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Abstract. The Industrial Internet of Things (IIoT) emphasizes the im-
portance of equipment health and reliability, which is critical to main-
taining operational efficiency and preventing costly downtime. This arti-
cle introduces an innovative prognostics and health management (PHM)
framework that synergistically combines blockchain technology with large
language models (LLM) to pioneer safe, reliable, cutting-edge health
monitoring and failure prediction services for IIoT devices in a new era.
By leveraging the immutable and transparent properties of blockchain,
the proposed framework ensures data integrity and security throughout
the IIoT ecosystem. In addition, the solution employs advanced LLM for
in-depth data analysis and prediction of potential failures, thereby facil-
itating pre-emptive maintenance actions. This dual approach enhances
the safety and reliability of health monitoring data while simultaneously
utilising the predictive power of LLM to analyse complex patterns and
predict faults with high accuracy. Experimental results show that the
framework effectively improves the accuracy of fault prediction and the
overall resilience of IIoT systems against cyber-physical threats.

Keywords: Blockchain · Large Language Models · Prognostics and Health
Management

1 Introduction

The deployment of Prognostics and Health Management (PHM) systems has
become a fundamental aspect in enhancing operational reliability and efficiency
within the Industrial Internet of Things (IIoT) [1]. As Fig 1 shows, PHM systems
aim to proactively identify signs of wear and predict future equipment failures,
enabling timely maintenance and preventing unplanned downtimes [2–4]. Despite
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the significant potential of PHM, its integration into IIoT encounters substantial
challenges, especially concerning data security and processing capabilities [5–7].
The extensive data generated by IIoT devices demand strong mechanisms for
secure transmission, storage, and analysis, highlighting the pressing need for
innovative solutions in this area [8].

Fig. 1. The basic process of PHM

The adoption of blockchain technology and Large Language Models (LLMs)
within the PHM domain presents promising solutions for addressing these chal-
lenges, opening doors to enhanced data integrity and analytical depth in indus-
trial health management. Blockchain’s decentralized architecture provides an
immutable ledger for secure and transparent data management, establishing a
robust foundation for trust across the IIoT network and significantly reducing
risks related to data tampering and privacy breaches [9–21]. Besides, LLMs have
emerged as a powerful tool for processing and analyzing the vast datasets charac-
teristic of the IIoT environment, facilitating accurate health status predictions
and yielding insightful maintenance recommendations tailored to the specific
needs of the equipment [22,23].

Nevertheless, the integration of these technologies into a cohesive PHM frame-
work remains an area ripe for further exploration, marking a critical juncture
where innovation can be practically applied. Current research tends to focus on
the isolated application of blockchain or LLMs within IIoT, often overlooking
the enhanced outcomes that could result from their combined use [24]. Addi-
tionally, the scalability issues associated with blockchain and the substantial
computational demands of LLMs present complex challenges. These challenges
highlight the urgent need for creative solutions to overcome these obstacles, aim-
ing to maximize the potential of PHM systems in the competitive landscape of
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industrial environments, thereby synergistically advancing the field of industrial
health management through integrated technologies [25,26].

This paper introduces an innovative PHM framework that seamlessly in-
tegrates blockchain technology and LLMs to address the aforementioned chal-
lenges. Our framework ensures the integrity and security of IIoT data through
blockchain while leveraging LLMs’ advanced analytics capabilities for accurate
fault prediction and health monitoring. Specifically, our contributions are three-
fold: Firstly, we propose a novel, blockchain-based data management system,
custom-tailored for IIoT applications, enhancing data security and trustworthi-
ness. Secondly, we demonstrate how LLMs can be effectively employed to analyze
IIoT data, significantly improving fault prediction accuracy. Lastly, we provide
a comprehensive evaluation of our framework, underscoring its effectiveness in
enhancing the reliability and efficiency of PHM systems in industrial environ-
ments. By addressing key aspects such as data security, processing efficiency,
and prediction accuracy, our research contributes to the advancement of PHM
technology in IIoT, paving the way for more resilient and efficient industrial
operations.

