
A Data Annotation Architecture for Semantic
Applications in Virtualized Wireless Sensor

Networks

Imran Khan∗, Rifat Jafrin†, Fatima Zahra Errounda†, Roch Glitho†, Noël Crespi∗,
Monique Morrow‡ and Paul Polakos‡

∗Institut Minés-Télécom, Télécom SudParis, 91011 Evry Cedex, France
Email: imran@ieee.org, noel.crespi@it-sudparis.eu

†Dept. CIISE, Concordia University, H3G 2W1, Montreal, Canada
Email: {r jafri, f errou} @encs.concordia.ca, glitho@ciise.concordia.ca

‡CISCO Systems, Inc.
Email: {mmorrow, ppolakos} @cisco.com

Abstract—Wireless Sensor Networks (WSNs) have become
very popular and are being used in many application domains
(e.g. smart cities, security, gaming and agriculture). Virtualized
WSNs allow the same WSN to be shared by multiple applications.
Semantic applications are situation-aware and can potentially
play a critical role in virtualized WSNs. However, provisioning
them in such settings remains a challenge. The key reason is that
semantic applications’ provisioning mandates data annotation.
Unfortunately it is no easy task to annotate data collected in
virtualized WSNs. This paper proposes a data annotation ar-
chitecture for semantic applications in virtualized heterogeneous
WSNs. The architecture uses overlays as the cornerstone, and we
have built a prototype in the cloud environment using Google App
Engine. The early performance measurements are also presented.

Keywords—Wireless Sensor Networks; Semantic Web; Domain
Ontologies; WSN Virtualization; Data Annotation; Overlays

I. INTRODUCTION

Wireless Sensor Networks (WSNs) [1] consist of small-
scale devices that allow applications to observe various phys-
ical phenomenon and then react to the reported events. How-
ever, WSN deployments are usually tailored for predefined ap-
plications with no possibility for new applications to use them
concurrently. To address this, WSN virtualization that uses the
concept of concurrent application tasks running on a sensor
node and combines such nodes together to work for multiple
applications simultaneously has gained considerable attention
[2]–[4]. We have recently proposed an early architecture as a
solution for WSN virtualization [5].

Typically, virtualized WSNs provide sensor data in raw
format. However, classical WSN applications cannot interpret
the raw sensor data and understand its context. This makes it
almost impossible for their users to get the high-level details
of the events and infer additional knowledge to gain situational
awareness. For example, a fire monitoring application can only
receive a simple fire notification without additional details for
its end-user to understand the meanings and context of the fire
event, e.g. event status and its location.

Semantic applications, on the other hand, allow their users
to make queries such as what is the current status of the fire?

and what is the current location of the fire? to get results
like initial fire and in a public library respectively. Virtualized
WSNs typically monitor several real-time events at the same
time for different applications. Hence, some end-users of these
applications may wish to know the context of specific events.
This brings us to the need for a mechanism that annotates
the sensor data in a virtualized WSN. Annotating sensor data
in virtualized WSNs is quite challenging; since resources are
scarce,virtual sensors are created on-demand and may have
unpredictable lifetime.

In order to provision semantic applications we need to send
additional metadata along with raw sensor data. For example,
the raw sensor data for a fire monitoring application can be an-
notated with concepts such as observed property and location,
which are temperature and, longitude and latitude, respectively,
in this case. Semantic annotation has been a popular approach
for this purpose. It is defined as a metadata generation and
usage schema that can be used to provide new methods, as
well as to extend existing ones, to access new information
[6]. However, the semantic annotation process requires domain
concepts and the relationships that exist between them in order
to annotate data. An ontology is used to formally represent a
domain, its concepts and the relationships that exist [7]. Within
sensor domain, there are several efforts to develop ontologies,
e.g., the Semantic Sensor Network (SSN) Ontology developed
by the W3C Semantic Sensor Network Incubator Group [8]
and SensorML from the Open Geospatial Consortium (OGC)
[9]. SSN ontology is more general purpose because it is
application domain independent and provides concepts about
sensors and their observations.

This paper proposes a data annotation architecture for
semantic applications in virtualized WSN environments. We
extend our previous WSN virtualization architecture [5] to
cater for data annotation. We develop a base ontology by
extending the SSN ontology. We also develop a domain
ontology for the semantic application we have prototyped. The
fire monitoring semantic application receives annotated data
and uses the fire domain ontology, along with a reasoner, to
infer knowledge. An end-user can query over the annotated
data to get the real-time information of the fire event, such

as its status and location. The application is developed and
deployed in the cloud using Google App Engine (GAE) and
works in a heterogeneous virtualized WSN environment.

