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Abstract Locating a target in an indoor social envi-

ronment with a Mobile Network is important and dif-

ficult for location-based applications and services such

as targeted advertisements, geosocial networking and

emergency services. A number of radio-based solutions

have been proposed. However, these solutions, more or

less, require a special infrastructure or extensive pre-

training of a site survey. Since people habitually carry

their mobile devices with them, the opportunity using a

large amount of crowd-sourced data on human behavior

to design an indoor localization system is rapidly ad-

vancing. In this study, we first confirm the existence of

crowd behavior and the fact that it can be recognized

using location-based wireless mobility information. On

this basis, we design “Locating in Crowdsourcing-based

DataSpace” (LiCS) algorithm, which is based on sens-
ing and analyzing wireless information. The process of

LiCS is crowdsourcing-based. We implement the proto-

type system of LiCS. Experimental results show that

LiCS achieves comparable location accuracy to previ-

ous approaches even without any special hardware.
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1 Introduction

Mobile indoor localization and navigation have become

very popular in recent years [8,18]. Some mobile in-

door localization systems have been successfully used

in a great number of applications such as the location

detection of products stored in a warehouse, the loca-

tion detection of medical personnel or equipment in a

hospital, the location detection of firemen in a building

on fire, the location detection of police dogs trained to

find explosives in a building, and finding tagged main-

tenance tools and equipment scattered all over a plant.

However, a challenging issue remains for mobile indoor

localization. A number of existing approaches require

infrastructures (e.g., indoor beacons) to achieve reli-

able accuracy or extensive pre-training before system

deployment (e.g., WiFi signal fingerprinting).

With the dramatic increase of the size and frequency

of mass events and the potential functionality of mobile

devices, the study of crowd dynamics based on Mobile

Networks has become an important research area [9,

12]. Firstly, as a base of crowdsourcing-based technolo-

gy, the crowd behavior of human is worthy to be deeply

studied, whether in the virtual world or in the real

world. By analyzing and studying the crowd behavior,

we can extract some useful conclusions about how hu-

mans behave when they are in large groups. For the

crowdsourcing-based technologies such as Quora, Ya-

hoo Answers and Google Answers, using the extracted

conclusions at group and community levels [22] (a group

or a community can be considered as a crowd) will be

helpful to develop and improve this type of technolo-

gy. Furthermore, predicting the formation of a crowd is

helpful in some emergency situations, e.g., evacuation

route control; and even the prediction is also beneficial

for studying and improving the performance of pub-
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lic infrastructures, e.g., network usage during a mass

event. Secondly, with the increasing ubiquity of sensing

the real world context with smart mobile devices (e.g.,

the physical location of a mobile device) [10,17], we

investigate the rising opportunities for mobile crowd-

sourcing to obtain real-time physical data. Based on

the data, a bridge between the virtual world and the

real world can be built. It also means that the crowd-

sourcing is extended from the virtual world to the real

world to help solve many real-world problems. Hence,

the crowdsourcing technology can be used for the loca-

tion estimation problem in the physical world, and can

solve the challenging problem of mobile indoor localiza-

tion, to achieve “special-infrastructure-free”1 and even

“pre-training-free”.

In this article, we first focus on recognizing human

crowd behavior by analyzing the data measured by inter-

net-accessible mobile phones from a location-aware on-

line social network. By crowd behavior recognition, we

understand that the movement of a large number of

individuals has a pattern and can be attributed, de-

pending on relevant parameters such as the friendship

between individuals2 and check-in locations (with time)

of these individuals.

Then, we propose LiCS, an indoor localization algo-

rithm that considers trace data from individuals’ mobile

devices and a location estimation model. The trace da-

ta includes the following information: MAC addresses of

devices, MAC addresses of signal transmitters and cor-

responding RSSIs (generally, the RSSI (Received Signal

Strength Indication) can be used to indicate the value

of RSS). With LiCS, mobile devices periodically report

their trace data to a Data Analysis Center (DAC). The

DAC runs a machine learning algorithm that accepts

the wireless-based trace data as features of user mobili-

ty patterns, and periodically estimates the locations of

mobile devices in real time. Since we use wireless infor-

mation obtained from the social environment around

us, LiCS can achieve fine-grained localization.