The structure of this article is outlined below: Section 2 initiates with an
exploration of the preceding research. Following this, Section 3 presents the
formulation of the problem at hand. Section 4 elaborates on the development
of the proposed solution. Section 5 is dedicated to the execution of simulation
experiments to evaluate the model. Finally, Section 6 provides a summary and
conclusion of the study.

2 Related Work

This section describes the current state of blockchain applications in PHM and
the pioneering application of LLM in industrial data analytics, which provides
the basis for the proposed framework.

2.1 Blockchain Applications in PHM

Adopting blockchain technology in PHM systems enhances data security, in-
tegrity, and reliability by providing immutable record-keeping and transpar-
ent transactions for IIoT data. For instance, Shen W et al. [27] presented a
blockchain framework designed to ensure the traceability and integrity of data
in manufacturing systems, a foundational requirement for effective PHM. Sim-
ilarly, Mukkamala et al. [28] introduced a blockchain-based data management
system to securely store and manage maintenance records, facilitating trustful
and tamper-proof decision-making in PHM. Moreover, the unique architecture
of blockchain allows for the creation of smart contracts, which automate the ex-
ecution of predefined conditions. This feature has been explored by Bragadeesh
et al. [29] who developed a blockchain-based PHM system that automatically
initiates maintenance procedures based on smart contract conditions, derived
from real-time data analytics.
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2.2 LLMs in Industrial Data Analysis

LLMs are used in industrial data analytics for PHM within the IIoT to analyze
unstructured data, such as maintenance logs and operational reports, highlight-
ing their potential and gaps our research aims to fill. For example, Lukens et
al. [30] clarified the role of LLM in enhancing the predictive power of PHM sys-
tems. On this basis, Wen et al. [31] extended the application of LLM to the field
of fault diagnosis. The focus of the work is to utilize LLM to classify unstruc-
tured data from smartphones, thereby improving the diagnosis process. By effec-
tively classifying fault types based on narrative descriptions, the proposed model
greatly simplifies the diagnosis process, ultimately reducing operational down-
time and maintenance costs, and improving diagnosis accuracy and efficiency.
Besides, Wang et al. [32] present a method using Transformer-based LLMs for
analyzing time-series sensor data, enabling quick detection of anomalies and
enhancing PHM systems’ predictive capabilities beyond conventional logs.

3 Problem Definition

This section outlines the principal challenges addressed by our research in the
realm of PHM within the IIoT. We formalize these challenges using mathematical
notation to define our proposed solution’s objectives.

3.1 Data Security and Integrity

In the IIoT environment, we consider a dataset D = {d1, d2, . . . , dn}, comprising
n data points from IIoT devices, crucial for operations yet susceptible to security
threats. A security function Fs : D → S is introduced, transforming D into a
secure dataset S. The aim is to optimize Fs to maximize data security and
integrity, protecting against unauthorized access and modifications.

3.2 Data Analysis and Utilization

For dataset D, extracting actionable insights for predictive maintenance is es-
sential. An analysis function A : D → P is defined, where P symbolizes the
predictive insights from D. Enhancing A aims to improve the PHM system’s
predictive accuracy and facilitate proactive maintenance based on data-driven
insights.

3.3 Scalability and Computational Efficiency

As the array of IIoT devices I = {i1, i2, . . . , im} grows, generating data at rate λ,
scalability Sc and computational efficiency η become critical. The system must
process an increasing volume of data efficiently, necessitating the optimization
of Sc and η, to accommodate data growth without compromising performance.
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3.4 Decentralization and Data Sharing

The network of IIoT stakeholders N = {n1, n2, . . . , nk} requires a decentralized
approach for data management and sharing. A function D : D × N → N ′ is
introduced to facilitate secure and efficient data sharing, evolving the network
to a new state N ′. This function D, optimized for collaborative efficiency, is
pivotal in achieving enhanced PHM outcomes. Specifically,

D(D,N ) =

k⋃
i=1

Ti(D,ni) → N ′, (1)

where Ti signifies the transformation functions applied to data D for node ni,
incorporating encryption, validation, and other necessary processes.