The rest of the paper is organized as follows: A motivating
scenario is presented in Section II, along with a set of require-
ments. We discuss our proposed architecture in Section III,
followed by our procedures and illustrative scenario in Section
IV. The prototype implementation and results are discussed in
Section V and an overview of the related work in Section VI.
Section VII presents lessons learned along with the future work
and Section VIII concludes the paper.

II. MOTIVATING SCENARIO AND REQUIREMENTS

In this section, we first present a motivating scenario and
then derive a set of requirements from it.

A. Motivating Scenario

We extend the motivating scenario presented in [5] for a
semantic application that monitors fire events in real time.

Consider a city near an area where brush fires are common
and where some houses already have their own sensors to
detect fire. The city administration is interested in using WSNs
for the early detection of brush fire events as well as to
monitor their course. To accelerate the deployment of their new
application and to avoid redundancy, the city administration
has opted to deploy sensors in areas under its jurisdiction
(i.e. streets and parks) and to re-use the WSN nodes already
deployed in private homes. These sensors have several sensing
capabilities, such as temperature, humidity, CO2 and dust
levels. They also execute multiple tasks (thanks to WSN virtu-
alization), some of which may belong to semantic applications.
The sensors, executing these tasks, provide annotated data for
several semantic applications.

This sensor deployment can be utilized for several semantic
applications. For example, the city administration’s applica-
tion can provide detailed information about fire events to its
users, rather than simple notifications. Another example is
of a weather applications that can use the same annotated
data to identify prevailing weather condition such as sunny,
haze, partial cloudy and snow. Similarly, a smart parking
application could use the same annotated data to determine the
current pollution levels and dynamically change the parking
fee accordingly. For example, when the pollution level is very
high, parking could be offered at a discount or even free.

B. Requirements

Based on the scenario described above, we derive the
following six requirements. First, the proposed architecture
should allow for the real-time annotation of sensor data. This
means that the sensor data should be annotated before sending
it to the semantic applications. The second requirement is that
the base ontology should be stored in the WSN in a distributed
manner, since it will be used to annotate the sensor data. The
third requirement is that the annotation should be done in a
distributed manner without relying on a central node. This
ensures that any node failure does not affect the annotation
process. The fourth requirement is that it should be possible to
enhance or to extend the ontology so that new concepts can be

integrated with the existing ones. The fifth requirement is that
the proposed solution should be applicable to heterogeneous
sensor platforms and the data formats that they use, to ensure
interoperability. The sixth and final requirement is the use of
standardized ontologies, so that all semantic application can
use standard concepts.

III. PROPOSED ARCHITECTURE

In this section, we begin by discussing our previous ar-
chitecture, since we use it as the basis for this work. Next,
we present the architectural principles, followed by the details
of layers and functional entities of the proposed architecture.
Finally we present the base ontology that we used for sensor
data annotation.

A. Our Starting Point

The work in this paper is based on our previous WSN
virtualization architecture [5] which is illustrated in Fig. 1.
The architecture consists of four layers. The physical layer
consists of sensor nodes that can run several application tasks
simultaneously. Two types of sensor nodes are considered in
the architecture. Type A sensors are resource-constrained sen-
sors that have very limited processing and storage capabilities,
e.g. TelosB motes. Type B sensors have better processing and
storage capabilities, e.g. Java SunSpots. Since Type A sensors
may not be capable enough to work together with other sensors
in a group, they rely on more powerful nodes called Gate-to-
Overlay (GTO) nodes for this purpose.

The virtual sensor layer abstracts the simultaneous tasks
run by the physical sensors as virtual sensors. In this paper
we use the terms virtual sensors and sensors interchangeably
for consistency. To provide platform independence, the virtual
sensor access layer consists of Sensor Agents (SAs). This
independence is achieved by using standardized north-bound
interfaces and proprietary south-bound interfaces. The final
layer consists of application overlays that run simultaneously
on top of the physical layer. There are separate interfaces for
data and control messages. Overall, the architecture provides
the flexibility of using multiple applications concurrently over
WSN deployments.

B. Architectural Principles

The first architectural principle is that the ontology used
to annotate the sensor data is separated as base and domain
ontologies. The former consists of concepts related to the
deployed sensors and their capabilities, and is stored in the
WSN, while the later consists of domain-specific, application-
related concepts and is typically stored in the application
domain. This basic principle allows the solution to become
independent of any application domain.

The second architectural principle is that we use two
independent overlays: one for data annotation and the other for
storing the base ontology. Overlays have several advantages:
they are distributed, they do not rely on centralized control and
they allow resource sharing [10].

