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Abstract

Intelligent video surveillance continues to be a vibrant research domain within
the field of computer vision. However, existing representation learning frame-
works primarily focus on static information extraction frame by frame such as
appearance features, they often overlook the valuable dynamic information
like optical flow feature inherent in the video data, which is most essential
characteristics of sequence data. To mining dynamic features and bridge this
gap, our paper introduces a novel anomaly detection framework that balance
dynamic information with static information and construct a relationship be-
tween appearance features and corresponding optical flow features, where we
sets strong consistency constraints, which reduce the loss between dynamic
information and corresponding static information, and we leverages collabo-
rative teaching network to ensure a consistent representation of both static
and dynamic information for predict. The proposed framework consists of

two sets of encoder-decoder pairs complemented by a memory storage mod-
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ule. Operating in parallel with the dual encoder network is a Co-teaching
network, with the shared memory module serving as the cornerstone for col-
laborative training. The Consistency constrained condition guarantees the
strong consistency of dynamic and static information in the learned repre-
sentations. In our experimental phase, we present compelling results that
showcase the superior performance of our algorithm across three publicly

available datasets.
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Representation Learning, Optical Flow, Feature Fusion.

1. Introduction

Abnormal behavior, seen as a possible threat to public safety, has consis-
tently captivated the attention of security experts. Nevertheless, the indus-
try’s ability to acquire an ample quantity of diverse abnormal data remains
unrealistic, primarily due to the indistinct demarcation between abnormal
and normal events in surveillance video data. Additionally, academia faces
challenges in precisely defining all abnormal models within videos. As a re-

sult, video anomaly detection has remained an exceptionally formidable task.

Before the emergence of deep learning, traditional video analysis tech-
nologies primarily consisted of methods such as the frame difference method
[1], color histogram|2], and HOG feature[3]. These video analysis techniques
transform original video data into interpretable feature signals, aiding re-
searchers in more effectively analyzing video data. With the advent of

deep learning, video anomaly detection technology based on neural network



learning can be categorized into two main groups: unsupervised learning of
anomaly detection and weakly-supervised learning of anomaly detection[4]
5, 6].

The core of the unsupervised framework lies in representation learning or
self-supervised learning[7]. It employs video frame reconstruction/prediction
as the objective function to establish a fundamental model for identifying
abnormal data. On the other hand, the weakly supervised framework relies
on multi-instance learning and comparative hierarchical loss[8|, leveraging
multi-instance learning to construct a ranking loss function and develop an
anomaly recognition model. Weakly supervised algorithms offer advantages
such as robustness, high detection accuracy, and effective utilization of time
features[9, 10]. However, they necessitate anomalous datasets, exhibit lim-
ited detectable types, and demonstrate poor transferability. In contrast, un-
supervised algorithms exhibit strong generalization, do not require labeled
data, possess a simple structure, and offer high portability and scalability.
Nonetheless, they face challenges related to poor robustness, underutilization
of time series features, and low detection accuracy.

Today, explainable artificial intelligence is gaining increasing attention,
and a growing number of researchers advocate moving away from purely
data-driven models. The unsupervised learning video anomaly model, being
definition-driven and not reliant on a large amount of labeled data, holds
broader development prospects.

Academics have been working hard to combine the potential advantages
of weakly supervised video anomaly detection with the generalization ad-

vantages of unsupervised algorithms. For instance, Wang [11] introduced
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Figure 1: Comparison of methods: A uses optical flow features as a supplement to video

frame appearance features to improve prediction accuracy; B uses parallel prediction of
appearance features and optical flow features to build a joint prediction loss error; C is

the proposed strong consistency collaborative training framework.

a novel and robust unsupervised video anomaly detection method that in-
corporates a frame prediction scheme tailored for surveillance videos. Their
approach employs a multipath ConvGRU-based frame prediction network,
which adeptly handles semantically rich objects and regions at various scales
while capturing spatiotemporal dependencies in normal videos. This algo-
rithm enhances the representation of spatiotemporal features in unsupervised
algorithms, thereby enhancing their robustness.