3.5 Optimization Objective

The overall purpose of this model is expressed as the optimization of a set of
functions Fs,A, Sc, η,D, each addressing specific challenges in PHM for IIoT.
This is succinctly captured in our optimization problem, which seeks to maximize
the overall system performance Γ , as follows:

max
Fs,A,Sc,η,D

Γ (Fs(D),A(D), Sc(I, λ), η(I, λ),D(D,N )), (2)

where Γ encompasses system performance metrics including data security,
predictive accuracy, scalability, computational efficiency, and decentralized data
sharing efficacy. Solving this optimization enhances the PHM framework’s capa-
bilities within the IIoT, advancing towards safer, more reliable, and more efficient
industrial operations.

4 Model Design and Details

This section elaborates on the architecture and operational specifics of our pro-
posed framework, designed to leverage Blockchain technology and LLMs for
enhancing PHM within the IIoT. We detail the framework through a series of
algorithms that underscore secure data management, in-depth data analysis, and
efficient maintenance decision-making processes.

4.1 Framework Architecture

The proposed framework’s architecture is structured around two pivotal com-
ponents: the Blockchain Network (BN ) and the LLM-based Analysis Module
(LAM) as shown in Fig 2.
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Fig. 2. Framework Architecture of the proposed model

Blockchain Network (BN ) The Blockchain Network (BN ) serves as the
backbone for secure data transmission and storage within the IIoT ecosystem.
It comprises a decentralized network of nodes, each representing a stakeholder
within the IIoT landscape. The BN facilitates the immutable recording of trans-
actions, enabling a tamper-proof and transparent ledger of IIoT data exchanges.
Key functions include data encryption, transaction validation, and smart con-
tract execution for automated PHM processes.

Secure Data Transmission: Data transmission within the BN is safe-
guarded through encryption and blockchain consensus mechanisms, ensuring
that only authenticated and validated data is recorded on the ledger. This pro-
cess is vital for maintaining the confidentiality and integrity of sensitive IIoT
data. The Algorithm 1 demonstrates how encrypted data from IIoT devices is
decrypted, processed, and analyzed to predict potential failures.

Smart Contract Automation: Smart contracts within the BN automate
various PHM-related decisions and actions, including maintenance scheduling
and alert notifications, based on predefined criteria derived from data analysis
outcomes.

LLM-based Analysis Module (LAM) The LLM-based Analysis Module
(LAM) employs advanced machine learning algorithms, particularly those based
on the Transformer architecture, to process and analyze the encrypted data
decrypted from the BN . This module is responsible for extracting actionable
insights from vast amounts of structured and unstructured IIoT data, facilitating
accurate predictions regarding equipment health and potential failures.
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Algorithm 1 SecureDataTransmission(DeviceData,SC, ni)

Input: DeviceData,SC, ni //Device data, smart contract, and node identifier
Output: TransactionReceipt or Error
TransactionID = Hash(DeviceData+ T imestamp)
EncryptedData = Encrypt(DeviceData, PublicKeyni)
Signature = Sign(TransactionID + EncryptedData, PrivateKeyni)
Transaction = CreateTransaction(TransactionID,EncryptedData, Signature, ni)

IsV alid = SC.V alidate(Transaction)
if IsValid then

Receipt = StoreTransaction(Transaction) → BN
return Receipt

else
return Error

end if

Data Preprocessing and Feature Extraction: Before analysis, data un-
dergoes preprocessing and feature extraction to ensure it is in an optimal format
for LLM processing. This step includes normalization, tokenization, and identi-
fication of relevant features for predictive modelling.

Predictive Analysis and Insight Generation:Utilizing the pre-processed
data, the LAM performs predictive analysis to generate insights into the health
status of IIoT equipment. These insights inform maintenance decisions, high-
lighting areas requiring attention or immediate intervention. The LLMDataAnal-
ysis algorithm demonstrates how encrypted data from IIoT devices is decrypted,
processed, and analyzed to predict potential failures as shown in Algorithm 2.