The third architectural principle is that every virtual sensor
created for semantic application is represented in the annota-
tion overlay by a corresponding entity that annotates its data.

Fig. 1. WSN virtualization architecture

This means that every sensor sending data to semantic appli-
cations will have a dedicated entity for annotation purposes.

The fourth principle is that, for resource constrained sen-
sors, the annotations will be performed by capable sensors and
other powerful nodes, e.g. gateways. This principle ensures that
all kinds of sensors are available for the semantic applications.

C. Layers and Functional Entities

Fig. 2 shows the proposed architecture. It is based on
our previous WSN virtualization architecture, presented in
Section III-A. The physical layer remains the same while
the virtual sensor layer now consists of two types of virtual
sensors. The first group are the virtual sensors that are created
for semantic applications, referred to hereafter as semantic
virtual sensors. They are indicated as green-dashed boxes. The
second type of virtual sensors are created for non-semantic
applications, referred to hereafter as virtual sensors. These are
shown as orange-dashed boxes. The difference between these
two types of virtual sensors is that the raw sensor data from
the green-dashed ones will be annotated before being sent
to end-user semantic applications. The virtual sensor access
layer has two new functional entities and two overlays. The
functional entities are Annotation Agents (AAs) and Ontology
Agents (OAs). We term an agent as an entity that provides
a given functionality, therefore several agents are used in
our architecture. The Annotation overlay consists of AAs,
which annotate sensor data using the base ontology. They
communicate with Sensor Agents (SA) in the same overlay
to send the annotated data to the semantic applications. The
Ontology overlay consists of OAs, which are responsible for
storing the base ontology in a distributed manner. The OAs
act as super-peers and provide the requested ontology to the
AAs. They do not deal with the sensor data.

The architecture supports both semantic and non-semantic
applications. The Operations & Management (O&M) entity,
which is usually the infrastructure owner, is responsible for
providing the base ontology. Since O&M entity is aware of

Fig. 2. Proposed data annotation architecture

the type of sensors deployed in the WSN, it can easily develop
and disseminate the base ontology to the ontology overlay.

The architecture does not deal with the sensor discovery
mechanism and storage of sensor data in a repository for data
analysis. For the former, existing work such as [11], [12] can
be reused. In this work we assume that the sensors have already
been discovered and are stored in a registration server. For the
latter, we leave it to the applications to decide on the sensor
data storage since it is an application specific requirement.

The proposed architecture fulfills the set of requirements
mentioned in Section II.B. AAs allow real-time annotation of
sensor data in a distributed manner. OAs store the common
ontology and are distributed using the concept of overlays. The
base ontology can be extended by creating additional OAs.
The architecture is platform-independent thanks to the SAs.
As we use and extend SSN ontology in our work, the final
requirement is also fulfilled.

D. Base Ontology

We have built our base ontology by extending the SSN
ontology, since it is quite well-known and widely used to
describe sensors and their data. As mentioned before, the goal
of having a base ontology is to add metadata to the raw sensor
data before it is used by a particular application. We assume
that the WSN consists of temperature, humidity, light and
carbon sensors and thereby incorporate these type of sensors
and their observations in the base ontology. Fig. 3 shows the
part of the base ontology, related to temperature sensors.

IV. PROCEDURES AND ILLUSTRATIVE SCENARIO

In our architecture we need different procedures related to
the management and operational aspects of the annotation and
ontology overlays. The management procedures include the

Fig. 3. Temperature sensor part of the base ontology

following. 1) Selection of sensors and GTO nodes that will
play the role of i) OAs in the ontology overlay, and ii) AAs in
the annotation overlay. 2) The distribution of the ontology over
the OAs. These procedures are motivated by our architectural
principles mentioned in Section III.B.

The annotation process requires the ontology, which may
not be available with the AAs. This situation calls for an
ontology discovery procedure to allow the AAs to annotate the
sensor data. The operational procedures include the ontology
discovery and the sensor data annotation.

A. Management Procedures

According to the first and second architectural principles,
we store the base ontology in the WSN using the concept of
overlays, i.e. in the ontology overlay. The ontology overlay
consists of OAs that require sufficient storage space and an
efficient request/response mechanism. There are two types
of nodes that can act as OAs: GTO nodes, which store the
complete base ontology, and Type B sensors, which store part
of the base ontology.

According to the third architectural principle, each sensor is
represented by a corresponding AA in the annotation overlay.
However, the role of an AA requires certain capabilities for
computational-intensive tasks, such as the mapping sensor data
to the base ontology concepts and generating output files.
However, not all sensors are capable of performing these tasks,
especially the ones that have 16-bit processors and memory
on order of KBs, e.g., TelosB. For these sensors either Type
B sensors or GTO nodes can act as AAs on their behalf, in
accordance with the fourth architectural principle.

