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Abstract

Clustering incomplete multiview data in real-world applications has become a
topic of recent interest. However, producing clustering results from multiview
data with missing views and different degrees of missing data points is a challeng-
ing task. To address this issue, we propose a co-clustering method for incomplete
multiview data by sparse low-rank representation (CCIM-SLR). The proposed
method integrates the global and local structures of incomplete multiview data
and effectively captures the correlations between samples in a view, as well as
between different views by using sparse low-rank learning. CCIM-SLR can alter-
nate between learning the shared hidden view, visible view, and cluster partitions
within a co-learning framework. An iterative algorithm with guaranteed conver-
gence is used to optimize the proposed objective function. Compared with other
baseline models, CCIM-SLR achieved the best performance in the comprehensive
experiments on the five benchmark datasets, particularly on those with varying
degrees of incompleteness.

Keywords: Incomplete multiview, Co-clustering, Sparse low-rank representation,
Shared hidden view
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1 Introduction

In recent years, the availability of multiview data has increased significantly. However,
the success of the current multiview learning approaches heavily relies on complete
and consistent data from various sources [1–6]. Unfortunately, in real-world scenarios,
multi-view data often suffer from incompleteness due to various factors, including
missing views and data points. Moreover, the degree of such data incompleteness varies
depending on the context. For instance, during land multi-view data acquisition, sensor
acquisition failure can easily lead to incomplete optical and SAR image view data. In
the medical field, collecting multi-view medical data with missing records of patients
with different degrees is often necessary due to privacy concerns. To tackle these issues,
incomplete multiview clustering (IMVC) fuses information between multiple views of
complex missing data. However, IMVC is challenging in real-world scenarios. Many
approaches have been proposed to address IMVC to date, which can be grouped into
shallow and deep multiview clustering models.

Shallow IMVC models are limited to low-level features, which can result in samples
representing the same object being restricted to the same potential representation
in the potential subspace [7–9]. In contrast, Wen et al.[10] introduced a structured
deep incomplete multi-view clustering network that combines the spatial relationships
between data points with a deep model. Moreover, this method can directly obtain
the optimal clustering indicator matrix in one stage.

While both shallow and deep approaches to IMVC have been successful in real-
world applications, there are still several limitations that need to be addressed. First,
many existing approaches fail to consider both global and local incomplete multi-
view information. Second, although data recovery and cluster partitions are essential
for IMVC, many existing methods do not combine them effectively. Third, existing
deep learning-based IMVC methods have issues with training stability and clustering
performance. Finally, some existing approaches to IMVC do not demonstrate their
robustness on datasets with missing views and varying degrees of missing data points.

To address the limitations discussed above, we propose a novel framework called
Incomplete Multiview Co-Clustering by Sparse Low-Rank Representation (CCIM-
SLR). As illustrated in Fig. 1, sample 2 lacks the video modality, while sample 3
lacks the text modality. Using the low-rank sparse representation imputation method
we introduced, we effectively restored the missing video modality for sample 2 and
performed text modality imputation for sample 3. Specifically, our approach learns
a low-rank sparse representation matrix for each view, which is then used to fill in
missing samples within each view. This process is achieved through the use of associ-
ation information between missing and observed samples within a particular view, as
well as by considering the association relationships between samples in different views
through learning common subspace representations. Furthermore, by introducing the
filled view data and the learned implicit view data in a clustering process, the data
recovery process and the clustering process can complement each other and lead to
improved clustering results. To ensure even more accurate data recovery, we use the
adjustable low-rank approximation representation model Γ-norm, which replaces the
traditional kernel norm that can only produce low-rank feature representations under
certain conditions.
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Fig. 1 Specific examples of case problems and proposed solutions. (a) An example of missing data;
(b) Imputation mechanism; (c) Data recovery.

In summary, the contributions of this paper are as follows.

• This paper presents CCIM-SLR, a novel approach to incomplete multi-view clus-
tering that leverages a low-rank sparse representation matrix to recover data from
missing samples. CCIM-SLR utilizes association information between missing sam-
ples and observed samples within views, as well as their association information
between views.

• To improve the stability of clustering results for multi-view data with different
missing rates, CCIM-SLR uses the Γ-norm model, which is an adjustable low-
rank representation method. Γ-norm shows the accuracy of achieving a low-rank
representation and the stability of data recovery.

• CCIM-SLR learns both a visible view and a hidden view within a co-learning frame-
work in an end-to-end manner, using a mutual interplay between the view data
recovery and a clustering process. This approach avoids the need for post-processing
steps such as k-means for final clustering assignment results.