Similarly, Huang et al,[12],introduced the appearance-motion semantic
consistency framework, which exploits the difference in appearance and mo-
tion semantic representation between normal data and abnormal data. They
first designed a two-stream structure to encode the appearance and motion

information representation of normal samples, and then proposed a novel



consistency loss algorithm to enhance the consistency of feature semantics,
enabling the identification of low-consistency anomalies. This algorithm fur-
ther enhances the consistent representation of dynamic and static features in
unsupervised algorithms.

The most advanced semantically consistent model of appearance-motion
features is the dual-channel framework proposed in 2022 [13], which proposes
a spatiotemporal memory-enhanced dual-stream autoencoder framework and
designs two identical and independent proxy tasks to train the dual-stream
autoencoder. The structure extracts appearance and motion features sepa-
rately and decodes them separately. Finally, the optical flow loss and appear-
ance feature loss are calculated to explore the correlation between appearance
and motion semantics. In this model, the only consistency constraint is the
loss function, but two separate encoding-decoding processes cannot really
constrain the consistency of motion features and appearance features[14, 15].

Considering the above-mentioned works, this paper proposes a novel un-
supervised learning video anomaly framework CCC-T (Consistency-constrained
Framework Based on Co-teaching) as shown in Figure 1-C, which emphasizes
the consistent representation of dynamic information and static information
by utilizing carefully designed Strong consistency constraints. In this frame-
work, dynamic information (optical flow features) and static information (ap-
pearance features) are regarded as equally important input data. The frame-
work designed in this paper mainly contains three parts: two sets of encoding
and decoding network structures and memory storage modules. There are
two encoding and decoding structures. One is responsible for encoding the

appearance features of the video frame as input, and then updating the input



features in the memory module, while its decoder outputs the optical flow
features corresponding to the video frame. The other encoder is responsible
for encoding the optical flow of the video frame, which is used as the input
feature; that input feature is updated, and finally the decoder outputs the
appearance feature corresponding to the video frame. The memory storage
module stores the normal pattern and updates the passing characteristics.
To ensure the accuracy of optical flow features in predicting appearance fea-
tures, the missing background and color information is compensated. The
framework utilizes skip connections to connect the encoding layer (appear-
ance features predict optical flow features) and the decoding layer (optical
flow features predict appearance features) and reads map features from each
layer as a complement. The three modules in the framework are connected
through a collaborative teaching network to promote collaborative learning.

To summarize, this section makes the following three contributions

e Proposes a novel unsupervised video anomaly detection framework

built using co-teaching networks;

e Achieves the first collaborative training of optical flow and representa-

tional features in unsupervised video anomaly detection; and

e After testing on three datasets, the proposed model further improves

the accuracy of unsupervised video anomaly detection algorithms.

The organization structure of this article is as follows: Section 2 is an
introduction to the relevant work of this article; Section 3 is the algorithm
proposed in this article; Section 4 is the experiment used to verify the model

proposed in this article; Section 5 is the conclusion.
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2. Related Work

Video anomaly detection algorithms within an unsupervised learning frame-
work always focus on a single goal: improving prediction or reconstruction
accuracy by extracting more precise video features. Progress in this field can
be traced to the seminal work in [16], which introduced a comprehensive un-
supervised framework based on appearance feature representation learning.
On this basis, the work in [17] and subsequent research further optimized
the unsupervised learning framework by optimizing the relevant loss func-
tion and improving the update mechanism of the memory storage module.
Based on this framework, other solutions have further improved the accuracy
of feature extraction through multi-task learning [18]. The core concept is
to use object detection to improve the accuracy of feature extraction in an
unsupervised framework, which include appearance features and optical flow
features.

Many results have appeared in the area of multi-task unsupervised repre-
sentation learning, including those in [18, 19, 20, 21, 22]. Among these, the
multi-task unsupervised framework proposed in [18] contains four different
agent tasks. The first is to determine the order; the second is to determine
whether the current actions are continuous. The third task predicts inter-
mediate frames, and the fourth task requires training a sub-network (3D
convolution). Multiple tasks work together to improve the accuracy of fea-
ture pattern extraction. A different approach is offered in [20], which features
a novel bidirectional architecture with three consistency constraints to com-
prehensively regulate the prediction task from the pixel level, cross-modality

and time series levels. Prediction consistency is proposed as a priority, to



consider the symmetry of motion and appearance in forward and backward
time, which ensures a highly realistic appearance and motion prediction at
the pixel level. At the same time, the consistency of temporal features and
spatial features is also trying to emphasized in multi-task models. For ex-
ample, in the literature[22], this paper proposes to set up two agent tasks
to predict appearance features from frames sequence in forward and reverse
order and calculate the bidirectional optical flow feature of the real frame
and the predicted frame as the loss, which still belongs to the prediction
task. Even in the literature[23], optical flow features are still used to build
additional tasks and then serve as supplementary features to the appearance
features to achieve the prediction task. As shown in Figure2 (A).