According to the second architectural principle, the base
ontology needs to be distributed. The following mechanism
is used for the distribution. GTO nodes contain the complete
base ontology, while Type B sensors only contain the parts of
the base ontology, related to phenomena that they sense. For
example, a Type B sensor with temperature sensing capability
will only contain the temperature portion of the base ontology.
In order to accomplish this distribution, the GTO nodes split
the base ontology into multiple parts and send it to the relevant
Type B sensor. The common ontology concepts are present in
each part. It is important to remember that since sensors are

prone to failure, it makes sense to have the same parts of the
base ontology present in multiple Type B sensors.

Both the GTO nodes and the Type B sensors can be
selected for the roles of AAs and OAs. However, the OAs in
the GTO nodes contain the complete base ontology, while the
OAs in Type B sensors only contain the part of the ontology
they require for annotation.

B. Operational Procedures

The first operational procedure is the ontology discovery.
There are two possible approaches, pro-active and reactive.
In the pro-active approach OAs, as super-peers, periodically
advertise the base ontology parts that they have. The AAs
then send their ontology requests in response to these adver-
tisements. In the reactive approach, AAs first determine the
sensing capabilities of the corresponding sensors, based on
which they send discovery request to their super-peers, for
the required part of the base ontology.

The second operational procedure is the data annotation,
which works as follows. The semantic virtual sensors send
their data in a standardized or proprietary format to the AAs.
Once an AA receives the raw sensor data, it first checks locally
if it has the required ontology to annotate it, if not, a discovery
request is sent to the ontology overlay. When it has the required
ontology, the AA annotates the raw sensor data, and sends it to
the SA. The SA is then responsible for sending the annotated
data to the semantic application.

C. Illustrative Scenario

The city administration and home owners deploy fire
detecting sensors in public streets and in private homes,
respectively. These sensors run multiple application tasks con-
currently, using virtual sensors and semantic virtual sensors.
The semantic virtual sensors send annotated data to the fire
monitoring semantic application. The application receives this
data and uses a reasoner to infer knowledge and to get detailed
information about fire events.

The annotation process works as follows (a sequence
diagram is presented in Fig. 4). Semantic virtual sensors send
their raw data in a standardized or proprietary format to
the AA. Once an AA receives the raw sensor data, it first
checks locally to determine if it has the required ontology
to annotate the data, if not it sends request message to an
OA for the required ontology. The OA may request another
OA for the required ontology if it does not store it. Once
the ontology is retrieved, it is sent to the AA, which then
annotates the raw sensor data using the received ontology
and sends it to the SA. The SA sends the annotated data to
the appropriate semantic application. The semantic application
applies the domain ontology and a set of rules using a reasoner
to infer additional knowledge. If a fire event is detected then
a notification is sent to the end-user. The end-user may query
for additional information such as fire status and location. In
Fig. 4, the end-user queries for the fire status and receives the
response, i.e. initial fire.

V. PROTOTYPE IMPLEMENTATION AND RESULTS

In this section we present our prototype in detail. First
we discuss the implementation choices we made, and then we

Fig. 4. Sequence diagram of the illustrative Scenario

present our prototype setup and the performance metrics. We
end this section with a discussion of the results.

A. Implementation Choices

We developed a fire monitoring semantic application for
our prototype based on the scenario presented in Section
II.A. The application is offered as Software as a Service
(SaaS) to the end-users. It was developed using the Apache
Jena Framework, which is an open source Java framework
for building semantic web and linked data applications. The
application was deployed in a cloud-based Google App Engine
(GAE), which is a Platform as a Service (PaaS) that allows the
development of SaaS applications without having to maintain a
server. We chose GAE because it makes it easy to deploy and
maintain applications. The annotation and ontology overlays
are implemented using the JXTA [13] protocol, an open source
peer-to-peer protocol specification that allows the creation of
independent, robust and efficient overlay networks.

The fire monitoring semantic application is a RESTful web
service that uses the following components:

1) Fire domain ontology: Contains the concepts of fire, its
states, and sensing events along with their states, such as tem-
perature (high, low), relative humidity (high, low) levels, CO2
(high, low) levels and location (city, park, and downtown). Fig.
5 shows some concepts of the fire domain ontology.

2) Jena Inference API: Used to reason over the annotated
data and to infer additional knowledge using a set of rules. We
developed several rules for our semantic application to provide
information to end-user about the fire events. Two examples
of rules are given below.

