti , i.e., ∆t

i = 0, then the FOCS is obviously optimal
because it gains whatever the optimal solution gains. We
define loss of the FOCS imposed by EV i as follows:

li,t = ∆t
i

vi
Di
, (5)

Note that the loss always takes a non-negative value as
∆t

i ≥ 0. When FOCS sets charging rate of an EV less than
its rate in the optimal solution, it gains ∆t

ivi/Di less than
the optimal solution from that EV. An upper bound for
the distance between the optimal objective value (denote
by OPT) and the revenue of the FOCS (denote by ALG) is
summation of the losses over all time slots and all EVs, i.e.,

OPT − ALG ≤
T∑

t=1

∑
i∈SOPT,t

li,t. (6)

In addition to the amount of loss, the gain of the algo-
rithm from charging alternative EVs should also be taken
into account in comparison between OPT and ALG.
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Let i ∈ SOPT,t, i /∈ SALG,t and gi,t be the gain that the
FOCS obtains from charging another EV instead of i at time
slot t. We are going to show that in the FOCS, for each EV i
with li,t > 0 there must be another EV (denote by i′) where
yti′ ≥ ∆t

i and vi′
Di′
≥ vi

Di
which means in resource allocation

phase for EV i, the FOCS allocated the difference ∆t
i to

another EV with the same or higher unit value. This can
be proved by considering the fact that (i) the selected EVs
have higher unit values than the unselected EVs, and (ii) the
charging rate of the selected EVs are set to the maximum
feasible value. Moreover, the FOCS is “work-conserving” i.e.,
it does not let any resource remain unused if there are some
EVs that can use it.

Let gi,t denote the gain that FOCS obtains from allocating
the same amount of resource that optimal algorithm allo-
cated to EV i (with size zti ) to another EV(s). If ∆t

i = 0, the
loss is zero. If ∆t

i > 0, then by the charging strategy that the
FOCS uses we can conclude that (i) i is not finished by the
FOCS, and (ii) no more resources from station ph(i) can be
feasibly allocated, otherwise, the FOCS could allocate more
resources to EV i. Therefore, the ∆t

i units of the resource are
allocated to one or multiple other EVs (denote them by set
J t
i ) by the FOCS. Moreover, it must hold that all the EVs in

set J t
i have a unit value equal to or higher than vi/Di which

yields gi,t ≥ li,t, otherwise, the FOCS should not prefer the
EVs in J t

i to i. Since the result holds for any arbitrarily EV
i, we can get the following:

n∑
i=1

T∑
t=1

li,t ≤
n∑

i=1

T∑
t=1

gi,t. (7)

Moreover, the total gain of FOCS, i.e., ALG, is equal to
sum of its gains from each single EV:

ALG =
n∑

i=1

T∑
t=1

gi,t. (8)

With the above discussion and using Eqs. (6), (7) and (8)
we are able to derive a competitive ratio of 2 for the FOCS.

Theorem 3. The FOCS is 2-competitive.

Remarks: When there is only one CS and EVs have no
limit on their charging rate, the FOCS is identical to the
FIRSTFIT algorithm [37] which is known to be 2-competitive
for classic job scheduling problem. However, the charging
rate limitation is crucial for EV charging problem. Moreover,
[37] uses a “charging argument” to prove the competitive
ratio of the proposed algorithm which cannot be directly
applied to our problem. Thus, the FOCS extends the FIRST-
FIT and makes it practical for the EV charging scenario.
Moreover, the proof technique used for the competitive
analysis of the FOCS is fundamentally different from the
one used in [37].

5 INTEGRAL REVENUE MODEL

The MILP form of the SPAN in integral model is a gener-
alized form of the 0/1-knapsack problem which is a well-
known NP-hard problem. To give an intuition, consider the
scheduling problem in a single time slot (i.e, T = 1). Then,
allocating power resources to the EVs is equivalent to allo-
cating the capacity of knapsack to the items. In Section 5.1,

we propose a fast polynomial time offline approximation
algorithm for the integral problem. In Section 5.2, we extend
the result and propose an online algorithm for the integral
model.