To validate this design, we implement a prototype

system to conduct long-term experiments in two re-

search laboratories and a corridor of a middle-size aca-

demic building covering over 39, 725m2. Experimental

results show that LiCS achieves comparable location

accuracy to previous approaches even without a site

1 A “special infrastructure” means that the infrastructure
consists of customized equipment. LiCS is based on Received
Signal Strength (RSS) that exists in any wireless equipment,
so LiCS can be directly supported by existing wireless infras-
tructures around us.
2 For a location-aware online social network, if B is in the

friend list of A, we consider that there is friendship between
A and B, and the relationship is directed.

survey. Moreover, LiCS provides a room-level localiza-

tion service.

The main contributions of this work are summarized

as follows:

1. We design a crowd recognition model. One of the

main challenges in crowd behavior recognition is to

infer the most likely crowd behavior using the da-

ta collected from a set of persons. We use check-in

times and locations (Time and Location id; we con-

vert each latitude/longitude coordinate of the earth

into a unique Location id) to quantify the trace

of each individual. Then, a clustering algorithm3 is

used to find the likely crowds.

2. We design LiCS, an indoor localization algorithm for

social environments based on the target’s trace data.

LiCS utilizes automatic selftraining for target trace

data without any specific configuration for mobile

devices.

3. We implement the prototype system of LiCS on An-

droid devices, and perform an extensive set of ex-

periments.

The rest of this article is organized as follows. Sec-

tion 2 introduces related work. Section 3 describes our

system model. Section 4 shows the existence of human

crowd behavior in our daily lives and how to recognize

it from the trace data of individuals. The “Locating

in Crowdsourcing-based DataSpace” (LiCS) algorithm

is presented in Section 5, while the evaluation of LiCS

algorithm and the analysis of results are shown in Sec-

tion 6. The article concludes with a brief summary in

Section 7.

2 Related Work

In this study, the related work concerns two main as-

pects: (i) mobile-device-based indoor localization; (i-

i) crowdsourcing-based technology and crowdsourcing-

based indoor localization (crowd-sourced data can be

used to improve the performance of indoor localiza-

tion).

2.1 Wireless Indoor Localization

In the mobile computing community, a user can carry a

sensing device (such as a smart phone) to move random-

ly or within a field of fixed sensors [3]. In either case, the

3 An Expectation-Maximization (EM) clustering algorith-
m [7] is used in this article. The EM assigns a probability
distribution for each trace record (instance), which indicates
the probability of each instance belonging to each of the clus-
ters. The EM can automatically decide how many clusters to
create.
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knowledge of user’s location can be useful for some ap-

plications (called Location-Based Services (LBS) [6]).

Outdoor localization is well solved by GPS, but in-

door localization remains a challenge in many cases. For

the indoor localization issue, a number of algorithms

have been proposed in the past two decades. Generally,

these algorithms fall into two categories: (i) some work-

s are based on sensors or beacons which are installed

throughout the environment [15][16][2]; so special hard-

ware is required to run these algorithms; (ii) in recen-

t approaches, the location is determined by observing

RSS. Two techniques are widely used in this kind of

algorithms: fingerprinting-based and model-based tech-

nique. A large body of indoor localization algorithms

adopt fingerprint matching as the basic scheme of lo-

cation determination. The main idea of this technique

is to fingerprint the surrounding signatures at some lo-

cations in the area of interest and then build a finger-

print database. The location of a user is then estimated

by matching the new measured fingerprint of the us-

er against the database. Many kinds of signatures have

been exploited by researchers such as WiFi signals [19]

(e.g., LiFS algorithm [20]), Radio Frequency (RF) sig-

nals [1][21] and Frequency Modulation (FM) radio sig-

nals [4]. The considerable manual costs and efforts, in

addition to the inflexibility to environmental dynamis-

m, are the main drawbacks of fingerprinting-based al-

gorithms. The model-based technique calculates loca-

tions based on geometrical or statistical models rather

than searches for best-fit signatures from pre-built ref-

erence databases [14]. For instance, the prevalent Log-

Distance Path Loss (LDPL) model [11] builds up a

semi-statistical function between RSS values and RF

propagation distances. However, these model-based al-

gorithms trade the measurement efforts at the cost of

decreasing localization accuracy.