[Rule1: (?output ssn:hasValue ?Value)
greaterThan(?Value,80), (?output rdf:type
base:TemperatureOutput),
(?output base:hasUnit base:DegreeCelsius) ->
(?output fda:hasTemperatureType:
fda:HighTemperature)]

[Rule2: (?output fda:hasTemperatureType

Fig. 5. Some concept of the fire domain ontology

fda:HighTemperature)
(?output fda:hasHumidityLevel fda:LowHumidity)
(?output fda:hasCO2Level fda:HighCO2) ->
(?output fda:hasFireSituation fda: fireBlaze)]

3) Query Engine: Used to query annotated data. Below is
an example query to get event information like event time, its
value, location, and the status (fire event in this case).
SELECT ?Time ?Temperature ?Longitude
?Latitude ?Firesituation
WHERE {
?SunSpotOutput base:hasSensingTime ?Time.
?SunSpotOutput ssn:hasValue ?Temperature.
?Sunspot base:hasLongitude ?Longitude.
?Sunspot base:hasLatitude ?Latitude.
?SunSpotOutput fda:hasFireSituation
?Firesituation.
FILTER (regex(str(?Firesituation),
’http://www.semanticweb.org/WirelessSensor/
FireApplication#FireBlaze’, ’i’)
}

The functional entity AAs are in annotation overlay and have
the following components:

1) Web Server: Receives the sensor data;

2) JXTA Edge Peer: Participates in the overlay and request
the required parts of the base ontology;

3) RDF Generator: Annotates sensor data using the base
ontology; and

4) Web Client: Sends annotated data to semantic applica-
tion.

The functional entity OAs are in the ontology overlay and
have the following component:

1) JXTA Rendevous Peer: To store the base ontology and
send it to the requesting AA. We used the JXTA Content
Management System (CMS) to advertise the base ontology
available in each OA and send it to the requesting AAs.

The proposed architecture is implemented as Infrastructure
as a Service (IaaS), which allows us to link our solution to the
IaaS, PaaS and SaaS aspects of cloud computing paradigm.

(a) Configuration A (b) Configuration B (c) Configuration C

Fig. 6. Implementation Architecture

B. Prototype Setup

We used two different sensor kits for the prototype, Java
SunSpot and TelosB motes from AdvanticSys Kit. In total
we used 6 SunSpots (2 as base stations), 4 TelosB motes
(1 as border router) running Contiki OS. All these sensors
have multiple on-board sensing capabilities but differ in their
processing and storage abilities. In our implementation, TelosB
motes are Type A sensors and Java SunSpots are type B
sensors. All of the sensor were running multiple application
tasks. The Java SunSpots had three application tasks running
concurrently, periodically measuring temperature, light and
blinking LEDs. The TelosB motes had temperature, light, and
humidity tasks running concurrently. Type B sensors send their
data in SenML [14] format, which is a lightweight standard
data model which is suitable for sending sensor data. Type A
sensors send their data in simple string format. Fig. 6 shows
the three implementation configurations we used for evaluation
purposes. The details of these configurations are as follows:

1) Configuration A: We used Type A sensors (TelosB). The
semantic virtual sensors sent their raw data to a GTO node.
The GTO node (acting as an AA) downloaded the required
ontology from an OA and annotated the raw sensor data.
Lastly, the annotated data was sent to the fire monitoring
semantic application via SA.

2) Configuration B: We used Type B sensors (Java Sun-
Spots). The ontology used to annotate the data was stored
locally in the Type B sensors, hence there is no ontology
overlay. We implemented the AA in the Type B sensors using
µJena library [15]. This way they did not need any GTO node
to perform annotation on their behalf. Each semantic virtual
sensor generated the raw data, annotated it and sent it to the
fire monitoring semantic application via SA.

3) Configuration C: We used both Type A and Type B
sensors. All of the sensors sent their raw data over the Internet.

For Type A sensors, we used a Contiki border router to allow
them to directly communicate with the semantic application.
For Type B sensors, we used Java Socket-Proxy which com-
municated with the semantic application on their behalf. In
this configuration, the fire monitoring semantic application
performed the annotation itself. This allowed us to measure
the extra delay introduced by our approach.

C. Performance Metrics

The prototype’s performance was assessed in terms of
the following metrics: End-to-End Delay (E2ED), Ontology
Download Time (ODT), Impact of the scalability of AAs,
Expected Operation Time (EOT) of Java SunSpots, and the
Impact of tasks on current draw from Java SunSpots battery.

