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Abstract

Intelligent video surveillance continues to be a vibrant research domain within

the field of computer vision. However, existing representation learning frame-

works primarily focus on static information extraction frame by frame such as

appearance features, they often overlook the valuable dynamic information

like optical flow feature inherent in the video data, which is most essential

characteristics of sequence data. To mining dynamic features and bridge this

gap, our paper introduces a novel anomaly detection framework that balance

dynamic information with static information and construct a relationship be-

tween appearance features and corresponding optical flow features, where we

sets strong consistency constraints, which reduce the loss between dynamic

information and corresponding static information, and we leverages collabo-

rative teaching network to ensure a consistent representation of both static

and dynamic information for predict. The proposed framework consists of

two sets of encoder-decoder pairs complemented by a memory storage mod-
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ule. Operating in parallel with the dual encoder network is a Co-teaching

network, with the shared memory module serving as the cornerstone for col-

laborative training. The Consistency constrained condition guarantees the

strong consistency of dynamic and static information in the learned repre-

sentations. In our experimental phase, we present compelling results that

showcase the superior performance of our algorithm across three publicly

available datasets.

Keywords: Video Processing, Anomaly Detection, Unsupervised Learning,

Representation Learning, Optical Flow, Feature Fusion.

1. Introduction

Abnormal behavior, seen as a possible threat to public safety, has consis-

tently captivated the attention of security experts. Nevertheless, the indus-

try’s ability to acquire an ample quantity of diverse abnormal data remains

unrealistic, primarily due to the indistinct demarcation between abnormal

and normal events in surveillance video data. Additionally, academia faces

challenges in precisely defining all abnormal models within videos. As a re-

sult, video anomaly detection has remained an exceptionally formidable task.

.

Before the emergence of deep learning, traditional video analysis tech-

nologies primarily consisted of methods such as the frame difference method

[1], color histogram[2], and HOG feature[3]. These video analysis techniques

transform original video data into interpretable feature signals, aiding re-

searchers in more effectively analyzing video data. With the advent of

deep learning, video anomaly detection technology based on neural network
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learning can be categorized into two main groups: unsupervised learning of

anomaly detection and weakly-supervised learning of anomaly detection[4]

[5, 6].

The core of the unsupervised framework lies in representation learning or

self-supervised learning[7]. It employs video frame reconstruction/prediction

as the objective function to establish a fundamental model for identifying

abnormal data. On the other hand, the weakly supervised framework relies

on multi-instance learning and comparative hierarchical loss[8], leveraging

multi-instance learning to construct a ranking loss function and develop an

anomaly recognition model. Weakly supervised algorithms offer advantages

such as robustness, high detection accuracy, and effective utilization of time

features[9, 10]. However, they necessitate anomalous datasets, exhibit lim-

ited detectable types, and demonstrate poor transferability. In contrast, un-

supervised algorithms exhibit strong generalization, do not require labeled

data, possess a simple structure, and offer high portability and scalability.

Nonetheless, they face challenges related to poor robustness, underutilization

of time series features, and low detection accuracy.

Today, explainable artificial intelligence is gaining increasing attention,

and a growing number of researchers advocate moving away from purely

data-driven models. The unsupervised learning video anomaly model, being

definition-driven and not reliant on a large amount of labeled data, holds

broader development prospects.

Academics have been working hard to combine the potential advantages

of weakly supervised video anomaly detection with the generalization ad-

vantages of unsupervised algorithms. For instance, Wang [11] introduced
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Figure 1: Comparison of methods: A uses optical flow features as a supplement to video

frame appearance features to improve prediction accuracy; B uses parallel prediction of

appearance features and optical flow features to build a joint prediction loss error; C is

the proposed strong consistency collaborative training framework.

a novel and robust unsupervised video anomaly detection method that in-

corporates a frame prediction scheme tailored for surveillance videos. Their

approach employs a multipath ConvGRU-based frame prediction network,

which adeptly handles semantically rich objects and regions at various scales

while capturing spatiotemporal dependencies in normal videos. This algo-

rithm enhances the representation of spatiotemporal features in unsupervised

algorithms, thereby enhancing their robustness.

Similarly, Huang et al,[12],introduced the appearance-motion semantic

consistency framework, which exploits the difference in appearance and mo-

tion semantic representation between normal data and abnormal data. They

first designed a two-stream structure to encode the appearance and motion

information representation of normal samples, and then proposed a novel
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consistency loss algorithm to enhance the consistency of feature semantics,

enabling the identification of low-consistency anomalies. This algorithm fur-

ther enhances the consistent representation of dynamic and static features in

unsupervised algorithms.

The most advanced semantically consistent model of appearance-motion

features is the dual-channel framework proposed in 2022 [13], which proposes

a spatiotemporal memory-enhanced dual-stream autoencoder framework and

designs two identical and independent proxy tasks to train the dual-stream

autoencoder. The structure extracts appearance and motion features sepa-

rately and decodes them separately. Finally, the optical flow loss and appear-

ance feature loss are calculated to explore the correlation between appearance

and motion semantics. In this model, the only consistency constraint is the

loss function, but two separate encoding-decoding processes cannot really

constrain the consistency of motion features and appearance features[14, 15].