2.2 Crowdsourcing-based Technology

Crowdsourcing is one specific form of harvesting wis-

dom and contributions from individuals of crowds; based

on this harvesting scheme, some applications or ser-

vices are developed and the performance of some algo-

rithms can be improved: it can be called crowdsourcing-

based technology. Some researchers explore crowdsourc-

ing based on the use of mobile devices. Moreover, as an

important basic service, wireless mobile-device-based

indoor localization technologies such as GSM-based, Blu-

etooth-based or WiFi-based localization, have been ex-

tended by using crowdsourcing data to support and im-

prove the performance of location estimation [13] [20].

Current crowdsourcing-based localization approaches de-

pend on calibration of the space of interest. Such cal-

ibration tends to be onerous, because it has to be re-

peated for every new space and each time there is a

significant change in a given space (e.g., a change in

the placement of signal transmitter). LiCS is aimed at

eliminating the need for such explicit calibration effort

and the need for any kind of map concerning the space

of interest. LiCS exploits the advantage of model-based

technique (versatility and conciseness) and avoids its

drawback (accuracy loss for localization) by training a

localization model using real-time trace data of individ-

uals in crowds from the physical world. Figure 1 shows

an example for the motivation of applying LiCS and

the system architecture of LiCS.

3 System Model

The prototype system is developed on Android smart-

phones and follows mobile-based network-assisted ar-

chitecture (Fig. 1(b)). Our system model can be con-

sidered as a wireless network where there are N fixed

signal transmitters T = {t1, t2, ..., ti, ..., tN} and M mo-

bilizable signal receivers R = {r1, r2, ..., ri, ..., rM}. The

parameter p(t) denotes the estimate of a mobile termi-

nal location at time t. And the parameter p′(t) is used

to denote the real location of a mobile terminal at time

t. Moreover, the parameter d(t) is the measured dis-

tance between the estimated location p(t) and the real

location p′(t), and we use the “step” to measure the

distance between p(t) and p′(t) as the localization error

at time t in our evaluation experiments (Section 6).

The problem of crowdsourcing-based location esti-

mation can be defined as an identification procedure.

The matched fingerprints can be identified from the

model-assisted fingerprint database. And the model learn-

s the real environment with wireless signals (RSS) and

can be trained in real time with the wireless information

that is submitted by mobile terminals.

4 Crowd Behavior Recognition

As the basis of crowdsourcing-based location estima-

tion, we need to confirm the existence of crowd behav-

ior; and it can be recognized from wireless mobile data

of people’s daily lives. In this section we formalize a se-

ries of processing steps which can be used to infer crowd

behavior from location-based wireless information. We

also present a mathematical model for recognizing the

crowd behavior of a population.

First, based on the collected data from a location-

based mobile social network using its public API [5]4,

4 The collected data with anonymous mobile devices from
Brightkite is used to correlate, model, evaluate and analyze
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(a) Motivation example. The location-finding abil-
ity of indoor localization systems heavily depends
on the broadcasts from wireless equipment. For
LiCS, any individual can use the trained model to
estimate his/her location, and then his/her RSS
can be used to train the model again. With the
crowd-sourced RSS, the model is trained to make
its parameters accordant with the practical situa-
tions.

(b) System architecture. As an improve-
ment, LiCS exploits the advantage of
model-based technique (versatility and
conciseness) and avoids its drawback with
the training for a location estimation
model: crowd-sourced data is used to
train the model and the model is installed
in distributed servers.

Fig. 1 Motivation example and system architecture.
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Fig. 2 (a) Clustering result with Friendship attribute. (b)
Clustering result with Location id attribute. For clearness,
we only show one-month clustering result using Friendship
and Location id attribute as the classes of clustering evalu-
ation, respectively. 5 clusters can be found for the two clus-
tering processes, and we use different colours to distinguish
different clusters.
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Fig. 3 Number of users for each cluster. (a) Number of user-
s for each cluster using Friendship attribute as the class of
clustering evaluation. (b) Number of users for each cluster
using Location id attribute as the class of clustering evalua-
tion.

