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Abstract Locating a target in an indoor social envi-
ronment with a Mobile Network is important and dif-
ficult for location-based applications and services such
as targeted advertisements, geosocial networking and
emergency services. A number of radio-based solutions
have been proposed. However, these solutions, more or
less, require a special infrastructure or extensive pre-
training of a site survey. Since people habitually carry
their mobile devices with them, the opportunity using a
large amount of crowd-sourced data on human behavior
to design an indoor localization system is rapidly ad-
vancing. In this study, we first confirm the existence of
crowd behavior and the fact that it can be recognized
using location-based wireless mobility information. On
this basis, we design “Locating in Crowdsourcing-based
DataSpace” (LiCS) algorithm, which is based on sens-
ing and analyzing wireless information. The process of
LiCS is crowdsourcing-based. We implement the proto-
type system of LiCS. Experimental results show that
LiCS achieves comparable location accuracy to previ-
ous approaches even without any special hardware.
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1 Introduction

Mobile indoor localization and navigation have become
very popular in recent years [8,18]. Some mobile in-
door localization systems have been successfully used
in a great number of applications such as the location
detection of products stored in a warehouse, the loca-
tion detection of medical personnel or equipment in a
hospital, the location detection of firemen in a building
on fire, the location detection of police dogs trained to
find explosives in a building, and finding tagged main-
tenance tools and equipment scattered all over a plant.
However, a challenging issue remains for mobile indoor
localization. A number of existing approaches require
infrastructures (e.g., indoor beacons) to achieve reli-
able accuracy or extensive pre-training before system
deployment (e.g., WiFi signal fingerprinting).

With the dramatic increase of the size and frequency
of mass events and the potential functionality of mobile
devices, the study of crowd dynamics based on Mobile
Networks has become an important research area |9,
12]. Firstly, as a base of crowdsourcing-based technolo-
gy, the crowd behavior of human is worthy to be deeply
studied, whether in the virtual world or in the real
world. By analyzing and studying the crowd behavior,
we can extract some useful conclusions about how hu-
mans behave when they are in large groups. For the
crowdsourcing-based technologies such as Quora, Ya-
hoo Answers and Google Answers, using the extracted
conclusions at group and community levels [22] (a group
or a community can be considered as a crowd) will be
helpful to develop and improve this type of technolo-
gy. Furthermore, predicting the formation of a crowd is
helpful in some emergency situations, e.g., evacuation
route control; and even the prediction is also beneficial
for studying and improving the performance of pub-
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lic infrastructures, e.g., network usage during a mass
event. Secondly, with the increasing ubiquity of sensing
the real world context with smart mobile devices (e.g.,
the physical location of a mobile device) [10,17], we
investigate the rising opportunities for mobile crowd-
sourcing to obtain real-time physical data. Based on
the data, a bridge between the virtual world and the
real world can be built. It also means that the crowd-
sourcing is extended from the virtual world to the real
world to help solve many real-world problems. Hence,
the crowdsourcing technology can be used for the loca-
tion estimation problem in the physical world, and can
solve the challenging problem of mobile indoor localiza-
tion, to achieve “special-infrastructure-free”! and even
“pre-training-free”.

In this article, we first focus on recognizing human
crowd behavior by analyzing the data measured by inter-
net-accessible mobile phones from a location-aware on-
line social network. By crowd behavior recognition, we
understand that the movement of a large number of
individuals has a pattern and can be attributed, de-
pending on relevant parameters such as the friendship
between individuals? and check-in locations (with time)
of these individuals.

Then, we propose LiCS, an indoor localization algo-
rithm that considers trace data from individuals’ mobile
devices and a location estimation model. The trace da-
ta includes the following information: MAC addresses of
devices, MAC addresses of signal transmitters and cor-
responding RSSIs (generally, the RSSI (Received Signal
Strength Indication) can be used to indicate the value
of RSS). With LiCS, mobile devices periodically report
their trace data to a Data Analysis Center (DAC). The
DAC runs a machine learning algorithm that accepts
the wireless-based trace data as features of user mobili-
ty patterns, and periodically estimates the locations of
mobile devices in real time. Since we use wireless infor-
mation obtained from the social environment around
us, LiCS can achieve fine-grained localization.