Considering the above-mentioned works, this paper proposes a novel un-

supervised learning video anomaly framework CCC-T (Consistency-constrained

Framework Based on Co-teaching) as shown in Figure 1-C, which emphasizes

the consistent representation of dynamic information and static information

by utilizing carefully designed Strong consistency constraints. In this frame-

work, dynamic information (optical flow features) and static information (ap-

pearance features) are regarded as equally important input data. The frame-

work designed in this paper mainly contains three parts: two sets of encoding

and decoding network structures and memory storage modules. There are

two encoding and decoding structures. One is responsible for encoding the

appearance features of the video frame as input, and then updating the input
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features in the memory module, while its decoder outputs the optical flow

features corresponding to the video frame. The other encoder is responsible

for encoding the optical flow of the video frame, which is used as the input

feature; that input feature is updated, and finally the decoder outputs the

appearance feature corresponding to the video frame. The memory storage

module stores the normal pattern and updates the passing characteristics.

To ensure the accuracy of optical flow features in predicting appearance fea-

tures, the missing background and color information is compensated. The

framework utilizes skip connections to connect the encoding layer (appear-

ance features predict optical flow features) and the decoding layer (optical

flow features predict appearance features) and reads map features from each

layer as a complement. The three modules in the framework are connected

through a collaborative teaching network to promote collaborative learning.

To summarize, this section makes the following three contributions

• Proposes a novel unsupervised video anomaly detection framework

built using co-teaching networks;

• Achieves the first collaborative training of optical flow and representa-

tional features in unsupervised video anomaly detection; and

• After testing on three datasets, the proposed model further improves

the accuracy of unsupervised video anomaly detection algorithms.

The organization structure of this article is as follows: Section 2 is an

introduction to the relevant work of this article; Section 3 is the algorithm

proposed in this article; Section 4 is the experiment used to verify the model

proposed in this article; Section 5 is the conclusion.
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2. Related Work

Video anomaly detection algorithms within an unsupervised learning frame-

work always focus on a single goal: improving prediction or reconstruction

accuracy by extracting more precise video features. Progress in this field can

be traced to the seminal work in [16], which introduced a comprehensive un-

supervised framework based on appearance feature representation learning.

On this basis, the work in [17] and subsequent research further optimized

the unsupervised learning framework by optimizing the relevant loss func-

tion and improving the update mechanism of the memory storage module.

Based on this framework, other solutions have further improved the accuracy

of feature extraction through multi-task learning [18]. The core concept is

to use object detection to improve the accuracy of feature extraction in an

unsupervised framework, which include appearance features and optical flow

features.

Many results have appeared in the area of multi-task unsupervised repre-

sentation learning, including those in [18, 19, 20, 21, 22]. Among these, the

multi-task unsupervised framework proposed in [18] contains four different

agent tasks. The first is to determine the order; the second is to determine

whether the current actions are continuous. The third task predicts inter-

mediate frames, and the fourth task requires training a sub-network (3D

convolution). Multiple tasks work together to improve the accuracy of fea-

ture pattern extraction. A different approach is offered in [20], which features

a novel bidirectional architecture with three consistency constraints to com-

prehensively regulate the prediction task from the pixel level, cross-modality

and time series levels. Prediction consistency is proposed as a priority, to
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consider the symmetry of motion and appearance in forward and backward

time, which ensures a highly realistic appearance and motion prediction at

the pixel level. At the same time, the consistency of temporal features and

spatial features is also trying to emphasized in multi-task models. For ex-

ample, in the literature[22], this paper proposes to set up two agent tasks

to predict appearance features from frames sequence in forward and reverse

order and calculate the bidirectional optical flow feature of the real frame

and the predicted frame as the loss, which still belongs to the prediction

task. Even in the literature[23], optical flow features are still used to build

additional tasks and then serve as supplementary features to the appearance

features to achieve the prediction task. As shown in Figure2 (A).

The above-mentioned unsupervised methods are all dedicated to utilizing

sub-tasks, including identifying the order or reverse order of the sequence

to extract features, thereby enhancing the extraction of dynamic features

and static features. However, for video data, multi-tasking only guarantees

the accuracy of extracting dynamic features and static features, it cannot

constrain the consistency of dynamic features and static features.

The dual-channel unsupervised model [13, 11, 12, 24] is a new attempt

to address these issues. Differing from the framework described above, the

dual-channel model attempts to directly extract dynamic features as a supple-

ment to static features, and builds a dynamic feature-static feature constraint

framework to enhance the integrity of the input features to improve the accu-

racy of prediction/reconstruction. However, the existing dual-channel model,

as shown in Figure 2(A,B), only uses dynamic features as a supplement to

static features, which enhances the accuracy of input features, but does not
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set consistency constraints. Framework C, on the other hand, designs a

completely parallel encoding-decoding structure and relies on interactive loss

functions to constrain consistency. This constraint cannot affect the features

extracted by the encoder, and the channels are relatively independent, that

is, the processing of dynamic features and the processing of static features are

independent and cannot act as a real consistency constraint on the extracted

features. In addition, while mainstream methods use dynamic features as

supplementary elements to enhance the representation capabilities of static

features, they cannot achieve simultaneous learning of spatio-temporal fea-

tures.

To solve this problem, this paper introduces a new dual- channel video

anomaly framework to enhance the detection capabilities of unsupervised

learning algorithms. This framework treats dynamic information and static

information as inputs of equal importance and carefully designs strong con-

sistency constraints between dynamic information and static information to

ensure consistent representation of optical flow features and appearance fea-

tures, and it builds a collaborative learning and memory storage module

based on co-teaching. The core of this study is collaborative learning, mem-

ory storage modules, and skip connections and other technical means, which

strictly follow the consistency constraints of dynamic features and static fea-

tures.