5.1 Offline Scenario

We design our offline scheduling algorithm under integral
model referred to as ICS, to solve the SPAN approximately.
Since the performance analysis of the proposed algorithm
relies on a dual fitting method and utilizes weak duality
property, we first need to construct the dual problem of
SPAN. Toward this, we introduce variables α, β, γ and π.
Generally, in primal-dual approximation algorithm design,
each constraint (resp. variable) in primal (resp. dual) prob-
lem is associated with a variable (resp. constraint) in dual
(resp. primal) problem. In our case, constraints (1a) (1b), (1c)
and (1d) in the SPAN are respectively associated with dual
variables α, β, γ and π (for more details see [17]). The dual
problem is formulated as follows:

min
n∑

i=1

Diαi +
m∑
j=1

T∑
t=1

pjβ(t) +
T∑

t=1

ptotalγ(t)

s.t. αi + β(t) + γi + π(t)− ki
Di

di∑
t′=ai

πi(t
′) ≥ vi

Di
,

∀i, t ∈ [ai, di], (9a)
vars. αi, βi, γ, πi(t) ≥ 0, ∀i, t.

5.1.1 Explanation of the Main Algorithm
Our algorithm design is inspired by the basic algorithm
proposed in [35]. The algorithm in [35], however, works for
a single CS where arrival time of all EVs are the same and
there is no global peak constraint. The ICS algorithm (listed
as Algorithm 3) works in two phases. In the first phase
it sorts the charging requests based on their unit values
in a non-increasing order. Then, it selects most valuable
demand. If the remaining resource is enough to cover the
entire demand of the EV, it is admitted to receive the demand
(Lines 6-7).

Scheduling of the Selected EV: If the feasibility check
passed (Line 6 in Algorithm 3), ICS calls sub-procedure
SMARTALLOCATE to allocate required resources in interval
[ai, di]. Then, αi is set to vi/Di in order to cover dual
constraint in Eq. (9a) (Lines 7-8).

In SMARTALLOCATE, let us define W (t, h(i)) =∑
i′:h(i′)=h(i) y

t
i′ as total workload at time slot t in

CS h(i) and W̄ (t, h(i)) as total available load to
allocate at time slot t for CS h(i). We always
have W̄ (t, h(i)) +W (t, h(i)) = ph(i),∀t, i. For scheduling,
SMARTALLOCATE applies two main policies: 1) valley-filling
and, 2) right-to-left allocation. With valley-filling, the slots
with more available resources are preferred which helps
to reduce the peak of the system. Right-to-left allocation
is used when two or more time slots are equal in terms
of their remaining resources. A ranking based approach is
used to apply the aforementioned policies. To charge EV i,
SMARTALLOCATE ranks time slots in interval [ai, di]. Then,
charging is done by allocating resources from the higher
ranked time slot to lowest one. The rank of a time slot t
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is calculated based on remaining resources in the time slot
(valley-filling) and value of t (right-to-left allocation).

Algorithm 3: ICS

1 initialize: y ← 0, α← 0, β ← 0, γ ← 0, π ← 0
2 Sort charging requests in non-decreasing order of their unit

values: v1/D1 ≥ v2/D2 ≥ · · · ≥ vn/Dn
3 for (i=1. . . n) do
4 for t = ai . . . di do
5 σt ← min

{
ph(i) −

∑
i′:h(i′)=h(i) yi′ (t),

ptotal −
∑n
i′=1 y

t
i′ , ki

}
6 if Di ≤

∑di
t=ai

σt then
7 SMARTALLOCATE(i,Di)
8 αi ← vi/Di

9 else
10 if (β(di) = 0) then
11 BETACOVER(i)

12 for (i=1. . . n) do
13 if EV i is not selected then
14 RECONSIDER(i);

Dual Feasibility of the Non-selected EVs: If remaining
power resource is not enough to fully charge EV i, i.e.,
Di >