To validate this design, we implement a prototype
system to conduct long-term experiments in two re-
search laboratories and a corridor of a middle-size aca-
demic building covering over 39, 725m?. Experimental
results show that LiCS achieves comparable location
accuracy to previous approaches even without a site

L A “special infrastructure” means that the infrastructure
consists of customized equipment. LiCS is based on Received
Signal Strength (RSS) that exists in any wireless equipment,
so LiCS can be directly supported by existing wireless infras-
tructures around us.

2 For a location-aware online social network, if B is in the
friend list of A, we consider that there is friendship between
A and B, and the relationship is directed.

survey. Moreover, LiCS provides a room-level localiza-
tion service.

The main contributions of this work are summarized
as follows:

1. We design a crowd recognition model. One of the
main challenges in crowd behavior recognition is to
infer the most likely crowd behavior using the da-
ta collected from a set of persons. We use check-in
times and locations (T%me and Location_id; we con-
vert each latitude/longitude coordinate of the earth
into a unique Location_id) to quantify the trace
of each individual. Then, a clustering algorithm? is
used to find the likely crowds.

2. We design LiCS, an indoor localization algorithm for
social environments based on the target’s trace data.
LiCS utilizes automatic selftraining for target trace
data without any specific configuration for mobile
devices.

3. We implement the prototype system of LiCS on An-
droid devices, and perform an extensive set of ex-
periments.

The rest of this article is organized as follows. Sec-
tion 2 introduces related work. Section 3 describes our
system model. Section 4 shows the existence of human
crowd behavior in our daily lives and how to recognize
it from the trace data of individuals. The “Locating
in Crowdsourcing-based DataSpace” (LiCS) algorithm
is presented in Section 5, while the evaluation of LiCS
algorithm and the analysis of results are shown in Sec-
tion 6. The article concludes with a brief summary in
Section 7.

2 Related Work

In this study, the related work concerns two main as-
pects: (i) mobile-device-based indoor localization; (i-
i) crowdsourcing-based technology and crowdsourcing-
based indoor localization (crowd-sourced data can be
used to improve the performance of indoor localiza-
tion).

2.1 Wireless Indoor Localization
In the mobile computing community, a user can carry a

sensing device (such as a smart phone) to move random-
ly or within a field of fixed sensors [3]. In either case, the

3 An Expectation-Maximization (EM) clustering algorith-
m [7] is used in this article. The EM assigns a probability
distribution for each trace record (instance), which indicates
the probability of each instance belonging to each of the clus-
ters. The EM can automatically decide how many clusters to
create.



Locating in Crowdsourcing-based DataSpace: Wireless Indoor Localization without Special Devices 3

knowledge of user’s location can be useful for some ap-
plications (called Location-Based Services (LBS) [6]).
Outdoor localization is well solved by GPS, but in-
door localization remains a challenge in many cases. For
the indoor localization issue, a number of algorithms
have been proposed in the past two decades. Generally,
these algorithms fall into two categories: (i) some work-
s are based on sensors or beacons which are installed
throughout the environment [15][16][2]; so special hard-
ware is required to run these algorithms; (ii) in recen-
t approaches, the location is determined by observing
RSS. Two techniques are widely used in this kind of
algorithms: fingerprinting-based and model-based tech-
nique. A large body of indoor localization algorithms
adopt fingerprint matching as the basic scheme of lo-
cation determination. The main idea of this technique
is to fingerprint the surrounding signatures at some lo-
cations in the area of interest and then build a finger-
print database. The location of a user is then estimated
by matching the new measured fingerprint of the us-
er against the database. Many kinds of signatures have
been exploited by researchers such as WiFi signals [19]
(e.g., LiF'S algorithm [20]), Radio Frequency (RF) sig-
nals [1][21] and Frequency Modulation (FM) radio sig-
nals [4]. The considerable manual costs and efforts, in
addition to the inflexibility to environmental dynamis-
m, are the main drawbacks of fingerprinting-based al-
gorithms. The model-based technique calculates loca-
tions based on geometrical or statistical models rather
than searches for best-fit signatures from pre-built ref-
erence databases [14]. For instance, the prevalent Log-
Distance Path Loss (LDPL) model [11] builds up a
semi-statistical function between RSS values and RF
propagation distances. However, these model-based al-
gorithms trade the measurement efforts at the cost of
decreasing localization accuracy.