3. Methodology

This section provides a detailed explanation of our proposed unsupervised

learning framework and the models utilized in our experiments. This includes
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explaining how the co-teaching architecture works in the training process of

two encoder-decoder networks.

In our proposed framework, the Flownet2 network [25] is responsible for

extracting optical flow features from video frames. Subsequently, these fea-

tures from video frames and optical flow are used as the input into two

encoder networks. These features are then compressed, followed by their en-

try into the memory storage module to update the corresponding elements

of video frame features and optical flow features.

The mechanism entails retrieving the features of the nearest counterpart

and amalgamating them into novel features. Finally, the amalgamated new

features feed into the two decoder networks to predict the features of the

opposing entity. For example, the optical flow features serve as the input to

the encoder-decoder, resulting in the output of video frame features. Con-

versely, when the input is the video frame feature, the output manifests as

the optical flow feature. To address the potential information gap in video

frame feature prediction by optical flow features, this study integrates skip

connections[26, 27] that bridge the encoding map of video frames to the

optical flow decoder (predictive video frames).

The loss function is comprised of the prediction loss in- herent in the

video frame features and the optical flow features’ prediction, as well as the

similarity loss in memory modules. The proposed model greatly ensures

the consistent description of optical flow features and appearance features

through shared memory entries. .
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Figure 2: A detailed framework of CCC-T, The first step uses Flownet2 to obtain the

optical flow information of the video sequence. The second step inputs the segmented

video frames and optical flow information into their respective encoding networks. The

third step is to cross-read and collaborate the output of the encoding network with the

memory module. Update, the fourth step, the updated input features are input to the

decoder network for cross prediction.

3.1. Preliminary

The fundamental algorithms highlighted in this chapter contain Flownet2,

the encoder-decoder structure, the memory module, and the co-teaching

framework. Notably, The encoder-decoder structure and memory module

already well described in previous paper[17, 16]. Consequently, the ensuing

content will provide a succinct overview of Flownet2, outlining its objectives

and structural attributes, followed by an outline of the co-teaching architec-

ture.
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FLOWNET2: FlowNet2 represents an evolution of the original FlowNet

architecture, both of which were developed by researchers at NVIDIA[28].

The primary objective of these architectures is to precisely predict displace-

ment vectors that explain the movement of pixels between frames. They find

applications across various research fields, including computer vision, video

analysis, motion tracking, and visual effects.

The principal characteristics and components of FlowNet2 are; 1. Siamese

Network: FlowNet2 comprises two identical sub-networks that share weights.

Each subnetwork processes an image from the input pair, Co-process two

different input vectors to compute a comparable output vector. 2. Feature

Extraction: This process employs a sequence of convolutional layers to ex-

tract hierarchical features from the input images. 3. Pyramid Processing:

FlowNet2 leverages pyramid processing to capture information across various

scales. Pyramid processing is a model of multi-scale signal representation.

4. Correlation Layer: The correlation layer is instrumental in determining

the similarity between blocks within two input images. FlowNet2 presents

significant enhancements over the original FlowNet architecture, enhancing

accuracy and robustness in optical flow estimation. It achieves state-of-the-

art performance on benchmark datasets designed for optical flow estimation

tasks.

Co-Teaching[29]: A collaborative teaching network is a framework in

which multiple neural network models collab- orate to solve specific problems

or achieve a common goal. For example, multiple actors merge their predic-

tions through techniques such as voting, averaging, or weighted averaging.

Classic co-teaching networks are one of the following four types: 1. Knowl-
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Figure 3: The Co-Teaching structure

edge distillation[30]: A broader or more com- plex model (teacher model)

is trained together with a smaller or simpler model (student model). The

student model learns to imitate the behavior of the teacher model, reduce pa-

rameters, and/or to build multi-task models; 2. Collaborative training [31]:

Multiple models are trained simultaneously and exchange training data or

gradients during the optimization process; 3. An Adversarial Network [32]:

Multiple models with complementary effects, such as a generator network and

a discriminator network in a generative adversarial network (GAN) work to-

gether to achieve a specific result; and 4. Federated learning [33]: Many

models are trained on different data subsets and then merged or averaged

to generate a global model. This approach can improve privacy and data

distribution issues. In this paper, we adopt two encoder-decoder structures

to share the memory module, cross-read the video frame feature pool and the

optical flow feature pool, and to promote the collaborative training of the

model. These two encoding structures are similar to two teacher networks,
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learning from each other.

3.2. Consistency-constrained Framework Based on Co-teaching

This section introduces the operation and interaction of each module of

the framework(CCC-T: Consistency-constrained Framework Based on Co-

teaching) proposed by this paper in detail. This CCC-T employs two inter-

connected encoder-decoder structures facilitated by the co-teaching network

2. These structures are designed to encode optical flow and video frame fea-

tures separately while predicting the corresponding features of the opposite

type (i.e., optical flow to video frame and vice versa). The predicted loss

resulting from these predictions is then utilized to update the model. The

following section outlines the detailed steps involved in the comprehensive

formalization.