∑di

t=ai
σt, the EV cannot be selected. However, we

still need to satisfy constraint (9a) in dual problem which is
done by calling BETACOVER(i). To cover the constraint (9a)
for EV i, sum of dual variables for all t ∈ [ai, di] should be
greater than or equal to vi/Di. BETACOVER(i) sets β(t) to
vi/Di for all time slots t in interval [tcov, R(di)] (Lines 3-4
of Algorithm 5). Observe that β(t′) ≥ vi/Di,∀t′ < tcov (with
tcov > 1) considering that the demands are sorted in a non-
increasing order of the unit-values and β(t′) is already set
to vi′/Di′ when processing the earlier charging demand of
EV i′ which is not selected. Hence, vi′/Di′ ≥ vi/Di, thereby
β(t) ≥ vi/Di, and the dual constraint in (9a) is satisfied.
Lines 1-4 of BETACOVER is enough to cover the dual con-
straint. However, the algorithm continues in Lines 5-8 by
setting a variable Φi′(t) for time slots t = 1, . . . , R(di) to a
value dependent to amount of the resource that a selected
EV i′ received at slot t. Φi′(t) will be used in approximation
analysis of the main algorithm and has no effect on the
scheduling of EVs.

Algorithm 4: SMARTALLOCATE(i,Di)
Input: EV i to receive Di from CS h(i)

1 Rank time slots in interval [ai, di] such that for any t1 and t2:
rank(t1) > rank(t2) iff W̄ (t1, h(i)) > W̄ (t2, h(i)) OR
W̄ (t1, h(i)) == W̄ (t2, h(i)) ∧ t1 > t2

2 while
∑di
t′=ai

yt
′
i 6= Di do

3 Select time slot t with highest rank which is not selected
before

4 Allocate
min

{
ki, W̄ (t, h(i)), Di −

∑t
τ=ai

yτi , p
total −

∑
i′ y

t
i′

}
to

EV i at t

Improving the Gain: In the second phase, the ICS tries
to increase total value of selected EVs by calling RECON-
SIDER(i) on every unselected EV i (Lines 12-14). The RE-
CONSIDER(i) (listed as Algorithm 6) checks that whether the
total revenue can be increased by replacing some selected

Algorithm 5: BETACOVER(i)

1 tcov ← min{t : β(t) = 0}
2 R(di) = max{t ≥ di : ∀t′ ∈ (di, t], W̄ (t′) < qh(i)}
3 for (t = tcov . . . R(di)) do
4 β(t)← vi/Di

5 for (t = 1 . . . R(di)) do
6 for (i′ = 1 . . . n)) do
7 if yt

i′ > 0 ∧ Φi′ (t) = 0 then
8 Φi′ (t)←

[ ph(i)

ph(i)−ki
s
s−1

]
. vi
Di
yt
i′

Algorithm 6: RECONSIDER(i)
1 L ← ∅
2 vinc ← vi
3 σt ← 0, t = ai, . . . , di
4 for (i′ = i− 1 . . . 1) do
5 if EV i′ is selected ∧(h(i′) = h(i)) ∧ (vinc − vi′ ) > 0 then
6 Add EV i′ to list L
7 vinc ← vinc − vi′
8 for (t = ai . . . di) do
9 σt ← σt + min{ki, yti′}

10 if
∑di
t=ai

σt ≥ Di then
11 Remove EVs in list L from charging schedule
12 SMARTALLOCATE(i,Di)

EVs with EV i or not (Lines 4-9). If such EVs are found,
the algorithm stops their charging and allocates EV i using
SMARTALLOCATE (Lines 10− 12).

5.1.2 Analysis
In a primal-dual algorithm, the goal is to design an algo-
rithm in a way that it produces a good solution for primal
problem (with primal value Γ) and a feasible solution for
the dual problem (with dual value Λ). Then, assuming that
the primal problem is a maximization problem, to prove
that the algorithm is c−approximation (for c ≥ 1), the
important part is to show that Λ ≤ cΓ. Then, based on weak
duality theorem we have Λ ≥ OPT, and it is concluded that
Γ ≥ 1

c ×OPT where OPT is the optimal value. Based on the
above understanding, the following theorem scrutinizes the
approximation ratio of the ICS assuming that arrival times
are the same for all EVs.