E2ED is the time difference between when the semantic
virtual sensors sent their raw data and when the corresponding
success code (200 OK) is received from the fire monitoring
semantic application. It includes the time taken by all interme-
diate steps (i.e. receiving raw data at AA, ontology discovery
and download (for configuration A), and annotation process).
ODT is the time it takes an AA to request and to receive
the required ontology from an OA. Impact of scalability of
AAs was studied in terms of discovery of an OA and ODT.
To find EOT of Java SunSpots, we executed both semantic
and non-semantic tasks continuously until the Spots died. For
this purpose no sleep or power saving mechanism was used.
Finally we determined the current draw from Java SunSpot
battery while in shallow-sleep mode (no task, radio ON),
executing semantic, and non-semantic tasks. The experiments
were repeated 50 times and their confidence interval is 95%.

D. Results

Fig. 7 shows the individual E2ED of the three configura-
tions. Configuration A has an average E2ED of 3566ms. The
actual annotation delay was negligible (less than 10ms), since

Fig. 7. End-to-End Delay

the AA was implemented on a laptop computer. The E2ED
of configuration B is the highest, at 4575ms. The average
annotation delay was 525ms, since the Java SunSpots were
annotating data themselves. We found that this longer time
was attributable to the low RAM size, only 1MB. Despite
this, SunSpots showed promise and were able to annotate
sensor data and run other tasks concurrently without any other
issues. The E2ED of configuration C is 3187ms. As expected,
the semantic application was able to annotate the sensor data
quickly but at the expense of developing the base ontology
and then implementing it in addition to the application logic.
Fig. 8 shows their average E2ED of all configurations after 50
repetitions. The average ODT for configuration A is 94ms as
shown in Fig. 9, which is typical in LAN environment using
JXTA protocol.

Since JXTA was used for implementation, it had direct
impact on the scalability part. The results in Fig. 10 show the
increase in OA discovery time when AAs increase. JXTA is
known to perform poorly when peers in the network increase
and this was demonstrated in this work. However, the increase
in AAs did not impact the ODT mainly because OA was
already discovered. Here the average ODT was around 100ms,
almost similar to the one shown in Fig. 9.

Fig. 11 shows the EOT of the Java SunSpots while running
a semantic and a non-semantic task, without using any sleep
mechanism. Without considering normal battery discharge,
SunSpots last around 571 and 603 minutes operation time for
the semantic and non-semantic tasks respectively. Using 0.8
as constant multiplier for normal battery discharge reduces
the operation time to 456 and 482 minutes respectively. The
SunSpots draw 38mA current (base value) during the shallow
mode (no task, radio ON), 75.6mA for non-semantic task (98%
increase from base value) and 79.8mA for semantic task (109%
increase from base value).

For all three configurations, we also experienced delay due
to circumstances beyond our control, e.g. from time to time
GAE would start a new process for the fire monitoring se-
mantic application and reload it thereby incurring unnecessary
delay. We were able to determine this from the log files of our
fire monitoring semantic application.

We believe that for future semantic applications, it will be
important to use multiple WSN infrastructures that may not

Fig. 8. Average End-to-End Delay

Fig. 9. Ontology Download Time

be geographically co-located. In such cases, it will be difficult
to know beforehand, the capabilities of a WSN, the types of
sensors and their observations. Also for WSN infrastructure
owners may only want to share the sensor data instead of
exposing their infrastructure altogether. In such situations, it
makes sense to have an annotation mechanism that provides
annotated data to multiple semantic applications.

VI. RELATED WORK

A framework called semantic sensor web [7] annotates
sensor data and provides situational awareness. The annotation
is done using spatial, temporal and thematic metadata. In [16]
the Sensor Observation Service SOS from SWE is extended by
incorporating support for a semantic knowledge base. They use
spatial, temporal and thematic ontologies to annotate sensor
data. Both [7] and [16] rely on SWE, hence they are not
suitable for resources-constrained environments. A two-layer
architecture to annotate and query the sensor data is presented
in [17]. The sensor data is collected in a pattern dictionary, in
the back-end layer, to generate patterns along with semantic
annotations. The patterns are used to determine the type of a
new sensor and to automatically annotate its data. A crawler
is used to retrieve the sensor data from multiple WSNs and
store it after annotation. The front-end layer provides a GUI
that the end-user utilizes to send search requests. The work is
more focused on building automation domain.