Formalization: There is an existing video denoted as V , which is di-

vided into a sequence of continuous video frames: V = v1, v2, v3, ..., vN ,

where N represents the total number of frames in the video. The opti-

cal flow features of these video frames are extracted using Flownet2, de-

noted as Fflows = Flownet2(V ), with individual flow features represented

as fflow ∈ fflows1 , fflows2 , fflows3 , ..., fflowsN . The read library of OpenCV2 is

employed to directly extract frame features from the video frames, yielding

Fframes = Ir(V ), with frame features represented as

fframes ∈ fframes1 , fframes2 , fframes3 , ..., fframesN .

As stated earlier, this paper presents a model that encompasses two

encoder-decoder structures, as illustrated in Figure 1. where ψ represent

the Encoder function and ϕ the Decoder, The upper structure is the video

frame feature encoderψframes, while the lower one is the optical flow feature
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encoder, referred to as ψflows. The decoder positions are the opposite: the

upper one is ϕflows, and the lower one is ϕframes.

During the training phase, the extracted video frame features Fframes

are input into the ψframes to focus and refine the quality of the appearance

feature representation. Subsequently, these features are passed through a

memory module. The error is calculated with the nearest video frame fea-

ture entry, leading to an update of the video frame feature storage module.

Simultaneously, the module queries the optical flow entry that is closest to

the input feature and then reads and updates the input feature. The updated

input feature is then fed into the ϕframes to predict the optical flow feature.

This process can be expressed in an equation as:

FE
frames = ψframes(fframes)

= ψframes(Ir(V )),

V = v1, v2, v3, ..., vN

(1)

F̂flows = ϕframes(θ(F
E
frames,M)) (2)

where, M signifies the memory storage module, and θ embodies the in-

teraction between input data and the memory storage module, encompassing

functions such as reading, updating, and the integration of novel features.

Comprehensive insights into the memory storage module are explained in

3.3 . FE
frames denotes the features emanating from the encoder, while F̂flows

encapsulates the optical flow features prognosticated by the decoder.

Conversely, the optical flow features Fflows, obtained from Flownet2, are

input into the ψflows. This step help to refine the high-quality optical flow

15



feature representation. These features are then processed through a memory

module. Similar to the video frame features, the error is computed with the

nearest optical flow feature entry, resulting in an update of the optical flow

feature storage module. Furthermore, the module queries the appearance

feature entry closest to the input feature, reading and updating the input

feature. The updated input feature is directed into the ϕflows to predict the

appearance feature.

F flows
encoder = ψflows(fflows)

= ψflows(Fownets2(V )),

V = v1, v2, v3, ..., vN

(3)

F̂frames = ϕflows(θ(F
E
frames,M)) (4)

The loss function contains three components: optical flow prediction loss

Lflows, appearance feature prediction loss Lflows, and memory storage module

loss LM . Similarly, during the test phase, the anomaly score is composed of

three parts.

loss =


∥∥∥f̂flows − fflows

∥∥∥∥∥∥f̂frames − fframes

∥∥∥
LM

(5)

The role of this module is to align input data with their corresponding en-

tries in the memory module, thereby capturing and recording trained normal

patterns. The memory module loss LM is described in detail next.
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3.3. Co-teaching within Memory Module

The co-teaching structure in training is designed in the memory storage

module.

Following the blueprint of the conventional memory storage module[34],

this unit serves two primary functions. The first involves reading—wherein

the module identifies and retrieves the entry most closely aligned with the

input feature, subsequently updating the input feature. The second func-

tion entails updating, which transpires as an ongoing process throughout the

training. The memory matrix continuously evolves based on the proximity

between feature maps, effectively consolidating data from the training set

that corresponds to the set entries.

In our framework, the memory storage module is bifurcated into two dis-

tinct components, as illustrated in Figure 5.3. The green segment denotes the

video appearance feature memory mode, while the orange segment signifies

the optical flow feature memory mode. The act of reading and updating each

input datum transpires in disparate sections of the memory module, so that

the update operation takes place within the respective memory mode, and

the reading operation unfolds in the complementary memory mode. These

modes are illustrated in Figure 4.

3.3.1. Reading and Updating Mechanisms of the Memory Module

Reading Mechanism:. Reading Mechanism for the Memory Module as shown

in Figure 4: The input to the memory module is the optical flow feature. This

involves calculating the cosine similarity between the query feature and the

entries within the video frame appearance feature memory module. The aim

here is to identify the entry or multiple entries with the closest proximity to
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Figure 4: Co-teaching within a memory module: Green indicates the transfer of static

features in the memory module, and orange represents the transfer of dynamic features;

correspondingly, the memory module is composed of multiple static feature category entries

and multiple dynamic feature category entries

the query feature, thus determining their respective distances. The softmax

function is applied to establish an average probability match. Subsequently,

the probability value is utilized to compute the inner product with the ap-

pearance feature entry from the memory module. This process leads to the

feature update. Finally, the updated features are merged with the original

query features to predict the corresponding video appearance features.