2.2 Crowdsourcing-based Technology

Crowdsourcing is one specific form of harvesting wis-
dom and contributions from individuals of crowds; based
on this harvesting scheme, some applications or ser-
vices are developed and the performance of some algo-
rithms can be improved: it can be called crowdsourcing-
based technology. Some researchers explore crowdsourc-
ing based on the use of mobile devices. Moreover, as an
important basic service, wireless mobile-device-based
indoor localization technologies such as GSM-based, Blu-
etooth-based or WiFi-based localization, have been ex-
tended by using crowdsourcing data to support and im-
prove the performance of location estimation [13] [20].
Current crowdsourcing-based localization approaches de-
pend on calibration of the space of interest. Such cal-

ibration tends to be onerous, because it has to be re-
peated for every new space and each time there is a
significant change in a given space (e.g., a change in
the placement of signal transmitter). LiCS is aimed at
eliminating the need for such explicit calibration effort
and the need for any kind of map concerning the space
of interest. LiCS exploits the advantage of model-based
technique (versatility and conciseness) and avoids its
drawback (accuracy loss for localization) by training a
localization model using real-time trace data of individ-
uals in crowds from the physical world. Figure 1 shows
an example for the motivation of applying LiCS and
the system architecture of LiCS.

3 System Model

The prototype system is developed on Android smart-
phones and follows mobile-based network-assisted ar-
chitecture (Fig. 1(b)). Our system model can be con-
sidered as a wireless network where there are N fixed
signal transmitters T' = {t1, ta, ..., t;, ..., tx } and M mo-
bilizable signal receivers R = {ry,r2,...,7;, ..., }. The
parameter p(t) denotes the estimate of a mobile termi-
nal location at time ¢. And the parameter p’(¢) is used
to denote the real location of a mobile terminal at time
t. Moreover, the parameter d(t) is the measured dis-
tance between the estimated location p(t) and the real
location p’(t), and we use the “step” to measure the
distance between p(t) and p’(¢) as the localization error
at time ¢ in our evaluation experiments (Section 6).

The problem of crowdsourcing-based location esti-
mation can be defined as an identification procedure.
The matched fingerprints can be identified from the
model-assisted fingerprint database. And the model learn-
s the real environment with wireless signals (RSS) and
can be trained in real time with the wireless information
that is submitted by mobile terminals.

4 Crowd Behavior Recognition

As the basis of crowdsourcing-based location estima-
tion, we need to confirm the existence of crowd behav-
ior; and it can be recognized from wireless mobile data
of people’s daily lives. In this section we formalize a se-
ries of processing steps which can be used to infer crowd
behavior from location-based wireless information. We
also present a mathematical model for recognizing the
crowd behavior of a population.

First, based on the collected data from a location-
based mobile social network using its public API [5]%,

4 The collected data with anonymous mobile devices from
Brightkite is used to correlate, model, evaluate and analyze
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(a) Motivation example. The location-finding abil-
ity of indoor localization systems heavily depends
on the broadcasts from wireless equipment. For
LiCS, any individual can use the trained model to
estimate his/her location, and then his/her RSS
can be used to train the model again. With the
crowd-sourced RSS, the model is trained to make
its parameters accordant with the practical situa-

tions.

Fig. 1 Motivation example and system architecture.

(b)

Fig. 2 (a) Clustering result with Friendship attribute. (b)
Clustering result with Location_id attribute. For clearness,
we only show one-month clustering result using F'riendship
and Location_id attribute as the classes of clustering evalu-
ation, respectively. 5 clusters can be found for the two clus-
tering processes, and we use different colours to distinguish
different clusters.
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Fig. 3 Number of users for each cluster. (a) Number of user-
s for each cluster using F'riendship attribute as the class of
clustering evaluation. (b) Number of users for each cluster
using Location_id attribute as the class of clustering evalua-
tion.

the relationships between the check-in time, locations, friend-

RSS Logger Find Me

(b) System architecture. As an improve-
ment, LiCS exploits the advantage of
model-based technique (versatility and
conciseness) and avoids its drawback with
the training for a location estimation
model: crowd-sourced data is used to
train the model and the model is installed
in distributed servers.