In [18], the authors use their own SenMESO ontology
for annotation which is a combination of various domain

Fig. 10. OA Discovery Time When AAs Increase

Fig. 11. Expected Operation Time of Java SunSpots (always on)

ontologies covering the sensor data and features of interest.
The sensors send the observed data in SenML format to the
gateways. The gateway nodes generate an XML file and send
it to the aggregation gateways which use the stored ontologies
to annotate the sensor data and thereby allow different applica-
tions to use it. As an extension of this work, the authors present
a mechanism to annotate M2M data in [19]. The work focuses
on developing semantic-based M2M applications. The authors
designed an M3 ontology to integrate cross-domain M2M data.
There are no details regarding network architecture, but a web-
based prototype is available. Two cross-domain semantic-based
applications are also discussed.

Overall, the existing studies have several limitations, such
as domain-specific solutions, and their use of protocols such
as Sensor Web Enablement (SWE) [9] that are difficult to
setup and definitely not suitable for resource-constrained en-
vironments. Another limitation is that they are focused on
interoperability between sensors rather than their data.

VII. LESSONS LEARNED AND FUTURE WORK

We have learned several lessons. The first lesson is that
WSN node-level virtualization is still a potent research area
with very few solutions readily available. More efforts are
required from designing a capable WSN operating system
like [20] to unconventional energy harvesting mechanisms
for sensor nodes like [21]. The second lesson is that current

overlay middleware solutions are not suitable for WSNs be-
cause none has been designed to work with these resource-
constraint devices. JXTA is too heavy for sensor nodes and
its future is also uncertain. The third lesson is that there are
not many libraries for semantic annotation that can be used by
resource-constrained devices. We found an old J2ME-based
µJena library and after several modifications managed to use
it with Java SunSpots. However it only annotates data in N-
TRIPLE format, whereas standard Apache Jena Framework
supports multiple formats. Extensions to µJena library to
annotate sensor data similar to Apache Jena Framework can
be a useful contribution.

We have identified several key research issues that need
to be addressed. First is the optimal selection of sensor
nodes for the roles of AAs and OAs using energy-aware
algorithms. These algorithms also need to take into account
the characteristics of WSNs. Second issue is regarding the
management of base ontology, since new types of sensors
with new sensing capabilities may be deployed along with
the existing WSN infrastructure. There is a need to have an
easy to use mechanism to create and manage the ontology
and later distribute it in the WSN infrastructure in an efficient
manner. Third issue is that there is a need for lightweight
P2P middleware for capable sensor nodes. This would make
it possible for geographically-distributed sensors to share their
data efficiently.

The final but very important issue is the possible integration
of our proposed architecture with Platform-as-a-Service (PaaS)
for the rapid provisioning of WSN application that can be of-
fered as SaaS is yet another issue to investigate. In our current
implementation we (partly) bypass Google Infrastructure for
the interactions with our virtualized WSN infrastructure. As
future work, we plan to integrate WSN infrastructure with a
PaaS and allow its management at a higher level of abstraction
through dynamic resource provisioning.

VIII. CONCLUSION

Semantic applications are being used in many application
areas such as life sciences, media, and information systems.
Annotating sensor data allows the end-users to get high-level
information about the real-world situations instead of raw
measurements of individual sensors. This could potentially
open doors to many new applications. In this paper we
have proposed an architecture for annotating sensor data in
virtualized WSNs where sensors run multiple application tasks
concurrently. Our architecture is applicable to both resource-
constrained and resource-full sensors. We have also demon-
strated the feasibility of the proposed architecture by realizing
a representative use case using heterogeneous sensors. Several
research issues have also been identified as future work.

ACKNOWLEDGMENT

This work is partially supported by CISCO systems through
grant CG-576719, and by the Canadian Natural Science and
Engineering Research Council (NSERC) through the Discov-
ery Grant program.

REFERENCES

[1] J. Yick, B. Mukherjee, and D. Ghosal, “Wireless sensor network
survey,” Computer Networks, vol. 52, no. 12, pp. 2292-2330, Aug. 2008.

[2] I. Khan, F. Belqasmi, R. Glitho, and N. Crespi, “A multi-layer architec-
ture for wireless sensor network virtualization,” in Wireless and Mobile
Networking Conference (WMNC), 2013 6th Joint IFIP, Dubai, UAE,
pp. 14.

[3] A. Merentitis, et al., “WSN Trends: Sensor Infrastructure Virtualization
as a Driver Towards the Evolution of the Internet of Things,” presented
at the UBICOMM 2013, The Seventh International Conference on
Mobile Ubiquitous Computing, Systems, Services and Technologies,
Porto, Portugal, 2013, pp. 113-118.

[4] S. Abdelwahab, B. Hamdaoui, M. Guizani, and A. Rayes, “Enabling
Smart Cloud Services Through Remote Sensing: An Internet of Ev-
erything Enabler,” IEEE Internet of Things Journal, vol. 1, no. 3, pp.
276-288, Jun. 2014.