First, the cross-cosine similarity between each entry qkflows , q
k
frames (q

k
flows ∈

fE
flows, q

k
frames ∈ fE

frames) and memory items pframes
m , pflows

m is calculated,

where qkflows and qkframes are from the corresponding two query encoding

features fE
frames, f

E
flows; p

frames
m , pflows

m is set during initialization, and two
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two-dimensional correlation maps of size MK are obtained. The softmax

function along the vertical direction and obtain the matching probabilities

wk,m
frames,w

k,m
flows show in 6:

wframes
k,m =

exp((pflows
m )T )qframes

k∑M
m′exp((pflows

m′ ))qframes
k

(6)

wflows
k,m =

exp((pframes
m )T )qflows

k∑M
m′exp((pframes

m′ ))qflows
k

(7)

For the query items of optical flow features qkflows and appearance fea-

tures qkframes, the opposite memory module is read through the calculated

weight (qkflows → pframes

m′ , qkframes → pflows

m′ ), which obtains the desired cross

prediction information. The reading process shows in 8 :

p̂frames
k =

M∑
m′

wframes

k,m′ pflows

m′ (8)

p̂flows
k =

M∑
m′

wflows

k,m′ p
frames

m′ (9)

After reading the memory module, the closest cross feature map p̂flows
k ,p̂frames

k

is obtained, We concatenate p̂flows
k ,p̂frames

k with the query map qkflows , q
k
frames

along the channel dimension, and send f⃗frames, f⃗flows into the corresponding

decoder.

f⃗frames =
∑

(p̂flows
k , qkframes)

f⃗flows =
∑

(p̂frames
k , qkflows)

(10)
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Updating mechanism:. Update mechanism of memory modules: In this case,

the cosine similarity of appearance encoding features fE
frames and optical flow

encoding features fE
flows with the corresponding memory modules is calcu-

lated. Next the probability value is caculated through the softmax function.

Then read the compared memory entry by calculating the probability value,

The next steps involve using the query features to increase the inner product

of the obtained probability values. This sum is added to the corresponding

memory entry of the original appearance feature. As a result of these oper-

ations, the memory module is effectively updated. The function of this step

is to find the memory feature that is most similar to the query feature, and

through its similarity loss, continuously improve the adhesion of the memory

entry to the real normal pattern.

The first step is to calculate the cosine similarity between the optical flow

query encoding features fE
frames and the optical flow memory entries fE

flows

, and the appearance query encoding features and the appearance memory

entries. This process is the opposite of the reading mechanism.

uframes
k,m =

exp((pframes
m )T qkframes)∑K

k′exp((p
frames
m )T qk

′

frames)
(11)

uflows
k,m =

exp((pflows
m )T qkflows)∑K

k′exp((p
flows
m )T qk

′

flows)
(12)

After obtaining the cosine similarity between the memory entry and the

query point uframes
k,m , uflows

k,m , use the probability value cosine similarity to

read the query entry, accumulate it with the original memory entry in the
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same channel, and update the memory entry. The updated storage module

< p̌mflows, p̌
m
frames > is shown in the figure below:

p̌mflows =
∑

(pmflows +
K∑
k=1

uflows
k,m qkflows) (13)

p̌mframes =
∑

(pmframes +
K∑
k=1

uframes
k,m qkframes) (14)

Different from cross-reading, the memory update corresponds from opti-

cal flow to optical flow and appearance to appearance. By calculating the

similarity matrix, it is accumulated to the memory module.

3.3.2. Strong consistency constraints

The strong consistency constraints in this article are mainly implemented

through the reading and updating of the memory module. The reading and

updating rules have been described in detail above. This article proposes that

the memory module of the model is divided into two parts, one is optical flow

feature storage, and the other is appearance feature storage; and the read-

ing and updating of each branch are implemented for different parts of the

memory module. That is, the prediction in this article is cross prediction,

inputting optical flow features, then constructing a similarity matrix, and

reading the most similar appearance feature storage entries to construct joint

features to predict appearance features. When updating, only the optical

flow memory entries corresponding to the optical flow features are updated.

Optical flow features and appearance features are cross-read and updated.

Through the loss function, appearance features and optical flow features are
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strengthened, and the consistent representation of dynamic information and

static information is enhanced. And according to the consistent description

of optical flow features and appearance features, the similarity between ap-

pearance and optical flow of videos of the same category is the highest. Based

on this, this article sets up the consistent description probability for dynamic

information and static information as Cst(S,D):

Cst(S,D) =
k∑

i=1

k∑
j=1

< f i
frames, f

j
flows > (15)

where f i
frames and f

j
flows are the encoded appearance features and optical

flow features, and k is the number of storage entries designed by the mem-

ory module. Only when i = j, the consistency probability can reach the

maximum value.

Therefore, the strong consistency constraints set as 16:

STC =
k∑

i=j

|f i
frames, f

j
flows|

=
k∑

Max(Cst)

(
∣∣f i

frames,M
j
flows

∣∣⊕ ∣∣f i
flows,M

j
frames

∣∣) (16)

During the memory module reading process, this article sets up to read

the cross feature entries that are closest to the query entries and predict

the corresponding cross featuresMax(Cst). We calculate the similarity by

covariance and retrieve the intersection entries with the highest similarity.

Final predicted cross information features
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3.3.3. Loss function Memorize Module

The loss function of the training process mainly consists of three parts,

namely Lflows, Lframes, LM , Among them, Lflows represents the error between

the predicted optical flow and the real optical flow, and Lframes represents the

error between the appearance characteristics of the predicted video frame and

the real video frame. These designations are employed for partitioning the

distances between distinct entries within the memory module. Here LM loss

is divided into two parts, namely Strong consistency constraint loss LM(Sim)

and segmentation loss LM(Seg). LM(Sim) is achieved by enhancing the similar-

ity between the optical flow features in the query entry and the most approx-

imate flows features in the memory entry, and at the same time enhancing

the appearance features in the query. The similarity between the feature and

the closest optical flow feature in memory is used to ensure the consistency

of optical flow features and appearance features, while the LM(Seg) is used to

enlarge the distance between the query point and the next closest memory

entry, ensuring the orthogonality of the memory module, that is, the entries

are kept far enough apart.