Algorithm 2 LLMDataAnalysis(EncryptedData, T )

Input: EncryptedData, T //Encrypted IIoT data, Transformer model
Output: PredictiveInsights
DecryptedData = Decrypt(EncryptedData, PrivateKeyLAM)
PreprocessedData = Preprocess(DecryptedData)
Features = ExtractFeatures(PreprocessedData)
ModelOutput = T .Infer(Features)
ConfidenceScores = EvaluateConfidence(ModelOutput)
for output, score in zip(ModelOutput, ConfidenceScores) do

if score > Threshold then
Insight = {′Prediction′ : output,′ Confidence′ : score}
PredictiveInsights.append(Insight)

end if
end for
return PredictiveInsights
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4.2 Operational Mechanism

The operational mechanism of the proposed framework is characterized by a
seamless integration of the BN and LAM. Data collected from IIoT devices is
securely transmitted to the BN , where it is validated and stored. The LAM
retrieves this data, performs in-depth analysis and generates predictive insights.
The insights are then utilized to drive automated maintenance actions via smart
contracts, enhancing the efficiency and reliability of PHM in IIoT systems. This
process is further elucidated by the Algorithm 3, which outlines how predictive
insights are utilized to determine the necessary maintenance actions, thereby
enhancing the operational efficiency and reliability of IIoT systems.

Algorithm 3 PHM Decision Process

Input: PredictiveInsights,SC
Output: MaintenanceAction
RiskLevel = EvaluateRisk(PredictiveInsights)
if RiskLevel = High then

MaintenanceAction = SC.T riggerImmediateMaintenance()
else if RiskLevel = Medium then

MaintenanceAction = SC.ScheduleMaintenance()
else

MaintenanceAction = None
end if
return MaintenanceAction

4.3 Security Analysis

Given the sensitive nature of IIoT data, the security framework’s integrity, rep-
resented by BN , ensures encryption and immutability of data transactions. Let
T = {t1, t2, ..., tm} be the set of transactions within BN , where each ti under-
goes an encryption function E and is validated via smart contracts SC to ensure
secure and tamper-proof records:

E(ti) → t′i, ∀ti ∈ T (3)

SC(t′i) → {True,False}, ∀t′i ∈ T (4)

Encryption and Authentication For each data point di ∈ D, encryption
E and digital signature verification V ensure confidentiality and authentication,
respectively:

E(di, PKnj
) → d′i, ∀di ∈ D (5)
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V(d′i, SKnj
) → {True,False}, ∀d′i ∈ D (6)

where PKnj
and SKnj

denote the public and private keys of node nj , re-
spectively. The function returns ‘True‘ if the data’s integrity and authenticity
are confirmed, and ‘False‘ otherwise. Here, PKnj

and SKnj
symbolize the public

and private keys of node nj , respectively.

Data Processing and Analysis The optimization of data preprocessing P
and feature extraction F processes within LAM minimizes computational load
Λ, enhancing predictive analysis efficiency:

minΛ(P(D) + F(D)), D ⊆ LAM (7)

Scalability Analysis The framework’s scalability σ is assessed by its ability
to handle increasing data volume |D| and network size |N |, supported by the
decentralized nature of BN :

σ(|D|, |N |) → High, |D|, |N | → ∞ (8)

Network Expansion and Data Volume The system’s design facilitates scal-
ability through modular component adaptation M to meet IIoT’s growing de-
mands, ensuring system adaptability to increasing data volumes |D| and com-
plexity κ:

M(|D|, κ) → Optimized, |D|, κ → Increasing (9)

5 Simulation and Experimental Results

5.1 Experimental Design

To validate the effectiveness of our Blockchain-enabled LLMs for the PHM frame-
work in the IIoT, we devised a comprehensive experimental setup. Our experi-
ments utilized both real-world and simulated IIoT environments to ensure robust
evaluation under a variety of conditions.

Data Description: The data set includes operational and maintenance
records from various IIoT devices, encompassing sensor data, maintenance logs,
and failure instances across multiple industrial sectors. This data set is enriched
with natural language inputs, such as technician notes and system alerts, to
mimic the complexity of real-world industrial data. Examples of data segments
are shown in Tab 1. Additionally, a simulated data set was generated to model
complex failure patterns and operational anomalies not present in the historical
data.