we confirm whether the crowd behavior of individual-
s can be identified. Figure 2 shows the results of data
clustering with Friendship and Location_id attribute,
respectively (these two attributes are evaluation class-
es of clustering), using the Expectation-Maximization
(EM) algorithm [7]. From Fig. 2, the crowd behavior
(we define “crowd” in Definition 1) has been recognized
using the processed data (in our study we process the
original collected data). Moreover, we can find that dif-
ferent evaluation classes have different clustering accu-
racy levels, so different attributes have different impacts
on crowd behavior. Figure 3 shows the number of user-
s for each cluster corresponding to Fig. 2 (Fig. 2 only
shows the users who are “1-hop” friends, but in Fig. 3,
the users who are multihop friends are also counted for
each cluster). For Fig. 3, more detailed explanations
are necessary: why some clusters are composed by t-
housands of users when we use “Friendship” attribute
as the class of clustering evaluation? Because (i) we use
“multihop” friends in the clustering evaluation; that is
to say, if A is a friend of B within the range r and B
is a friend of C' within the range r, A, B and C all will
belong to a same crowd; (ii) the error of clustering e-
valuation is existent; (iii) we use the evaluation dataset
which is from one special month, e.g., some data of the
dataset is from a major celebration (a great number
of users are gathered together), to show the impact of

attributes on crowd behavior®.

ship and crowd behavior of users in 772,966 distinct places.
The data consists of 58,228 nodes (users) and 214,078 friend
edges (friendship is directed between any two nodes).

5 Even if the dataset is incomplete, it still can be used to
show that “the impact of attributes (friendship and check-in
locations) is existent on crowd behavior”.
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Definition 1 A crowd can be defined as follows: a group
of individuals at a “same” physical location (the range
radius r for each user is 10m) and at the “same” time
(the time range for a crowd is set to 15 minutes; name-
ly, if the check-in time difference between two users is
within 15 minutes, we consider that they are “at the
same time”).

The characteristics of crowd behavior for each single
person can therefore be inferred from his/her check-in
records. We refer to this as their “individual behavior”.
This shows which individuals participate in a specif-
ic crowd. From the EM algorithm, a given record be-
longs to each cluster with certain probabilities. More-
over, likelihood is a measurement of “how good” a clus-
tering process is and it increases in the successive itera-
tions of EM algorithm. It is worth mentioning that the
higher the likelihood, the better the model fits the data.

Second, the clustering process (crowd behavior recog-
nition model) is described as follows. We define two pa-
rameters: (i) the user u’s check-in data S* which is a
sequence of activity observations for user u; (ii) a set of
unknown values 6 (i.e., the serial numbers of clusters).
These two parameters are used along with a Maximum
Likelihood Estimation (MLE): L(6; S*) = p(S“|6). Our
purpose is to seek the MLE of marginal likelihood. In
other words, we need to find the most probable # which
the user u belongs. The EM algorithm iteratively ap-
plies the following two steps to achieve our purpose:

1. Expectation step (E step): calculate the expected
value of the log-likelihood function under the cur-
rent established clusters (8()):

Q(010") = Egu g [log L(8; S™)];

2. Maximization step (M step): find the appropriate
value of parameter 6§, which maximizes this quanti-

ty:

6™ = arg max Q(6]6™).

MLE estimates 6 by finding a value of  that maximizes
Q(0)0®), and the estimation result can be flagged as:
gmie,

Further, based on our recognition model, we add the
spatio-temporal pattern of crowd into crowd behavior
(clustering). We use a triple ¢ = (0, p;, ;) to replace 6.
Then the expectation-maximization process becomes:

1. Expectation step: Q(q|q*)) = Egu 400 [log L(g; S,
where p; is the position characteristic of location
measurement m;, and t; is the timestamp of m;.
Moreover, ¢(*?) is a set of current established clus-
ters with their locations and timestamps;

2. Maximization step: choose g to maximize Q(.), ¢™!¢ =
arg max Q(qlq*").

Finally, in order to preserve the integrity of our
model, the recognition accuracy must be measured. In
our crowd behavior recognition model, the value of the
log-likelihood can be used to measure the accuracy.
For instance, using Friendship attribute as the eval-
uation class, based on one-month data, the log likeli-
hood of crowd identification is: —16.42186, and using
Location_id attribute as the evaluation class, the log
likelihood is: —16.87742. Their accuracy is different,
and Friendship attribute is more effective for improv-
ing the recognition ability of the model.