The loss function of the memory module LM is expressed as
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LM = LM(Sim) + LM(Seg) + LM(STC) =

<
∥∥fE

frames −Mframes(Pnearest, f
E
frames)

∥∥∥∥fE
flows −Mflows(Pnearest, f

E
flows)

∥∥ > +

< −
∥∥fE

frames −Mframes(Psec−nearest, f
E
frames)

∥∥
−
∥∥fE

flows −Mflows(Psec−nearest, f
E
flows)

∥∥ > +

<
∥∥fE

frames −Mflows(Pnearest, f
E
frames)

∥∥∥∥fE
flows −Mframes(Pnearest, f

E
flows)

∥∥ >

(17)

In the equation,M represents the memory block. Mframes signifies the ap-

pearance pattern within the memory module, whileMflows represents the op-

tical flow pattern within the same module. The variable p denotes an entry in

the memory module, where Mframes(Pnearest, f
E
frames) designates the memory

entry that is nearest to the query feature, and Mframes(Psec−nearest, f
E
frames)

denotes the second closest memory entry to the query feature.

3.4. Anomaly detection stage

The primary procedure of the anomaly detection stage maintains consis-

tency with the training process.

The initial step involves preprocessing the dataset, which entails segment-

ing the test video into video frames and extracting optical flow features. Sub-

sequently, the second step utilizes two distinct encoder structures to compress

both the appearance and optical flow features of the video independently. In

the third step, the compressed final features are directed into the memory

module, where they are combined to generate novel query features. Moving

on to the fourth step, these newly generated features are input into the de-
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coder network to anticipate the corresponding optical flow and appearance

representations.

The computation of the anomaly score predominantly encompasses two

components: the prediction loss and the similarity loss originating from the

memory module. The specific pseudo code is shown in 1:

Algorithm 1 Anomaly Detection Phase

1: Initialization:

Flownet2, Random M ∈ RK×2M , V = v1, v2, v3, ..., vN ;

2:

 Fframes = Ir(V )

Fflows = Flownet2(V )
;

3:

FE
frames = ψ(Fframes)

FE
flows = ψ(Fflows)

;

4: ; f⃗frames, f⃗flows = Co− teach(M,FE
frames, F

E
frames)

5:

FD
flows = ϕ(F⃗frames)

FD
frames = ϕ(F⃗flows)

;

Output: Calculate anomaly scores.

Score=
{
α∥FD

flows − Fflows∥, β∥FD
frames − Fframes∥

}
where The core part of the anomaly score is the prediction error, which in-

cludes optical flow feature prediction error and appearance feature prediction

error. In the testing phase, after a large number of verification experiments,

this article sets two prediction losses combined with hyperparameters α = 0.3

and β = 0.7.
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Table 1: The result for Avenue dataset

Name Technology Journal AUC

Unmasking[35] VGG-f ICCV2017 80.6

StackRNN[36] Temporally-coherent ICCV2017 81.7

MemAE[16] Memory module ICCV2019 81.0

MNAD[17] Learning Memory module CVPR2020 80.6

TAC-Net[37] Temporal-aware contrastive IEEE TII 87.3

ITAE[38] Two-path Generative PR 2022 88.0

Two-P[13] Two-path AE ICME 2022 89.8

DEDDnet[22] Doub-AE, Fusion TCSVT 2022 89.0

VABD[39] Wasserstein GAN TIP 2022 86.6

Amp-Net[24] Two-encoder,one decoder TII 2023 92.2

SSAGAN[40] GAN TNNLS 2023 88.8

CCC-T Consistency Co-teaching 89.2

4. Experiments

The experimental settings outlined in this paper are primarily categorized

into three groups. According to the experimental settings, this paper eval-

uates the performance of the framework proposed in this paper from three

aspects: advancement comparison, ablation experiment, and effect display.

4.1. Experiment 1

4.1.1. Comparative Experiment

The first group pertains to a comparison of prediction accuracy with

mainstream video anomaly detection algorithms. In this set of experiments,

this paper compares the detection accuracy of the model proposed in this

paper and the mainstream unsupervised model. We conducted indepen-

dent comparative analyzes on three public data sets: Ped2[41] Avenue[42],
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Shanghaitech[43]. The results are shown in the table below:

Table 2: The result for UCSD(Ped1,Ped2) dataset

Name Technology Journal
AUC

Ped1 Ped2

Unmasking[35] VGG-f ICCV2017 68.4 82.2

StackRNN[36] Temporally-coherent ICCV2017 N/A 92.2

MemAE[16] Memory module ICCV2019 N/A 91.7

STFF [44] Fast sparse coding PR 2020 82.4 92.8

MNAD[17] Learning Memory module CVPR2020 N/A 97.0

DPU[45] Dynamic Prototype CVPR2021 85.1 96.9

TAC-Net[37] Temporal-aware contrastive IEEE TII N/A 98.1

ITAE[38] Two-path Generative PR 2022 N/A 98.7

Two-P[13] Two-path AE ICME 2022 N/A 98.1

DEDDnet[22] Doub-AE, Fusion TCSVT 2022 94.2 98.1

VABD[39] Wasserstein GAN TIP 2022 81.1 97.1

SSAGAN[40] GAN TNNLS 2023 84.2 97.6

CCC-T Consistency Co-teaching 85.0 99.1

Tables I, II, and Table III shows accuracy comparisons between the frame-

work CCC-T proposed in this paper and mainstream algorithms across three

datasets (Avenue, UCSD(ped1,ped2), Shanghaitech). Because the Shang-

haitech dataset is too large, some of the baseline models only tested with the

Avenu and Ped2, and some models use the Ped1 dataset [41]. Therefore, in

this paper we used three different tables (Table I, II and III) to illustrates the