• CCIM-SLR has been validated through both theoretical proofs and experiments.
Based on the experimental results, CCIM-SLR outperformed state-of-the-art
approaches on the five incomplete multiview datasets. The robustness of CCIM-
SLR has been demonstrated through experiments on incomplete multi-view datasets
with different missing rates of data points.

The remainder of this paper is organized as follows: Section 2 provides a review of
related work, while Section 3 outlines the proposed method and methodologies used
in this work. Section 4 reports the experimental results of our CCIM-SLR, together
with comparisons of other methods. This paper concludes in Section 5.

2 Related Work and Background

In this section, we review related work and describe some background on IMVC.
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2.1 Related work

As mentioned before, the current approaches to IMVC can be grouped into shallow
and deep ones. As a shallow approach, Guo J et al. [11] proposed a simple and easy-
to-implement method that can reconstruct samples and intersample relations through
anchors and fully integrates intraview and interview similarities. In the literature, a
weighted semi-nonnegative matrix factorization-based method was proposed to reduce
the influence of view incompleteness in clustering [12]. Wen et al. [13] developed a
new graph regularization matrix decomposition model to consider the local geometric
information and the unbalanced resolution of incomplete multiview observations. Wen
et al. [14] proposed introducing a local retention reconstruction term to infer missing
views so that all views can be naturally aligned and adding an adaptive weighting
strategy for capturing the importance of different views. In [15], feature space-based
missing-view inference and manifold space-based similarity graph learning were pro-
posed to better explore the potential information of missing views. Liang et al. [16]
developed a reproduced representation; on this basis, a set of incomplete graphs was
used to make full use of the geometric structure of the data. Yin et al. [17] introduced
a cosine similarity metric to further enhance the preservation of the flow structure of
the original multiview, called incomplete multiview clustering with cosine similarity
(IMCCS).

As for deep approaches to IMVC, Xu et al. [18] designed an adversarial incomplete
multiview clustering (AIMC) method that captures the overall structure and obtains
a deeper semantic understanding by seeking the common potential space of multi-
view data and inferring incomplete data at the same time. Xu et al. [19] proposed
to establish a new multi-view clustering complementarity mechanism that can obtain
supplementary information and be regarded as supervisory information with high con-
fidence. Therefore, this method achieves the consistency information of multi-view
clustering. To solve the incomplete multiview problem by explicitly generating the
data of missing views, Wang et al. [20] applied adaptive fusion and a cycle consistency
generation model for incomplete multiview clustering. The deep IMVC model can take
into account high representation ability and save time and space. For example, Zheng
et al. [21] proposed a method that harnesses the complementary information concealed
within view-specific partial graphs obtained from incomplete views. Furthermore, a
rank constraint is applied to the Laplacian matrix of the fusion graph to enhance the
recovery of the optimal clustering structure in the original data. A generative adver-
sarial network-based model was proposed by Wang et al. [22], which can effectively
generate incomplete view data and capture better common structures in IMVC.

Except for the shallow and deep approaches to IMVC, the incomplete multiview
clustering algorithm with low-rank sparsity [23, 24] and the multiview algorithm with
one-step clustering [25–27] have shown good advantages in the field of the multiview
study. However, these approaches can further be improved by overcoming some limi-
tations as mentioned before. Before presenting our proposed approach of CCIM-SLR,
we need to provide two background works: 1) sparse low-rank representation through
multiview subspace (SRRS) learning; and 2) multiview clustering with the cooperation
of visible and hidden views.
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2.2 Multiview subspace learning for sparse low-rank
representation

SRRS has a significant effect on incomplete multiview data recovery [23]. For a
dataset of incomplete multiview {Xv}sv=1 with s views, SRRS imputes missing values
of all views by the following expression:

min
{R(v),E(v)},H

s∑
v=1

B(R(v), E(v))

s.t.∀v,Pv(R̂
(v)Xo

(v)) = H + E(v), H⊤H = I

(1)

where R(v) ∈ Rm̄(v)×m(v)

is the sparse low-rank representation matrix, m̄(v) is the
count of missing samples, and m(v) is the observed samples. E(v) ∈ Rm×t is the noise
matrix, m is the number of all samples (m=m̄(v)+m(v)), t is the unified dimension of

the subspace, X
(v)
o is the matrix constructed from the observed samples, and R̂(v) ∈

Rm×m(v)

is composed of the matrix R(v) and the identity matrix constructed from the

indices of the observed samples. Pv(R̂
(v)X

(v)
o ): Rm×d(v) → Rm×t represents an opera-

tor that projects the samples of all views into the corresponding subspace. SRRS learns
that the common representation of all views is H ∈ Rm×t, and adding constraints to
H can effectively avoid trivial solutions. B(R(v), E(v)) is defined as follows:

B(R(v), E(v)) = λ1∥R(v)∥1 + λ2∥R(v)∥∗ + λ3∥E(v)∥1 (2)

where λ1, λ2 and λ3 are the parameters and ∥R(v)∥1 and ∥R(v)∥∗ represent the sparse
and low-rank constraints on R(v), respectively. To reduce the influence of the noise
matrix and make the subspace representations robust, we add a sparse constraint to
E. SRRS is a technique that can impute missing values by taking into account both
intraview and inter-view relations.