Theorem 4. ICS algorithm is a
(

1 +
∑m

j=1
pj

pj−qj .
s

s−1

)
-

approximation when EVs have same arrival time.

Note that in the case that the system is flexible enough,
i.e., s � 1, and the maximum charging rates of stations
are much bigger than those of EVs, i.e., pj � qj ,∀j, the
approximation ratio approaches m+ 1. And in the case that
there is one single station, the approximation ratio is 2.

5.2 Online Scenario

Due to the binary selection variable, the online solution
design under integral model is more challenging than the
one for fractional model. We propose IOCS that is built
upon the offline ICS. In particular, the IOCS calls the ICS
at each time slot for the set of available EVs, however, any
algorithm that is designed for offline integral model can
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be used alternatively. Hereinafter, A refers to the ICS or a
similar algorithm.

Algorithm 7: IOCS: ∀t ∈ {1, 2, . . . , T}

1 Let A be an algorithm that solves the problem with
a1 = · · · = an

2 Rt ← set of EVs arrived at time slot t
3 Mt ←Rt ∪ {i : t ∈ Ti AND

∑
t′ y

t′
i < Di}

4 Based on the residual in interval [t, T ], use algorithm A to
allocate EVs in set Rt assuming no further arrivals

5 SIOCS,t ← {i : i ∈Mt AND i is admitted at t}
6 Γ̂A,Rt ←

∑
i∈SIOCS,t

vi
7 Assume all reserved resources are freed at time slots

t, t+ 1, . . . , T
8 ri,t ← remaining demand of i at t,∀i
9 D′i ← ri,t, v

′
i ←

ri,t
Di

vi, ∀i ∈Mt

10 Run A onMt using D′i and v′i,∀i and reconstruct SIOCS,t
11 ΓA,Mt ←

∑
i∈SIOCS,t

vi \\Use original values

12 if ΓA,Mt > Γ̂A,Rt then
13 Use the second schedule

14 else
15 Use the first schedule

The IOCS is summarized as Algorithm 7. At slot t,
the IOCS compares two scheduling results returned by A
and chooses among them. In the first scheduling, the IOCS
keeps all reserved resources in interval [t, T ] intact. Then,
for utilizing the remaining resources, the algorithm runs A
over arrived EVs at time slot t. In this case, the total revenue
obtained by the active EVs (i.e., EVs that are available but
not received their entire demand yet) is denoted by Γ̂A,Rt

(Line 6 of the algorithm). In the second scheduling, the IOCS
considers the case that it can sacrifice the previously admit-
ted EVs by canceling their reservations and allocating the
freed resources to more valuable demands. For this purpose,
the algorithm modifies the demand and valuation of the
previously admitted EVs such that each demand is replaced
by the EV’s remaining demand, and the valuation of the EV
is proportionally calculated based on the remaining demand
(Line 9 of the algorithm) so that the unit values of EVs do
not change. Then, the IOCS runs A on set of active EVs
Mt where the corresponding gain is denoted by ΓA,Mt . If
ΓA,Mt > Γ̂A,Rt , the IOCS forgets the previously admitted
EVs and follows the second scheduling.

The following theorem characterizes the competitive ra-
tio of the IOCS in a special case.

Theorem 5. Let A be ICS in IOCS algorithm and m = 1.
Assuming that EVs are released in b distinct groups where
arrival time of EVs in each group are the same, the IOCS is
b
(

1 + p
p−q

s
s−1

)
-competitive with optimal offline solution, where

p is the station peak and q = maxi ki, i = 1, . . . , n.

6 SIMULATION RESULTS

Simulation Setup and Overview: We consider charging
scheduling of EVs during a period of 12 time slots of
length 1 hour (e.g., from 08:00 to 20:00). We gathered
information of 12 popular EV models in the market to
use in the simulation. Each EV model is characterized by
its battery capacity as shown in Table 3 and maximum
charging rate. Tesla models can get charged with up to

TABLE 3: EV models and their battery capacity.