the relationships between the check-in time, locations, friend-

we confirm whether the crowd behavior of individual-

s can be identified. Figure 2 shows the results of data

clustering with Friendship and Location id attribute,

respectively (these two attributes are evaluation class-

es of clustering), using the Expectation-Maximization

(EM) algorithm [7]. From Fig. 2, the crowd behavior

(we define “crowd” in Definition 1) has been recognized

using the processed data (in our study we process the

original collected data). Moreover, we can find that dif-

ferent evaluation classes have different clustering accu-

racy levels, so different attributes have different impacts

on crowd behavior. Figure 3 shows the number of user-

s for each cluster corresponding to Fig. 2 (Fig. 2 only

shows the users who are “1-hop” friends, but in Fig. 3,

the users who are multihop friends are also counted for
each cluster). For Fig. 3, more detailed explanations

are necessary: why some clusters are composed by t-

housands of users when we use “Friendship” attribute

as the class of clustering evaluation? Because (i) we use

“multihop” friends in the clustering evaluation; that is

to say, if A is a friend of B within the range r and B

is a friend of C within the range r, A, B and C all will

belong to a same crowd; (ii) the error of clustering e-

valuation is existent; (iii) we use the evaluation dataset

which is from one special month, e.g., some data of the

dataset is from a major celebration (a great number

of users are gathered together), to show the impact of

attributes on crowd behavior5.

ship and crowd behavior of users in 772, 966 distinct places.
The data consists of 58, 228 nodes (users) and 214, 078 friend
edges (friendship is directed between any two nodes).
5 Even if the dataset is incomplete, it still can be used to

show that “the impact of attributes (friendship and check-in
locations) is existent on crowd behavior”.



Locating in Crowdsourcing-based DataSpace: Wireless Indoor Localization without Special Devices 5

Definition 1 A crowd can be defined as follows: a group

of individuals at a “same” physical location (the range

radius r for each user is 10m) and at the “same” time

(the time range for a crowd is set to 15 minutes; name-

ly, if the check-in time difference between two users is

within 15 minutes, we consider that they are “at the

same time”).

The characteristics of crowd behavior for each single

person can therefore be inferred from his/her check-in

records. We refer to this as their “individual behavior”.

This shows which individuals participate in a specif-

ic crowd. From the EM algorithm, a given record be-

longs to each cluster with certain probabilities. More-

over, likelihood is a measurement of “how good” a clus-

tering process is and it increases in the successive itera-

tions of EM algorithm. It is worth mentioning that the

higher the likelihood, the better the model fits the data.

Second, the clustering process (crowd behavior recog-

nition model) is described as follows. We define two pa-

rameters: (i) the user u’s check-in data Su which is a

sequence of activity observations for user u; (ii) a set of

unknown values θ (i.e., the serial numbers of clusters).

These two parameters are used along with a Maximum

Likelihood Estimation (MLE): L(θ;Su) = p(Su|θ). Our

purpose is to seek the MLE of marginal likelihood. In

other words, we need to find the most probable θ which

the user u belongs. The EM algorithm iteratively ap-

plies the following two steps to achieve our purpose:

1. Expectation step (E step): calculate the expected

value of the log-likelihood function under the cur-

rent established clusters (θ(t)):

Q(θ|θ(t)) = ESu,θ(t) [logL(θ;Su)];

2. Maximization step (M step): find the appropriate

value of parameter θ, which maximizes this quanti-

ty:

θmle = arg max
θ
Q(θ|θ(t)).

MLE estimates θ by finding a value of θ that maximizes

Q(θ|θ(t)), and the estimation result can be flagged as:

θmle.

Further, based on our recognition model, we add the

spatio-temporal pattern of crowd into crowd behavior

(clustering). We use a triple q = (θ, pi, ti) to replace θ.

Then the expectation-maximization process becomes:

1. Expectation step:Q(q|q(ti)) = ESu,q(ti) [logL(q;Su)],

where pi is the position characteristic of location

measurement mi, and ti is the timestamp of mi.

Moreover, q(ti) is a set of current established clus-

ters with their locations and timestamps;

2. Maximization step: choose q to maximizeQ(.), qmle =

arg max
q
Q(q|q(ti)).

Finally, in order to preserve the integrity of our

model, the recognition accuracy must be measured. In

our crowd behavior recognition model, the value of the

log-likelihood can be used to measure the accuracy.

For instance, using Friendship attribute as the eval-

uation class, based on one-month data, the log likeli-

hood of crowd identification is: −16.42186, and using

Location id attribute as the evaluation class, the log

likelihood is: −16.87742. Their accuracy is different,

and Friendship attribute is more effective for improv-

ing the recognition ability of the model.