2.3 Multiview clustering with the cooperation of visible and
hidden views

Another important work is the multiview clustering model, called multiview clustering
with the cooperation of visible and hidden views (MV-Co-VH) [25]. MV-Co-VH is a
clustering method that integrates and optimizes both visible and hidden views:

min J(U,Z, Z̃, w) = λ

c∑
i=1

m∑
j=1

uij∥hj − z̃j∥2

+ (1− λ)

s∑
v=1

w(v)

c∑
i=1

m∑
j=1

uij∥xj
(v) − zj

(v)∥
2
+ η

s∑
v=1

w(v) lnw(v)

s.t.

c∑
i=1

uij = 1, uij ∈ (0, 1), 1 ⩽ j ⩽ m

s∑
v=1

w(v) = 1, 0 ⩽ w(v) ⩽ 1, H ≥ 0

(3)
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where λ is a parameter, matrix U ∈ Rc×m is the cluster indicator matrix, c denotes
the number of categories, and m represents the number of samples. If uij=1, sample
j belongs to cluster i; otherwise, uij =0. Z={Z(1), Z(2), Z(3).....Z(v)} is the cluster
center matrix for each view. w=[ω1, ω2, ...ωs] contains the weight of each view. H
∈ Rm×t denotes the shared hidden view of all views. t is the sample dimension of
the hidden view. Z̃ represents the corresponding clustering center matrix from the
hidden view. From Equation (3), MV-Co-VH is a method for extracting hidden views
from multiview data through nonnegative matrix factorization. It is also a multiview
clustering framework that combines explicit and implicit views to obtain clustering
results in one step.

3 The Proposed CCIM-SLR

In this section, we describe our CCIM-SLR method, which learns recovery data from
the global and local structures of their original data with incomplete multiview. Apart
from that, a one-step clustering strategy is also adopted to produce clustering results
that combine shared hidden space and visible view effectively. CCIM-SLR comprises
two parts: 1) shared hidden subspace learning based on SRRS; and 2) incomplete
multiview co-clustering by SRRS.

Fig. 2 Overview of CCIM-SLR. CCIM-SLR consists of six major components. (1) dotted module (a)
represents the data input module; (2) dotted module (b) corresponds to the recovery of missing data
through sparse low-rank techniques; (3) dotted module (c) focuses on shared subspace representation
learning; (4) dotted module (d) stands for the partitioning module for the visible view; (5) dotted
module (e) represents the partitioning module for the hidden view; (6) dotted module (f) signifies a
collaborative learning partition module.
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The components and the pipeline of CCIM-SLR are illustrated in Fig. 2. As shown,
the proposed framework mainly includes three key modules, i.e., the data input mod-
ule, the missing data recovery module, and the collaborative learning module. These
modules are described in detail in the following sections.

3.1 Shared hidden subspace learning based on SRRS

The low-rank sparse representation-based methods have widely been used to recover
missing data [28–30]. We introduce the γ-norm [31], with the primary goal of obtaining
estimations that closely approximate the true rank. Specifically, the γ-norm for matrix
R is defined as follows:

∥R∥γ =
∑
i=1

(1 + γ)ϵRi

γ + ϵRi

, γ > 0 (4)

Fig. 3 The performance of different functions on rank estimation changes with the change in positive

singular value ϵ
(v)
i (true rank is 1).

In Equation (4), γ is a penalty parameter, and the i-th singular value of the SVD
decomposition of the matrix R is denoted as ϵRi . However, the γ-norm applies only
to the processing of single-view data. To extend to multiview data, we introduce the
Γ-norm [24] to implement the low-rank constraint on matrix R(v), with the following
formula:
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∥R(v)∥G =

s∑
v=1

ϵ
(v)
i

ϵ
(v)
i + γ

(5)

where ϵ
(v)
i is the i-th singular value of matrix R(v), and if γ → 0, we have ∥R(v)∥G →

rank (R(v)). An appropriate value of γ (e.g., γ = 0.001) is chosen in such as way that
a value that is closer to the genuine rank is obtained.