results for each dataset with different baseline models. The result show that

the prediction accuracy AUC achieved by the CCC-T algorithm proposed

in this paper has shown superior performances, thereby substantiating the

effectiveness of the proposed algorithm. Specifically, while considering con-

27



sistency, the way in which optical flow and appearance features are combined

(either complementary or equal) becomes the primary aspect of differentia-

tion between video data features and image data. When analyzing video

data, special attention should be paid to the processing of dynamic features.

From Tables I, II, and Table III, it can be concluded that the CCC-T model

proposed in this article has more advanced performance. The second core

store is the consistency constraint of optical flow features and appearance fea-

tures. Simply making optical flow and appearance completely independent

and predicting them separately does not conform to the essential character-

istics of video data. Forcing the consistency of optical flow and appearance

through loss functions is the key to video representation learning.

Table 3: The result for ShanghaiTech dataset

Name Technology Journal AUC

StackRNN[36] Temporally-coherent ICCV2017 68.0

MemAE[16] Memory module ICCV2019 69.7

BMAN[46] Appearance-motion joint TIP 2019 76.2

Few-Shot[47] Few-shot scene-adaptive ECCV2020 77.9

MNAD[17] Learning Memory module CVPR2020 70.5

DPU[45] Dynamic Prototype CVPR2021 73.8

TAC-Net[37] Temporal-aware contrastive IEEE TII 77.2

DissociateAE[48] Dissociate spatio-temporal PR 2022 73.7

ITAE[38] Two-path Generative PR 2022 76.3

Two-P[13] Two-path AE ICME 2022 73.8

VABD[39] Wasserstein GAN TIP 2022 78.2

SSAGAN[40] GAN TNNLS 2023 74.3

CCC-T Consistency Co-teaching 77.1
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4.1.2. Equal Error Rate (EER) Calculation and Analysis

EER stands for equal error rate, which refers to the error rate when the

false positive rate (FAR) is equal to the false negative rate (FRR) in a binary

classification task. The false positive rate is the probability that a negative

class (non-target speaker) is mistakenly classified as a positive class; the false

negative rate is the probability that a positive class is mistakenly classified

as a negative class. In the equal error rate, we hope that both FAR and FRR

are as close as possible.

(a) UCSD (Ped1) (b) Avenue

Figure 5: EER calculation results for datasets UCSD(Ped1) and Avenue.

Figure 5 shows the EER of UCSD(Ped1) and Avenue, which show that

the value of EER for Ped1 is 0.30, and the value for Avenue is 0.27.

Relationship between FAR and FPR: As the threshold increases, FAR

gradually increases, while FPR gradually decreases. The two show a clear

intersection in the figure, showing the performance of the system at different

thresholds.

For the Avenue datasets, the EER in the figure is 0.27, which means that
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in this system, when FAR equals FPR, the error rate of the system is 27%.

EER is usually used as an indicator to measure the performance of a binary

classification system. The lower the EER, the better the performance of the

system. For the Ped1 datasets, because its data involves distortion, the ac-

curacy is low and this dataset is ignored in most anomaly video detection

algorithms. The different thresholds in the figure show the trade-off of the

system increasing another error type (such as FPR) while reducing one error

type (such as FAR). When selecting a threshold, it is necessary to find a rea-

sonable balance between the two error rates based on the actual application

scenario.

4.2. Experiment 2

The experiments are focused on ablation studies. This experiment in-

volves the separation of various modules such as skip-connecting and Consis-

tency Co-Teaching within the framework for distinct training tests, followed

by an assessment of accuracy in the current dual-channel training approach.

This article set up three groups of ablation experiments to study the compar-

ison between single channel and dual channel, the performance comparison

of different components of the model, and the intrinsic relationship between

the dual channel loss hyperparameters. In the diagram in the table IV, V,

blue represents the propagation path of appearance features, and yellow rep-

resents the propagation path of optical flow features.
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4.2.1. The Performance comparison of single-channel and various dual-channel

models

In this experiment, we set up four groups of models to compare the per-

formance of single-channel and dual-channel and their different variants: 1)

prediction from frame appearance to frame appearance; 2) prediction from

appearance features and optical flow features to appearance features; 3) pre-

diction from appearance to appearance and optical flow to optical flow; and

4) As well as the CCC-T framework proposed in this article, appearance pre-

dicts optical flow, and optical flow predicts appearance. The experimental

results are shown in Table IV.