5 Locating in Crowdsourcing-based DataSpace

As an effective measurement, RSS is easily available

from various wireless signals which are from most off-

the-shelf wireless equipment such as WiFi- or Bluetooth-

compatible devices. And a large number of RSS-based

indoor localization algorithms are proposed. However,

considering RSS as a database to support indoor local-

ization (e.g., RSS fingerprint space), it is time-consuming

and labor-intensive. Especially, from extensive experi-

ments, we observe that the RSS is vulnerable due to en-

vironmental dynamism (an example is shown in Fig. 4(a)).

How to avoid these weaknesses to improve the perfor-

mance of RSS-based indoor localization? It is worth

noting that the trend of RSS change is obvious between

different locations (Figure 4(b)).
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(a) An example: the fluctua-
tion range of RSS for some lo-
cations. For example, at the
location 60, the RSS is not a
value, it is a range of values.
So the fingerprint of a location
cannot be denoted by the ab-
solute value of RSS.
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(b) Changing trend of RSS.
location number = 0 is the
location of a signal trans-
mitter; as a signal receiver
moves away from the trans-
mitter, the RSS is decreas-
ing.

Fig. 4 Instability of RSS and changing trend between differ-
ent locations.

To try to avoid these weaknesses, we present LiCS

and the details are shown as follows.



6 Yuanfang Chen et al.

Input: Signal triples6 from individuals.

First, at time t + 1, the value p(t + 1) can be esti-

mated based on “observed locations” p(t), p(t−1), p(t−
2), ..., p(t − k + 1). Moreover, the relationship between

the output p(t + 1) and the input p(t), p(t − 1), p(t −
2), ..., p(t− k + 1) has the following mathematical rep-

resentation (Eq. 1):

p(t+1) = α0 +

q∑
j=1

αjg(β0j +

p∑
i=1

βijp(t− i+1))+ ε, (1)

where αj(j = 0, 1, 2, ..., q) and βij(i = 0, 1, 2, ..., p; j =

1, 2, 3, ..., q) are the connection weights between time

series, p is the number of “observed locations”, q is the

number of nodes of hidden layer7 and ε is noise of the

estimation. The logistic function g(x) = 1
1+e−x is used

as a hidden-layer transfer function. In this study, an

optimal location estimation model is built by training

the model with the wireless data collected from the re-

al physical space around us (the collected data can be

denoted as signal triples). The training steps are shown

as follows:

Step 1: Cluster the signal triples. Partition all triples

into several clusters, using an Expectation-Maximiza-

tion (EM) clustering algorithm. Moreover a cluster

center can be obtained for each cluster. Each cluster

is given a unique number as its location.

Step 2: Input some selected time-serial signal triples

with corresponding locations of clusters into Eq. 1

for learning the optimal configuration of parameter-

s, αj , βij and ε. A location estimation model with

optimal parameter configuration can be obtained.

Moreover, the growth of logistic function g(.) sat-

isfies: the initial stage of growth is approximately
exponential; then, as saturation begins, the growth

slows, and at maturity, the growth stops. So if the

training time is long enough, the parameter con-

figuration of Eq. 1 will gradually converge to the

optimal solution.

Then, a target can be located with the optimal lo-

cation estimation model. (i) Give the target a start

location p(0). Calculate the Euclidean distances be-

tween a received new signal triple and all cluster cen-

ters (the new signal triple is from the target). If the

6 A triple can be denoted as [RSS,MACT ,MACR]. For
the specific RSS of a location, MACT is the MAC address
of corresponding signal transmitter and MACR is the MAC
address of corresponding signal receiver.
7 In machine learning, using the hidden layer enables

greater processing power and system flexibility. The nodes
of hidden layer are named as hidden nodes. Hidden nodes are
the nodes that are neither in the input layer nor the output
layer. These nodes are essentially hidden from view, and their
number and organization can typically be treated as a black
box to people who are interfacing with the system.

shortest Euclidean distance is relative to the cluster k,

p(0) = k. (ii) Calculate the location at time t + 1. Us-

ing the trained Eq. 1 as “optimal location estimation

model”, from the start location p(0), we can obtain

time-serial locations. And based on “observed location-

s”, [p(t), p(t− 1), ..., p(0)], p(t+ 1) can be calculated.