5 Locating in Crowdsourcing-based DataSpace

As an effective measurement, RSS is easily available
from various wireless signals which are from most off-
the-shelf wireless equipment such as WiFi- or Bluetooth-
compatible devices. And a large number of RSS-based
indoor localization algorithms are proposed. However,
considering RSS as a database to support indoor local-
ization (e.g., RSS fingerprint space), it is time-consuming
and labor-intensive. Especially, from extensive experi-
ments, we observe that the RSS is vulnerable due to en-
vironmental dynamism (an example is shown in Fig. 4(a)).
How to avoid these weaknesses to improve the perfor-
mance of RSS-based indoor localization? It is worth
noting that the trend of RSS change is obvious between
different locations (Figure 4(b)).
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(b) Changing trend of RSS.
location number = 0 is the
location of a signal trans-
mitter; as a signal receiver

40
Location number

(a) An example: the fluctua-
tion range of RSS for some lo-
cations. For example, at the
location 60, the RSS is not a
value, it is a range of values. moves away from the trans-
So the fingerprint of a location  mitter, the RSS is decreas-
cannot be denoted by the ab- ing.

solute value of RSS.

Fig. 4 Instability of RSS and changing trend between differ-

ent locations.

To try to avoid these weaknesses, we present LiCS
and the details are shown as follows.
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Input: Signal triples® from individuals.

First, at time ¢ + 1, the value p(t + 1) can be esti-
mated based on “observed locations” p(t),p(t—1), p(t—
2),...,p(t — k + 1). Moreover, the relationship between
the output p(¢t 4+ 1) and the input p(t),p(t — 1),p(t —
2),...,p(t — k + 1) has the following mathematical rep-
resentation (Eq. 1):

q P
pt+1) = a0+ Y _ajg(Bo;+ Y Biypt—i+1))+e, (1)
j=1 i=1
where a;(j = 0,1,2,...,q) and B;;(i = 0,1,2,...,p;j =
1,2,3,...,q) are the connection weights between time
series, p is the number of “observed locations”, ¢ is the
number of nodes of hidden layer” and e is noise of the
estimation. The logistic function g(z) = = is used
as a hidden-layer transfer function. In this study, an
optimal location estimation model is built by training
the model with the wireless data collected from the re-
al physical space around us (the collected data can be
denoted as signal triples). The training steps are shown

as follows:

Step 1: Cluster the signal triples. Partition all triples
into several clusters, using an Expectation-Maximiza-
tion (EM) clustering algorithm. Moreover a cluster
center can be obtained for each cluster. Each cluster
is given a unique number as its location.

Step 2: Input some selected time-serial signal triples
with corresponding locations of clusters into Eq. 1
for learning the optimal configuration of parameter-
s, aj, 3;; and €. A location estimation model with
optimal parameter configuration can be obtained.
Moreover, the growth of logistic function g(.) sat-
isfies: the initial stage of growth is approximately
exponential; then, as saturation begins, the growth
slows, and at maturity, the growth stops. So if the
training time is long enough, the parameter con-
figuration of Eq. 1 will gradually converge to the
optimal solution.

Then, a target can be located with the optimal lo-
cation estimation model. (i) Give the target a start
location p(0). Calculate the Euclidean distances be-
tween a received new signal triple and all cluster cen-
ters (the new signal triple is from the target). If the

6 A triple can be denoted as [RSS, MACT, MACR]. For
the specific RSS of a location, M ACT is the MAC address
of corresponding signal transmitter and M ACg is the MAC
address of corresponding signal receiver.

7 In machine learning, using the hidden layer enables
greater processing power and system flexibility. The nodes
of hidden layer are named as hidden nodes. Hidden nodes are
the nodes that are neither in the input layer nor the output
layer. These nodes are essentially hidden from view, and their
number and organization can typically be treated as a black
box to people who are interfacing with the system.

shortest Euclidean distance is relative to the cluster k,
p(0) = k. (ii) Calculate the location at time ¢ + 1. Us-
ing the trained Eq. 1 as “optimal location estimation
model”, from the start location p(0), we can obtain
time-serial locations. And based on “observed location-
s”, [p(t),p(t —1),...,p(0)], p(t + 1) can be calculated.