The above-mentioned unsupervised methods are all dedicated to utilizing
sub-tasks, including identifying the order or reverse order of the sequence
to extract features, thereby enhancing the extraction of dynamic features
and static features. However, for video data, multi-tasking only guarantees
the accuracy of extracting dynamic features and static features, it cannot
constrain the consistency of dynamic features and static features.

The dual-channel unsupervised model [13, 11, 12, 24] is a new attempt
to address these issues. Differing from the framework described above, the
dual-channel model attempts to directly extract dynamic features as a supple-
ment to static features, and builds a dynamic feature-static feature constraint
framework to enhance the integrity of the input features to improve the accu-
racy of prediction/reconstruction. However, the existing dual-channel model,
as shown in Figure 2(A,B), only uses dynamic features as a supplement to

static features, which enhances the accuracy of input features, but does not



set consistency constraints. Framework C, on the other hand, designs a
completely parallel encoding-decoding structure and relies on interactive loss
functions to constrain consistency. This constraint cannot affect the features
extracted by the encoder, and the channels are relatively independent, that
is, the processing of dynamic features and the processing of static features are
independent and cannot act as a real consistency constraint on the extracted
features. In addition, while mainstream methods use dynamic features as
supplementary elements to enhance the representation capabilities of static
features, they cannot achieve simultaneous learning of spatio-temporal fea-
tures.

To solve this problem, this paper introduces a new dual- channel video
anomaly framework to enhance the detection capabilities of unsupervised
learning algorithms. This framework treats dynamic information and static
information as inputs of equal importance and carefully designs strong con-
sistency constraints between dynamic information and static information to
ensure consistent representation of optical flow features and appearance fea-
tures, and it builds a collaborative learning and memory storage module
based on co-teaching. The core of this study is collaborative learning, mem-
ory storage modules, and skip connections and other technical means, which
strictly follow the consistency constraints of dynamic features and static fea-

tures.

3. Methodology

This section provides a detailed explanation of our proposed unsupervised

learning framework and the models utilized in our experiments. This includes



explaining how the co-teaching architecture works in the training process of
two encoder-decoder networks.

In our proposed framework, the Flownet2 network [25] is responsible for
extracting optical flow features from video frames. Subsequently, these fea-
tures from video frames and optical flow are used as the input into two
encoder networks. These features are then compressed, followed by their en-
try into the memory storage module to update the corresponding elements
of video frame features and optical flow features.

The mechanism entails retrieving the features of the nearest counterpart
and amalgamating them into novel features. Finally, the amalgamated new
features feed into the two decoder networks to predict the features of the
opposing entity. For example, the optical flow features serve as the input to
the encoder-decoder, resulting in the output of video frame features. Con-
versely, when the input is the video frame feature, the output manifests as
the optical flow feature. To address the potential information gap in video
frame feature prediction by optical flow features, this study integrates skip
connections[26, 27] that bridge the encoding map of video frames to the
optical flow decoder (predictive video frames).

The loss function is comprised of the prediction loss in- herent in the
video frame features and the optical flow features’ prediction, as well as the
similarity loss in memory modules. The proposed model greatly ensures
the consistent description of optical flow features and appearance features

through shared memory entries. .
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Figure 2: A detailed framework of CCC-T, The first step uses Flownet2 to obtain the
optical flow information of the video sequence. The second step inputs the segmented
video frames and optical flow information into their respective encoding networks. The
third step is to cross-read and collaborate the output of the encoding network with the
memory module. Update, the fourth step, the updated input features are input to the

decoder network for cross prediction.