The real-time location of a target is obtained by our

algorithm. Moreover, (i) the optimal location estima-

tion model is periodically trained by new signal triples;

and (ii) if more signal transmitters can be detected by

receivers, it will help to distinguish different locations

more effectively for achieving higher localization accu-

racy.

Output: The real-time location (cluster number)

of a target. For some special applications, if the abso-

lute coordinates of clusters are available, the absolute

physical location of target will be known.

Note that Eq. 1 is the core of LiCS. From above de-

scriptions of the algorithm LiCS, we can find that these

parameters will affect the accuracy of LiCS: the con-

nection weights between time series, αj and βij . The

parameter αj reflects the importance of hidden-layer

transfer for the location estimation of time t+1. In oth-

er words, it denotes the degree of correlation between

different time series. The parameter βij reflects the im-

portance of the jth node in the hidden layer, when the

hidden layer transfers the influence of observed loca-

tion p(t− i+ 1) to p(t+ 1). The appropriate values of

these parameters for the model of location estimation

at time t+ 1 will be helpful to improve the accuracy of

localization.

The variables that are used in LiCS are summarized

in Tab. 1.

6 Evaluation

We develop the prototype system of LiCS on the in-

creasingly popular Android OS which supports WiFi

and Bluetooth. We conduct long-term experiments in

two laboratories (84m2 and 53m2, respectively) and

a corridor (Fig. 5) of a middle-size academic building

where a number of WiFi routers without location in-

formation have been installed. Moreover, in each ex-

perimental site, we install three Bluetooth transmitters

(laptop-embedded Bluetooth transmitters are used in

our experiment, so they are not special devices; the sig-

nal of Bluetooth is full-coverage for each experimental

site). The experiment lasts one month using 9 volun-

teers. We measure WiFi signals and Bluetooth signals.
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Table 1 Variables and explanations

Variables Explanations
[RSS,MACT ,MACR] A triple consists of three elements, where RSS is Received Signal Strength received by

a mobile terminal, MACT is the MAC address of corresponding signal transmitter and
MACR is the MAC address of corresponding signal receiver. The triple is used to train
the location estimation model and structure the fingerprint database.

p(t) We use the variable to denote the location of a mobile terminal at time t.
αj The variable is the connection weight between time series, and it reflects the importance

of hidden-layer transfer for the location estimation of time t+ 1.
βij The variable is the connection weight between time series, and it reflects the importance

of jth node in the hidden layer, when the hidden layer transfers the influence of observed
location p(t− i+ 1) to p(t+ 1).

(a) (b)

(c)

Fig. 5 Floor plans of experimental sites. (a) Laboratory covering over 84m2. (b) Laboratory covering over 53m2. (c) Corridor
covering over 302m2.

6.1 Experimental Setup

Each volunteer carries a mobile phone and can take

any activity in any area of experiment. The trace data

of each volunteer is recorded every 30 seconds during

working hours (from 9:00 a.m. to 10:00 p.m.). Moreover,

the trace data from volunteers covers most of the areas

of experiment.

In our experiments, for LiCS, we use WiFi and Blue-

tooth signals. Bluetooth is a wireless technology stan-

dard for exchanging data over short distances, so Blue-

tooth signals attenuate more rapidly with distance com-

pared with WiFi signals.

We compare our algorithm with LiFS [20] under the

same experimental conditions. LiFS is an RSS-based in-

door localization algorithm (using WiFi signals). The

key idea behind LiFS is that human motion can be ap-

plied to connect previously independent radio finger-

prints under certain semantics. In LiFS, absolute val-

ues of RSS are used to establish a fingerprint database.

When a user sends a location query with his/her current

RSS fingerprint, LiFS retrieves the fingerprint database

and returns the matched fingerprints as well as the cor-

responding locations.

6.2 Performance Evaluation

In this section, we show the comparative results of LiFS

and LiCS. We estimate 248 location queries, and cumu-

late all localization errors of these queries (Cumulative
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(a)                                                                                                   (b)                                                                                                         (c)

Fig. 6 CDFs of localization errors for both algorithms in three different experimental sites. (a) CDF of localization errors in
the laboratory covering over 84m2. (b) CDF of localization errors in the laboratory covering over 53m2. (c) CDF of localization
errors in the corridor covering over 302m2.