The real-time location of a target is obtained by our
algorithm. Moreover, (i) the optimal location estima-
tion model is periodically trained by new signal triples;
and (ii) if more signal transmitters can be detected by
receivers, it will help to distinguish different locations
more effectively for achieving higher localization accu-
racy.

Output: The real-time location (cluster number)
of a target. For some special applications, if the abso-
lute coordinates of clusters are available, the absolute
physical location of target will be known.

Note that Eq. 1 is the core of LiCS. From above de-
scriptions of the algorithm LiCS, we can find that these
parameters will affect the accuracy of LiCS: the con-
nection weights between time series, o; and 3;;. The
parameter o reflects the importance of hidden-layer
transfer for the location estimation of time t+1. In oth-
er words, it denotes the degree of correlation between
different time series. The parameter §;; reflects the im-
portance of the j** node in the hidden layer, when the
hidden layer transfers the influence of observed loca-
tion p(t — i+ 1) to p(t + 1). The appropriate values of
these parameters for the model of location estimation
at time t + 1 will be helpful to improve the accuracy of
localization.

The variables that are used in LiCS are summarized
in Tab. 1.

6 Evaluation

We develop the prototype system of LiCS on the in-
creasingly popular Android OS which supports WiFi
and Bluetooth. We conduct long-term experiments in
two laboratories (84m? and 53m?, respectively) and
a corridor (Fig. 5) of a middle-size academic building
where a number of WiFi routers without location in-
formation have been installed. Moreover, in each ex-
perimental site, we install three Bluetooth transmitters
(laptop-embedded Bluetooth transmitters are used in
our experiment, so they are not special devices; the sig-
nal of Bluetooth is full-coverage for each experimental
site). The experiment lasts one month using 9 volun-
teers. We measure WiFi signals and Bluetooth signals.
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Table 1 Variables and explanations

Variables

Explanations

[RSS,MACT, MACR] | A triple consists of three elements, where RSS is Received Signal Strength received by
a mobile terminal, M ACt is the MAC address of corresponding signal transmitter and
MACRE is the MAC address of corresponding signal receiver. The triple is used to train
the location estimation model and structure the fingerprint database.

p(t) We use the variable to denote the location of a mobile terminal at time ¢.

o The variable is the connection weight between time series, and it reflects the importance
of hidden-layer transfer for the location estimation of time t + 1.

Bij The variable is the connection weight between time series, and it reflects the importance

of j*" node in the hidden layer, when the hidden layer transfers the influence of observed
location p(t — i + 1) to p(t + 1).

(a)

male| female| | A318 AJ]G
\

u T

Laboratory

z MAyooc

m%m 19 W&m ms 313(| 431 || o || AS07 "%{T;

Study
room

Fig. 5 Floor plans of experimental sites. (a) Laboratory covering over 84m?2. (b) Laboratory covering over 53m?2. (c¢) Corridor

covering over 302m?2.

6.1 Experimental Setup

Each volunteer carries a mobile phone and can take
any activity in any area of experiment. The trace data
of each volunteer is recorded every 30 seconds during
working hours (from 9:00 a.m. to 10:00 p.m.). Moreover,
the trace data from volunteers covers most of the areas
of experiment.

In our experiments, for LiCS, we use WiFi and Blue-
tooth signals. Bluetooth is a wireless technology stan-
dard for exchanging data over short distances, so Blue-
tooth signals attenuate more rapidly with distance com-
pared with WiFi signals.

We compare our algorithm with LiF'S [20] under the
same experimental conditions. LiF'S is an RSS-based in-
door localization algorithm (using WiFi signals). The

key idea behind LiF'S is that human motion can be ap-
plied to connect previously independent radio finger-
prints under certain semantics. In LiF'S, absolute val-
ues of RSS are used to establish a fingerprint database.
When a user sends a location query with his/her current
RSS fingerprint, LiF'S retrieves the fingerprint database
and returns the matched fingerprints as well as the cor-
responding locations.

6.2 Performance Evaluation

In this section, we show the comparative results of LiF'S
and LiCS. We estimate 248 location queries, and cumu-
late all localization errors of these queries (Cumulative
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Fig. 6 CDFs of localization errors for both algorithms in three different experimental sites. (a) CDF of localization errors in
the laboratory covering over 84m?2. (b) CDF of localization errors in the laboratory covering over 53m?. (c) CDF of localization

errors in the corridor covering over 302m2.