Table 4: The Ablation Study : The Performance comparison of single-channel and various

dual-channel models, blue represents the propagation path of appearance features, and

yellow is optical flow features

Number Input Output Model AUC

UCSD(Ped2)

a frames frames 97.0

b frames,flows frames 98.9

c frames,flows frames,flows 98.7

d frames,flows flows,frames 75.3

Avenue

a frames frames 70.5

b frames,flows frames 88.0

c frames,flows frames,flows 89.8

d frames,flows flows,frames 73.6

Table IV is the performance comparison between the classic single-channel

model and the multi-channel dual-channel model, 1) the initial frame appear-

ance to the prediction/reconstruction of frame appearance; 2) the optical flow

as a supplementary feature, and then 3) the separate prediction of optical
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flow and appearance features and reconstruction; 4) the basic model pro-

posed but without constraint. The final prediction accuracy of the model

shows an upward trend. Without the assistance of the Co-Teaching mod-

ule and skip connections, the performance of the model Init (Un-Constraint)

proposed in this chapter is far inferior to the classic model. After analysis,

it was found that this is because optical flow features lack more appearance

information (such as background, color, etc.), and appearance features can-

not be predicted directly from optical flow. This ablation study results are

presented in Table V..

4.2.2. The impact of skip connections and co-teaching on the performance of

dual-channel models

In this set of ablation experiments, this paper set up five sets of models:

1) the baseline model of cross prediction; 2) the skip connection model that

only includes appearance to optical flow; 3) the skip connection model that

only includes optical flow features to appearance features. ;4) Double-skip

connection model; 5) The final framework CCC-T including consistency co-

teaching and double-skip connection; and compare their performances with

Ped2 and Avenue datasets. The experimental results are shown in Table V.

The results in Table V show the performances of different modules in

the proposed CCC-T framework. From the Table V, it can be concluded

that the main reason for the low cross-prediction performance is that the

optical flow feature has less appearance feature information and cannot be

completely restored. Therefore, in the channel where optical flow features

predict appearance features, whether there are skip connections that pro-

vide appearance feature input has a greater impact on the performance of
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Table 5: The Ablation Study: The impact of skip connections and co-teaching on the

performance of dual-channel models

Method Model UCSD(ped2) Avenue

Init (Un-constraint) 75.3 73.6

Skip(Flows-Frames) 95.4 87.2

Skip(Frames-Flows) 76.2 76.7

Fully-Skip 95.6 86.9

CCC-T 99.1 89.2

the Skip(Flows-Frames) model. Table V shows that the performance of the

Skip(Flows-Frames) model containing only this core skip connection basically

reaches the performance of the double-hop connection. Secondly, whether to

set up a strong co-teaching network structure also has a great impact on

performance. Therefore, each component of the CCC-T model performance

proposed in this article is essential.

4.3. Experiment 3

Experiment 3 is a visual evaluation experiment and the fluctuation of

abnormal scores between normal frames and abnormal frames.

The experimental findings from the test phase have been visually pre-

sented in Figure 6 7. From Figure 6, we can get that a recognizable shift in

the abnormal score is observed when confronted with irregular video frames,

exhibiting a significant increase. It shows that this phenomenon helps us ef-

fectively pinpoint anomalies in video data streams. Exceptions in the graph-

ical representation include various situations, particularly the use of bicycles,

skateboards, and other unconventional vehicles on sidewalks. From Figure 7

which shows that the current unsupervised algorithm has insufficient perfor-
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Figure 6: Test results on the dataset UCSD(ped2). The pink background is the area where

the real anomaly occurs; The blue curve represents the change of the anomaly score with

the time series.

mance indicators in the Shanghaitech dataset and is difficult to distinguish

not obvious abnormal events. Combining the results displayed by the two

effects, we can infer that the video anomaly is not for the detection of a cer-

tain frame, but for the analysis of a segment. Since the abnormality score in

the picture fluctuates violently, it is difficult to locate abnormal from several

other frames, but considering overall situation of video or the entire seg-

ment, abnormal events can be clearly located. This once again proves that

abnormalities are continuous and indivisible.

5. Conclusion and Future Work

We introduces an innovative approach to unsupervised video anomaly

detection framework CCC-T which is leveraging the inherent consistency

between optical flow features and appearance features. The framework cap-

italizes on the correlation properties of these two types of features, marking

the first instance of their fusion within an unsupervised algorithm.

In this framework, We set strong consistency constraints to achieve con-
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Figure 7: Test results on the dataset Avenue and Shanghaitech; A represents the result

of Avenue and B is the result of Shanghaitech. The pink background is the area where

the real anomaly occurs; The blue curve represents the prediction anomaly score with the

time series.

sistent alignment of appearance features and motion features, and introduce a

novel prediction mechanism. This mechanism is bidirectional predicting both

optical flow from appearance and appearance from optical flow. This inge-

nious strategy effectively mitigates the robustness challenges that typically

afflict unsupervised learning, thereby generates enhancements in algorithmic

performance. Furthermore, the framework employs a co-teaching network,

which fosters coordination between the two channels. This approach skillfully

averts distortions that can arise from the neural network’s potent represen-

tation capacity. The empirical findings underscore the superior and more

resilient performance of the algorithm proposed in this paper, as compared

to conventional methods for predicting video frames. However, the model
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proposed has some limitations. For example, extracting both dynamic and

static features from videos at the same time puts a lot of strain on servers and

slows down the processing speed. Additionally, because video scenes vary so

much. This means the most similar dynamic and static features might not

come from the same video or a normal situation. Most importantly, the

model still struggles to clearly explain video anomalies.

In future, our team is committed to delving deeper into the placement

of optical flow features within unsupervised anomaly detection algorithms.

We aim to explore the potential synergies between a broader range of un-

supervised and weakly supervised algorithms, with the goal of pushing the

boundaries of anomaly detection even further.
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