[5] I. Khan, F. Belqasmi, R. Glitho, N. Crespi, M. Morrow, and P.
Polakos, “Wireless Sensor Network Virtualization: Early Architecture
and Research Perspectives,” IEEE Network Magazine. (accepted for
publication), in-press.

[6] A. Kiryakov, B. Popov, I. Terziev, D. Manov, and D. Ognyanoff,
“Semantic annotation, indexing, and retrieval,” Web Semantics: Science,
Services and Agents on the World Wide Web, vol. 2, no. 1, pp. 49-79,
Dec. 2004.

[7] A. Sheth, C. Henson, and S. S. Sahoo, “Semantic Sensor Web,” IEEE
Internet Computing, vol. 12, no. 4, pp. 78-83, Jul. 2008.

[8] M. Compton, et al., “The SSN ontology of the W3C semantic sensor
network incubator group,” Web Semantics: Science, Services and Agents
on the World Wide Web, vol. 17, pp. 25-32, Dec. 2012.

[9] M. Botts, G. Percivall, C. Reed, and J. Davidson, “OGC R©Sensor Web
Enablement: Overview and High Level Architecture,” in GeoSensor
Networks, S. Nittel, A. Labrinidis, and A. Stefanidis, Eds. Springer
Berlin Heidelberg, 2008, pp. 175-190.

[10] E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim, “A survey
and comparison of peer-to-peer overlay network schemes,” IEEE Com-
munications Surveys Tutorials, vol. 7, no. 2, pp. 72-93, Second 2005.

[11] M. Liu, T. Leppanen, E. Harjula, Z. Ou, A. Ramalingam, M. Ylianttila,
and T. Ojala, “Distributed resource directory architecture in Machine-to-
Machine communications,” in 2013 IEEE 9th International Conference
on Wireless and Mobile Computing, Networking and Communications
(WiMob), Lyon, France, 2013, pp. 319324.

[12] J. Menp, J. J. Bolonio, and S. Loreto, “Using RELOAD and CoAP for
wide area sensor and actuator networking,” J Wireless Com Network,
vol. 2012, no. 1, pp. 122, Dec. 2012.

[13] L. Gong, “JXTA: a network programming environment,” IEEE Internet
Computing, vol. 5, no. 3, pp. 88-95, May 2001.

[14] C. Jennings, J. Arkko, and Z. Shelby, “Media Types for Sensor
Markup Language (SENML).” work-in-progress [Online]. Available:
https://tools.ietf.org/html/draft-jennings-senml-10. [Accessed: 29-Sep-
2014].

[15] F. Crivellaro, “µJena: Gestione di ontologie sui dispositivi mobile,”
Thesis, M.Sc., Politecnico di Milano, Milan, Italy, 2007.

[16] C. . Henson, J. K. Pschorr, A. Sheth, and K. Thirunarayan, “SemSOS:
Semantic sensor Observation Service,” in International Symposium on
Collaborative Technologies and Systems, 2009. CTS 09, Baltimore,
USA, 2009, pp. 44-53.

[17] D. Pfisterer, et al., “SPITFIRE: toward a semantic web of things,” IEEE
Communications Magazine, vol. 49, no. 11, pp. 40-48, Nov. 2011.

[18] A. Gyrard, C. Bonnet, and K. Boudaoud, “A machine-to-machine
architecture to merge semantic sensor measurements,” in WWW 2013,
22nd International World Wide Web Conference, Doctoral Consortium,
Rio de Janeiro, BRAZIL, 2013.

[19] A. Gyrard, C. Bonnet, and K. Boudaoud, “Enrich machine-to-machine
data with semantic web technologies for cross-domain applications,” in
2014 IEEE World Forum on Internet of Things (WF-IoT), Seoul, Korea,
2014, pp. 559-564.

[20] O. Hahm, E. Baccelli, H. Petersen, M. Whlisch, and T. C. Schmidt,
“Demonstration Abstract: Simply RIOT: Teaching and Experimental
Research in the Internet of Things,” in Proceedings of the 13th In-
ternational Symposium on Information Processing in Sensor Networks,
Piscataway, NJ, USA, 2014, pp. 329-330.

[21] E. Gelenbe, D. Gesbert, D. Gunduz, H. Kulah, and E. Uysal-Biyikoglu,
“Energy harvesting communication networks: Optimization and demon-

stration (the E-CROPS project),” in 2013 24th Tyrrhenian International
Workshop on Digital Communications - Green ICT (TIWDC), Sept. 23
- 25, 2013 Genoa, Italy, pp. 16.