Distribution Function (CDF)8) for both algorithms, re-

spectively. The results are shown in Fig. 6 and Fig. 7.
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Fig. 7 CDF of localization errors for the average of three
experimental sites.

The unit of the estimated error for localization is

step ≈ 1.2m. The average localization error of LiCS

with Bluetooth signals is 2.6575m, LiCS with WiFi sig-

nals is 4.35m, and LiFS is 5.95m. The maximum local-

ization error of LiCS with Bluetooth signals is 33.6m,

LiCS with WiFi signals is 34.8m and LiFS is 40.8m.

For comparing the overall performance of three ex-

perimental sites for both algorithms, we calculate the

average results of three experimental sites for LiCS (Blue-

tooth), LiCS (WiFi) and LiFS. From Fig. 7, we can

find that our LiCS is better than LiFS for the average

of three experimental sites. For example, the localiza-

tion errors of 95% queries are less than 6m for LiC-

S (Bluetooth), 69% queries are less than 6m for LiCS

8 Cumulative Distribution Function describes the probabil-
ity that a real-valued random variable X with a given proba-
bility distribution will be found at a value less than or equal
to x. It can be formulated as FX(x) = P (X ≤ x).

(WiFi) and 60% for LiFS. LiCS uses the model training

with real-time data, so the localization accuracy for lo-

cation queries is improved compared with LiFS. More-

over, why the localization accuracy of LiCS (Bluetooth)

is higher than LiCS (WiFi)? Based on the attenuation

characteristics of Bluetooth signals and WiFi signals,

the differences of RSS between different locations for

Bluetooth are greater than the differences for WiFi. So

using the RSS of Bluetooth to distinguish different lo-

cations is more accurate than using the RSS of WiFi.

If we can distinguish different locations more clearly,

we can obtain higher localization accuracy based on an

RSS-based fingerprint database.

Furthermore, from the experimental results of Fig. 6,

we can find that: (i) on average, for localization accu-

racy, LiCS is better than LiFS, in the three differen-

t experimental sites. For example, the localization er-

rors of 80% queries are less than 2.4m for LiCS (Blue-
tooth), and 70% for LiFS, in the laboratory covering

over 84m2; (ii) the localization accuracy of LiCS (Blue-

tooth) is better than LiCS (WiFi) and LiFS. For ex-

ample, the localization errors of 50% queries are under

2.4m for LiCS (Bluetooth), while about 30% for LiCS

(WiFi) and about 25% for LiFS, in the laboratory cov-

ering over 53m2. Bluetooth improves the average local-

ization error up to 39% compared with LiCS (WiFi),

and up to 55% compared with LiFS. Because the signal

strength of Bluetooth is changed sharply between lo-

cations, which makes the distinction of signal strength

between different locations more remarkable (the “re-

markable” is conducive to improving the accuracy of

localization).

Moreover, LiFS is based on a priori database (some

human intervention is necessary in the build phase of a

database). LiCS is crowd-sourced, so only wireless in-

formation is required, which is received by humans in

their daily lives. And the locating process of LiCS is
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automatic and priori-database-free. LiCS is based on

WiFi and Bluetooth information which is readily avail-

able. The above-mentioned features of LiCS make the

rapid deployment of system possible.

7 Conclusion

Crowdsourcing is a distributed problem-solving scheme

that has emerged in recent years. It exploits the poten-

tial and wisdom of crowds to support various applica-

tions and to improve the performance of various algo-

rithms in a cost-effective fashion. In our study, we inves-

tigate the existence of crowd behavior in the real world

and it can be recognized using location-aware wireless

mobility information of people’s daily lives. Further-

more, we present a model for crowd behavior recog-

nition. On this basis, by sensing and collecting WiFi

and Bluetooth information from the social surroundings

around us, we propose a time-serial location estimation

model. Using this model, we design and implement LiC-

S, an indoor target localization algorithm based on two

aspects, (i) mobile devices carried by individuals, and

(ii) a location estimation model which is trained by the

collected data from individuals about WiFi and Blue-

tooth information. The experimental results show that

LiCS achieves competitive location accuracy without

any special infrastructure. This work sets up a novel

perspective to crowd-sourced indoor localization algo-

rithms.
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