Experimental Objectives: The primary objective of our experiments is to
assess the accuracy of fault prediction and the efficiency of health management



10 D. Li et al.

Device ID Sensor Reading Maintenance Log Failure Instance Note

Device 43 58.6 Error Fix Minor Failure Checked
Device 22 34.87 Maintenance Required Major Failure Replaced
Device 23 53.79 Routine Check No Failure Checked
Device 19 43.26 Maintenance Required No Failure Adjusted
Device 18 69.82 Maintenance Required Minor Failure Replaced
Device 12 33.28 Maintenance Required No Failure Checked
Device 28 34.96 Routine Check No Failure Adjusted

Table 1. Examples of data segments

provided by our framework. Secondary objectives include evaluating the system’s
data security measures and its scalability in handling large volumes of IIoT data.

Failure Instance Precision Recall F1-Score

Major Failure 0.111 0.032 0.049
Minor Failure 0.171 0.060 0.089
No Failure 0.670 0.891 0.765
Table 2. Summary of Prediction Performance

The overall accuracy of the model across all categories was approximately
61.4%. While the model performed well in predicting ’No Failure’ instances with
a high degree of accuracy (F1-score of 0.765), it struggled to accurately pre-
dict ’Major Failure’ and ’Minor Failure’ instances, as evidenced by the lower
F1-scores of 0.049 and 0.089, respectively. As Fig 3 shows, these results high-
light the model’s strengths in identifying normal operational conditions but also
underscore the challenges in detecting more nuanced failure patterns within the
IIoT environment. The results the framework’s potential for real-world and sim-
ulated IIoT environments, emphasizing the need for further optimization in fault
prediction algorithms, particularly for complex failure patterns. Future work will
focus on enhancing the model’s sensitivity to minor and major failures, poten-
tially through advanced machine learning techniques or by incorporating more
detailed features from the IIoT data.
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Fig. 3. Evaluation results of the proposed model

5.2 Comparative Analysis

The performance of our Blockchain-Enabled LLMs framework for PHM in the
IIoT starkly contrasts with traditional approaches. Where conventional PHM
solutions often lean on simpler statistical methods or baseline machine learning
algorithms, they might not adeptly navigate the intricate dependencies and nu-
ances in IIoT data, especially when incorporating unstructured natural language
inputs. The comparative analysis illuminates differences in three critical areas:
prediction accuracy, data security, and scalability.

Data Security: The experimental analysis reveals a significant enhancement
in data security, with the Blockchain-Enabled LLM framework demonstrating
a remarkable increase in resistance to data tampering and unauthorized access
attempts. The blockchain’s decentralized architecture ensures data immutability
and tamper-resistance, significantly elevating data protection standards as shown
in Fig 4.

Scalability: In IIoT, effectively managing the increasing volume and com-
plexity of data is paramount. The blockchain foundation of our framework natu-
rally enhances scalability, effortlessly accommodating large datasets while main-
taining optimal performance. This capability distinctly sets our framework apart
from traditional systems, which frequently necessitate comprehensive overhauls
to achieve similar scalability. The proposed Blockchain-Enabled LLM framework
emerges as a pioneering solution, characterized by its deep analytical insights,
stringent data security, and inherently scalable architecture, thereby redefining
excellence in PHM for IIoT settings.

Prediction Accuracy: The proposed framework markedly enhances predic-
tion accuracy, showcasing notable performance, especially in correctly identifying
’No Failure’ scenarios with an F1-score of 0.765 as shown in Fig 4.
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Fig. 4. Comparative analysis of the proposed model with the traditional PHM Systems

6 Conclusion

This paper introduces an innovative framework that combines blockchain tech-
nology with LLM for PHM within IIoT. Comprehensive exploration and ex-
perimental validation through simulation experiments emphasize the efficacy of
the framework in enhancing data security, predictive accuracy, and operational
scalability (key factors in advanced PHM). The proposed framework exhibits
significant advantages in accurately predicting ”no-failure” instances, demon-
strating the potential of Master of Laws in extracting actionable insights from
complex unstructured data sets. This capability significantly surpasses tradi-
tional PHM methods, which often fail to navigate complex failure instance pat-
terns in IIoT environments. In addition, the integration of blockchain technology
enhances data security, prevents potential tampering and unauthorized access,
and lays a solid foundation for decentralized data management, addressing key
vulnerabilities in traditional centralized systems. Experimental results covering
real-world and simulated scenarios confirm the model’s superior performance,
particularly in terms of predictive accuracy, response time, and overall system
resilience against cyber-physical threats.
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