3.1. Preliminary

The fundamental algorithms highlighted in this chapter contain Flownet2,
the encoder-decoder structure, the memory module, and the co-teaching
framework. Notably, The encoder-decoder structure and memory module
already well described in previous paper[17, 16]. Consequently, the ensuing
content will provide a succinct overview of Flownet2, outlining its objectives
and structural attributes, followed by an outline of the co-teaching architec-

ture.
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FLOWNET?2: FlowNet2 represents an evolution of the original FlowNet
architecture, both of which were developed by researchers at NVIDIA|[28].
The primary objective of these architectures is to precisely predict displace-
ment vectors that explain the movement of pixels between frames. They find
applications across various research fields, including computer vision, video
analysis, motion tracking, and visual effects.

The principal characteristics and components of FlowNet2 are; 1. Siamese
Network: FlowNet2 comprises two identical sub-networks that share weights.
Each subnetwork processes an image from the input pair, Co-process two
different input vectors to compute a comparable output vector. 2. Feature
Extraction: This process employs a sequence of convolutional layers to ex-
tract hierarchical features from the input images. 3. Pyramid Processing:
FlowNet2 leverages pyramid processing to capture information across various
scales. Pyramid processing is a model of multi-scale signal representation.
4. Correlation Layer: The correlation layer is instrumental in determining
the similarity between blocks within two input images. FlowNet2 presents
significant enhancements over the original FlowNet architecture, enhancing
accuracy and robustness in optical flow estimation. It achieves state-of-the-
art performance on benchmark datasets designed for optical flow estimation
tasks.

Co-Teaching[29]: A collaborative teaching network is a framework in
which multiple neural network models collab- orate to solve specific problems
or achieve a common goal. For example, multiple actors merge their predic-
tions through techniques such as voting, averaging, or weighted averaging.

(Classic co-teaching networks are one of the following four types: 1. Knowl-
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edge distillation[30]: A broader or more com- plex model (teacher model)
is trained together with a smaller or simpler model (student model). The
student model learns to imitate the behavior of the teacher model, reduce pa-
rameters, and/or to build multi-task models; 2. Collaborative training [31]:
Multiple models are trained simultaneously and exchange training data or
gradients during the optimization process; 3. An Adversarial Network [32]:
Multiple models with complementary effects, such as a generator network and
a discriminator network in a generative adversarial network (GAN) work to-
gether to achieve a specific result; and 4. Federated learning [33]: Many
models are trained on different data subsets and then merged or averaged
to generate a global model. This approach can improve privacy and data
distribution issues. In this paper, we adopt two encoder-decoder structures
to share the memory module, cross-read the video frame feature pool and the
optical flow feature pool, and to promote the collaborative training of the

model. These two encoding structures are similar to two teacher networks,
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learning from each other.

3.2. Consistency-constrained Framework Based on Co-teaching

This section introduces the operation and interaction of each module of
the framework(CCC-T: Consistency-constrained Framework Based on Co-
teaching) proposed by this paper in detail. This CCC-T employs two inter-
connected encoder-decoder structures facilitated by the co-teaching network
2. These structures are designed to encode optical flow and video frame fea-
tures separately while predicting the corresponding features of the opposite
type (i.e., optical flow to video frame and vice versa). The predicted loss
resulting from these predictions is then utilized to update the model. The
following section outlines the detailed steps involved in the comprehensive
formalization.

Formalization: There is an existing video denoted as V', which is di-
vided into a sequence of continuous video frames: V = vy, v9,v3,..., 0y,
where N represents the total number of frames in the video. The opti-
cal flow features of these video frames are extracted using Flownet2, de-
noted as Fows = Flownet2(V), with individual flow features represented
as ffiow € ffiowss, [ flowss, [ flowss, > [ fiowsy- The read library of OpenCV2 is
employed to directly extract frame features from the video frames, yielding
Frtrames = Ir(V), with frame features represented as
Ftrames € [rramesys framesss [ramesss -+ framesn -

As stated earlier, this paper presents a model that encompasses two
encoder-decoder structures, as illustrated in Figure 1. where 1 represent
the Encoder function and ¢ the Decoder, The upper structure is the video

frame feature encodery f,qmes, while the lower one is the optical flow feature
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encoder, referred to as ¥ f,ws. The decoder positions are the opposite: the
upper one is @fows, and the lower one is ¢ frames-

During the training phase, the extracted video frame features Ff,qmes
are input into the ¥ .qmes to focus and refine the quality of the appearance
feature representation. Subsequently, these features are passed through a
memory module. The error is calculated with the nearest video frame fea-
ture entry, leading to an update of the video frame feature storage module.
Simultaneously, the module queries the optical flow entry that is closest to
the input feature and then reads and updates the input feature. The updated
input feature is then fed into the ¢frames to predict the optical flow feature.