Distribution Function (CDF)®) for both algorithms, re-
spectively. The results are shown in Fig. 6 and Fig. 7.
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Fig. 7 CDF of localization errors for the average of three
experimental sites.

The unit of the estimated error for localization is
step ~ 1.2m. The average localization error of LiCS
with Bluetooth signals is 2.6575m, LiCS with WiF1i sig-
nals is 4.35m, and LiFS is 5.95m. The maximum local-
ization error of LiCS with Bluetooth signals is 33.6m,
LiCS with WiFi signals is 34.8m and LiFS is 40.8m.

For comparing the overall performance of three ex-
perimental sites for both algorithms, we calculate the
average results of three experimental sites for LiCS (Blue-
tooth), LiCS (WiFi) and LiFS. From Fig. 7, we can
find that our LiCS is better than LiFS for the average
of three experimental sites. For example, the localiza-
tion errors of 95% queries are less than 6m for LiC-
S (Bluetooth), 69% queries are less than 6m for LiCS

8 Cumulative Distribution Function describes the probabil-
ity that a real-valued random variable X with a given proba-
bility distribution will be found at a value less than or equal
to x. It can be formulated as Fx(z) = P(X < z).

(WiFi) and 60% for LiFS. LiCS uses the model training
with real-time data, so the localization accuracy for lo-
cation queries is improved compared with LiFS. More-
over, why the localization accuracy of LiCS (Bluetooth)
is higher than LiCS (WiFi)? Based on the attenuation
characteristics of Bluetooth signals and WiFi signals,
the differences of RSS between different locations for
Bluetooth are greater than the differences for WiFi. So
using the RSS of Bluetooth to distinguish different lo-
cations is more accurate than using the RSS of WiFi.
If we can distinguish different locations more clearly,
we can obtain higher localization accuracy based on an
RSS-based fingerprint database.

Furthermore, from the experimental results of Fig. 6,
we can find that: (i) on average, for localization accu-
racy, LiCS is better than LiFS, in the three differen-
t experimental sites. For example, the localization er-
rors of 80% queries are less than 2.4m for LiCS (Blue-
tooth), and 70% for LiFS, in the laboratory covering
over 84m?; (ii) the localization accuracy of LiCS (Blue-
tooth) is better than LiCS (WiFi) and LiFS. For ex-
ample, the localization errors of 50% queries are under
2.4m for LiCS (Bluetooth), while about 30% for LiCS
(WiFi) and about 25% for LiF'S, in the laboratory cov-
ering over 53m?. Bluetooth improves the average local-
ization error up to 39% compared with LiCS (WiF1i),
and up to 55% compared with LiFS. Because the signal
strength of Bluetooth is changed sharply between lo-
cations, which makes the distinction of signal strength
between different locations more remarkable (the “re-
markable” is conducive to improving the accuracy of
localization).

Moreover, LiF'S is based on a priori database (some
human intervention is necessary in the build phase of a
database). LiCS is crowd-sourced, so only wireless in-
formation is required, which is received by humans in
their daily lives. And the locating process of LiCS is
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automatic and priori-database-free. LiCS is based on
WiFi and Bluetooth information which is readily avail-
able. The above-mentioned features of LiCS make the
rapid deployment of system possible.

7 Conclusion

Crowdsourcing is a distributed problem-solving scheme
that has emerged in recent years. It exploits the poten-
tial and wisdom of crowds to support various applica-
tions and to improve the performance of various algo-
rithms in a cost-effective fashion. In our study, we inves-
tigate the existence of crowd behavior in the real world
and it can be recognized using location-aware wireless
mobility information of people’s daily lives. Further-
more, we present a model for crowd behavior recog-
nition. On this basis, by sensing and collecting WiFi
and Bluetooth information from the social surroundings
around us, we propose a time-serial location estimation
model. Using this model, we design and implement LiC-
S, an indoor target localization algorithm based on two
aspects, (i) mobile devices carried by individuals, and
(ii) a location estimation model which is trained by the
collected data from individuals about WiFi and Blue-
tooth information. The experimental results show that
LiCS achieves competitive location accuracy without
any special infrastructure. This work sets up a novel
perspective to crowd-sourced indoor localization algo-
rithms.
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