Model Battery Model Battery
Mitsubishi i-MiEV 16 kWh Citroen C-Zero 14 kWh
Peugeot iOn 16 kWh Honda Clarity 25.5 kWh
Hyundai Kona 64 kWh Nissan LEAF 40 kWh
Hyundai Ioniq 28 kWh BMW i3 22/33 kWh
Tesla Model S/X 60/100 kWh Kia Soul EV 27 kWh

TABLE 4: Acronyms for the algorithms

Notation Description
IOPT Optimal value under integral revenue model
ICS Proposed offline algorithm for SPAN under in-

tegral revenue model
FCS Proposed optimal algorithm for SPAN under

fractional revenue model
IOCS Proposed online algorithm for SPAN under in-

tegral revenue model
FOCS Proposed online algorithm for SPAN under frac-

tional revenue model
IOLP Algorithm in [7] (works under integral revenue

model)
FOLP Adaptation of algorithm in [7] for fractional

revenue model
GreedyRTL The algorithm in [35] for single station scenario

without global peak constraint (works under
integral revenue model)

100 kW using Tesla super chargers. Also, all other models
have rapid DC charging capability (up to 50 kW) with
CHAdeMO method. This setting for charging rates is in
accordance with future DCFC systems that can have several
fast DC chargers installed in the charging station. The peak
intervals include 08:00-10:00, 12:00-14:00, and 18:00-20:00
according to NHTS survey [4], [41]. The probability of an
EV’s arrival during the peak hours is two times higher than
the off-peak periods. Demands are uniform random values
from [ 12Ui, Ui] where Ui is the battery capacity for EV i in
Table 3. The deadline of each EV is set according to slackness
parameter s (with default value of 1.2), its demand and
maximum charging rate of the battery as di = ai+dDis

ki
e−1.

EVs are assigned to different CSs randomly and given as
input to the algorithms. The willingness to pay by each user
for one kWh of power is a random uniform number from
interval [ 12z,

3
2z] where z = $0.11 is national average price

of electricity in the US [42]. In the simulation, the results are
plotted with 95% confidence level and each point represents
average result of 50 random scenarios. Table 4 explains
the comparison algorithms including current implemented
algorithm in Caltech ACN referred to as IOLP [7] and its
adapted version for the fractional revenue model FOLP. The
IOLP and FOLP algorithms runs as follows: at each time slot
assume that there will be no further arrivals and solve the
optimization problem (e.g., by commercial solvers) for the
current set of EVs and their remaining demands. In Table 4,
the letters “I”, “F” and “O” in front of the algorithms’ name
refer to integral, fractional and online types, respectively.

The measured performance metrics are total revenue,
percentage of EVs that received all their demand, and to-
tal peak. To calculate optimal solution in integral revenue
model, we used Gurobi solver [43].

Evaluation Based on Total Revenue: Fig. 2 depicts the
comparison results based on total revenue under fractional
and integral models while the total number of EVs increases
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Fig. 2: Comparison results for 2, 4, and 8 CSs for fractional and integral revenue models. In the algorithms’ name, letters “o”,
“f” and “i” indicate online, fractional and integral, respectively. Note that a “non-optimal” fractional algorithm can potentially
achieve better result than an “optimal” integral algorithm due to higher flexibility in power allocation.
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Fig. 3: Comparison in terms of total revenue, actual peak, and percentage of fully charged EVs by varying local peak value.

from 100 to 250 for 2, 4, and 8 CSs. The local and global peak
constraints are set to 50 kWh and 200 kWh, respectively.

he proposed algorithms are compared to the optimal
offline solution of integral model (IOPT) and IOLP. Note
that comparison with offline optimal could be considered
as a baseline comparison with the category of approximate
offline algorithms in integral model [36].