This process can be expressed in an equation as:

FfErames = wframes(ffTam68>
- ¢frames(lr(v))7 (1>

V= V1,U2,V3,...,UN

Fflows = qbf’/‘ames(e(Fﬁames) M)) (2>

where, M signifies the memory storage module, and ¢ embodies the in-
teraction between input data and the memory storage module, encompassing
functions such as reading, updating, and the integration of novel features.
Comprehensive insights into the memory storage module are explained in
33. F E;ames denotes the features emanating from the encoder, while F Flows
encapsulates the optical flow features prognosticated by the decoder.

Conversely, the optical flow features Ffjo,s, obtained from Flownet2, are

input into the 9 f0ys. This step help to refine the high-quality optical flow

15



feature representation. These features are then processed through a memory
module. Similar to the video frame features, the error is computed with the
nearest optical flow feature entry, resulting in an update of the optical flow
feature storage module. Furthermore, the module queries the appearance
feature entry closest to the input feature, reading and updating the input
feature. The updated input feature is directed into the ¢;0,s to predict the

appearance feature.

FefoZZiSeT = wflows(fflows)
= Y f1ows(Fownets2(V')), (3)

V= U1, V2, U3, ..., UN

Fframes = ¢flows(9(Fﬁames7 M)) (4)

The loss function contains three components: optical flow prediction loss
L 105, appearance feature prediction loss L fj0.5, and memory storage module
loss Lj;. Similarly, during the test phase, the anomaly score is composed of

three parts.

Hfflows - fflows
loss = Hfframes - fframes

Ly

(5)

The role of this module is to align input data with their corresponding en-
tries in the memory module, thereby capturing and recording trained normal

patterns. The memory module loss L,; is described in detail next.
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3.8. Co-teaching within Memory Module

The co-teaching structure in training is designed in the memory storage
module.

Following the blueprint of the conventional memory storage module[34],
this unit serves two primary functions. The first involves reading—wherein
the module identifies and retrieves the entry most closely aligned with the
input feature, subsequently updating the input feature. The second func-
tion entails updating, which transpires as an ongoing process throughout the
training. The memory matrix continuously evolves based on the proximity
between feature maps, effectively consolidating data from the training set
that corresponds to the set entries.

In our framework, the memory storage module is bifurcated into two dis-
tinct components, as illustrated in Figure 5.3. The green segment denotes the
video appearance feature memory mode, while the orange segment signifies
the optical flow feature memory mode. The act of reading and updating each
input datum transpires in disparate sections of the memory module, so that
the update operation takes place within the respective memory mode, and
the reading operation unfolds in the complementary memory mode. These

modes are illustrated in Figure 4.

3.3.1. Reading and Updating Mechanisms of the Memory Module

Reading Mechanism:. Reading Mechanism for the Memory Module as shown
in Figure 4: The input to the memory module is the optical flow feature. This
involves calculating the cosine similarity between the query feature and the
entries within the video frame appearance feature memory module. The aim

here is to identify the entry or multiple entries with the closest proximity to
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Figure 4: Co-teaching within a memory module: Green indicates the transfer of static
features in the memory module, and orange represents the transfer of dynamic features;
correspondingly, the memory module is composed of multiple static feature category entries

and multiple dynamic feature category entries

the query feature, thus determining their respective distances. The softmax
function is applied to establish an average probability match. Subsequently,
the probability value is utilized to compute the inner product with the ap-
pearance feature entry from the memory module. This process leads to the
feature update. Finally, the updated features are merged with the original
query features to predict the corresponding video appearance features.
First, the cross-cosine similarity between each entry q’]‘élows , q’}mmes (q’}lows €

Ffiows: Qirames € Jframes) and memory items pfremes, pflows is calculated,
where q’jlows and q’}mmes are from the corresponding two query encoding

features ff . cor flows: D™, phio® is set during initialization, and two
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two-dimensional correlation maps of size M K are obtained. The softmax

function along the vertical direction and obtain the matching probabilities

wframes’wflows show 11 6:

frames __ e:vp(( flows) )QI]:TameS
wkvm - M flows frames (6>
2 €p((P,")) i

jtows __€apl(plyeme) gl %

wk,m M rames lows
Sorerp((p!) ) gt

For the query items of optical flow features q’;lows and appearance fea-

tures q’}mmes, the opposite memory module is read through the calculated
frames k flows

weight (¢iows = 27", @frames — PL7""), Which obtains the desired cross

prediction information. The reading process shows in 8 :

Aframes Z wfra?/nes flf)ws (8)

Aflows Z wflm:)s f7‘,ames (9)

After reading the memory module, the closest cross feature map py lows,ﬁimmes

is obtained, We concatenate p!'** /™" with the query map Grows » Cirames
along the channel dimension, and send f}mmes, f}lows into the corresponding

decoder.

r ~fl
fframes = Z(p{: OwS, qurames)

fflows - Z(ﬁirames7 q‘l;"“lows)

(10)
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Updating mechanism:. Update mechanism of memory modules: In this case,
the cosine similarity of appearance encoding features f ﬁames and optical flow
encoding features fszows with the corresponding memory modules is calcu-
lated. Next the probability value is caculated through the softmax function.
Then read the compared memory entry by calculating the probability value,
The next steps involve using the query features to increase the inner product
of the obtained probability values. This sum is added to the corresponding
memory entry of the original appearance feature. As a result of these oper-
ations, the memory module is effectively updated. The function of this step
is to find the memory feature that is most similar to the query feature, and
through its similarity loss, continuously improve the adhesion of the memory
entry to the real normal pattern.

The first step is to calculate the cosine similarity between the optical flow
query encoding features ff;,,... and the optical flow memory entries ff,,,
, and the appearance query encoding features and the appearance memory

entries. This process is the opposite of the reading mechanism.

frames __ 61’]9(( f‘r:ames)qujgrames) 11
k,m _ ZK (( frames>T K ) ( )
k' €XP\\Pm qframes

flows

flows __ €$p(( m )Tq?lows)
km K lows !
S reap(Ph) @y,

After obtaining the cosine similarity between the memory entry and the

(12)

frames flows

query poimnt uy .=, Up,,

use the probability value cosine similarity to

read the query entry, accumulate it with the original memory entry in the
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same channel, and update the memory entry. The updated storage module

< Pflows: Dframes > 18 shown in the figure below:

p}r;ows = Z pflows + Zuﬂows ];lows (13)
ﬁ}iames = Z pframes + Z uframesql;rames> (14)

Different from cross-reading, the memory update corresponds from opti-
cal flow to optical flow and appearance to appearance. By calculating the

similarity matrix, it is accumulated to the memory module.

3.8.2. Strong consistency constraints

The strong consistency constraints in this article are mainly implemented
through the reading and updating of the memory module. The reading and
updating rules have been described in detail above. This article proposes that
the memory module of the model is divided into two parts, one is optical flow
feature storage, and the other is appearance feature storage; and the read-
ing and updating of each branch are implemented for different parts of the
memory module. That is, the prediction in this article is cross prediction,
inputting optical flow features, then constructing a similarity matrix, and
reading the most similar appearance feature storage entries to construct joint
features to predict appearance features. When updating, only the optical
flow memory entries corresponding to the optical flow features are updated.
Optical flow features and appearance features are cross-read and updated.

Through the loss function, appearance features and optical flow features are
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strengthened, and the consistent representation of dynamic information and
static information is enhanced. And according to the consistent description
of optical flow features and appearance features, the similarity between ap-
pearance and optical flow of videos of the same category is the highest. Based
on this, this article sets up the consistent description probability for dynamic
information and static information as C'st(g py:

k
Cstsp) = D < Flrames Fows > (15)

=1 j=1

where f},qmes and f;lows are the encoded appearance features and optical
flow features, and k is the number of storage entries designed by the mem-
ory module. Only when ¢ = j, the consistency probability can reach the