Recall that FCS is optimal offline solution. The notable
observations are as follows: (i) the general trend in sce-
nario of Fig. 2 is that by increasing the number of EVs,
total revenue increases. This is because with more number
of EVs, the scheduler has more freedom to choose more
valuable EVs. (ii) as explained in Section 4, under fractional
charging model, better results are expected due to increased
scheduling flexibility in CSs. According to the simulation
data that we extracted from Fig. 2, the gain obtained by
FCS and FOCS in Fig. 2 are respectively 12% and 10%
more than the gain of the ICS and IOCS. (iii) In Fig. 2a
and Fig. 2b, sum of the local peaks is less than or equal
to the global peak while in Fig. 2c this sum is two times
greater than the global peak. Consequently, the total revenue
significantly improved when the number of CSs is increased
from 2 to 4 while there is a slight improvement from 4 to 8
CSs as the global peak constraint prevents the algorithms
from charging more EVs. (iv) in integral revenue model,
the proposed IOCS algorithm acts significantly better than
IOLP. In particular, IOCS improves IOLP by 38%, 36%, and
32% for m = 2, m = 4 and m = 8, respectively. In
fractional revenue model, however, there is a very slight
difference between FOCS and FOLP. (v) ICS approximates
IOPT by 97%, 94%, and 95% for m = 2, m = 4, and
m = 8, respectively. On average, IOCS is 90% of IOPT and,
FOCS is 94% of its optimal offline solution, FCS. (vi) finally,

the results depict that ICS achieves much better results in
practice as compared to the theoretical approximation ratio
that characterizes the performance in worst-case scenario.

Comparison Based on Actual Peak: The constraint set in
the SPAN assures that any feasible solution respects the
local and global peak constraints. An efficient scheduling
algorithm may take a further step by not only satisfying
the peak constraints but to further reduce the peak as
much as possible. The proposed offline algorithms (i.e., ICS
and FCS) apply valley-filling policy to reduce the peak.
The online algorithms (i.e., IOCS and FOCS) do not apply
the same policy as they do not have future knowledge to
be able to balance allocated resources. To investigate the
effect of employed valley-filling strategy, we conducted a
set of simulations by varying local peak constraints. The
results of ICS is compared to IOCS and GreedyRTL [35]
where the latter is an approximation scheduling for single
station scenario with EVs having same arrival time (see
the explanations after formulating the SPAN in Section 3.2).
The results are shown in Fig. 3. Along with total revenue
in Fig. 3a, we also report total actual peak in Fig. 3b and
percentage of fully charged EVs in Fig. 3c. In Fig. 3a, the
results for ICS and GreedyRTL are almost identical while
IOCS is 90% of the other two algorithms, on average. When
pj ≥ 400, the total revenue for ICS and GreedyRTL does
not increase in Fig. 3a and percentage of fully charged
EVs is 100 for both algorithms according to Fig. 3c. From
this point and onward, the scheduling is not challenging
for offline methods to obtain optimal answer because of
resource sufficiency. However, it is still a challenge to control
total actual peak for the system. As a result of valley-filling
policy, the value of actual peak of ICS in Fig. 3b remains
almost unchanged for pj ≥ 400. IOCS and GreedyRTL,
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however, continuously increase the peak demand, since they
are not using any peak shaving approach.

7 CONCLUSION

This paper proposed offline and online algorithms for the
EV charging scheduling problem under fractional and in-
tegral revenue models in an adaptive charging network
(ACN). The problem is different, and more challenging
than the existing single station EV charging scheduling
problems since it requires respecting the aggregate peak
charging demand of the ACN. As the notable contribu-
tions, our proposed online algorithm for fractional revenue
model achieves constant competitive ratio of 2. Moreover,
the offline integral algorithm achieves a theoretical bound
on the optimality gap and approximates the optimum by
92%, on average in experiments. As a future work, we
plan to study the problem under posted pricing mechanism
where the charging station publishes the unit price of the
power (which can be varied over time) and the users can
accept or reject the offer. Another interesting future direction
is to tackle the EV charging scheduling in market-based
scenarios where the prices change over time.
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