Fig. 3 is to demonstrate the influence of various functions on the matrix rank as
the singular values vary. From Fig. 3, it becomes evident that the Γ-norm outperforms
others in terms of convergence speed and its ability to approach the true rank. The
experimental results show that when γ=0.001, the obtained results are closest to the
true rank. To obtain the incomplete multiview shared hidden subspace of data, we
combine the above terms into one model as follows:

min
{R(v),E(v),A(v),H}

s∑
v=1

λ1∥R(v)∥1 + λ2∥R(v)∥G + λ3∥E(v)∥2,1 + λ4∥A(v)∥2,1

s.t.∀v,Pv(R̂
(v)X(v)

o ) = H + E(v), H⊤H = I,X(v) = R̂(v)X(v)
o

H ≥ 0

(6)

where λ1, λ2, λ3 and λ4 are the weight parameters for the data X =
{
X(1), ...X(v)

}
,

X(v) = [X
(v)
cp ;X

(v)
o ] denotes multiview data, X

(v)
cp ∈ Rm̄(v)×d(v)

represents the matrix

consisting of missing samples, X
(v)
o ∈ Rm(v)×d(v)

represents the matrix consisting
of observed samples, d(v) is the sample dimension of the v-th view, m̄(v) is miss-
ing samples, and m(v) is the observed samples. The total number of samples is m
(m=m̄(v)+m(v)). H ∈ Rm×t stands for the obtained subspace representation of a hid-
den view, and t is the unified dimension of the subspace. The orthogonal constraint
H⊤H = I makes the bases independent of each other.

To fully utilize the data observed in other views to recover missing data, we
formulate the missing sample linear reconstruction as Equation (7):

∀v,X(v) = R̂(v)X(v)
o (7)

where R̂(v) ∈ Rm×m(v)

is composed of the matrix R(v), and the identity matrix con-
structed from the indices of the observed samples. To acquire a better representation
of subspace H, we utilize the following operation:

Pv(R̂
(v)X(v)

o ) = R̂vX(v)
o A(v)

= H + E(v)
(8)

where E(v) ∈ Rm×t is the noise matrix from the original space to subspace H(v), and

A(v) ∈ Rd(v)×t is the linear transformation matrix that converts the original spatial
data to subspace H(v). To guarantee the sparsity of the data, we add L1 constraints
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[32] to the matrix R. In addition, the L2,1 norm third and fourth terms of Equation
(6) are added to discard irrelevant features.

Similar to the method proposed by [23], our proposed model (Equation (6)) recov-
ers data using constraints on linear representations. Most importantly, Equation (6)
introduces the Γ-norm to impose low-rank constraints on the linear representation
matrix. Such a cutting-edge nonconvex low-rank representation method can better
capture the correlation between samples than the kernel norm.

3.2 Incomplete multiview co-clustering by sparse low-rank
representation

Most of the existing incomplete multiview learning methods based on subspaces are
two-step multiview clustering methods (Step 1: subspace acquisition, and Step 2: clus-
tering). These methods do not effectively combine the clustering process with the
filling process. Therefore, we integrate clustering results and shared hidden subspace
learning into the same objective function as expressed in Equation (9).

min
{R(v),E(v),A(v),H,Z(v),Z̃}

λ

c∑
i=1

m∑
j=1

uij∥hj − z̃i∥2

+ (1− λ)

s∑
v=1

c∑
i=1

m∑
j=1

uij∥xj
(v) − zi

(v)∥
2

+

s∑
v=1

(λ1∥R(v)∥1 + λ2∥R(v)∥G + λ3∥E(v)∥2,1 + λ4∥A(v)∥2,1)

s.t.∀v,Pv(R̂
(v)X(v)

o ) = H + E(v), H⊤H = I,X(v) = R̂(v)X(v)
o

H ≥ 0,

c∑
i=1

uij = 1, uij ∈ (0, 1), 1 ⩽ j ⩽ m

(9)

where λ is the clustering model weight parameter, U ∈ {0, 1}c∗m is the partition
matrix, c is the number of clusters, and m is the number of complete samples. When
sample j belongs to class i, uij=1, and 0 otherwise. Z̃= [z̃1, z̃2, ....z̃c] and Z(v)=[
z
(v)
1 , z

(v)
2 , ....z

(v)
c

]
are the cluster center of the hidden view and cluster centers of each

view, respectively.
In Equation (9), the first two terms are about the partition matrix with a clus-

tering algorithm, the goal of which is to obtain the global and local partitions of all
incomplete views. With the joint optimization model, we can capture the correlations
between and within the intraview and interview samples through their sparse low-rank
representation and the hidden view, respectively. By alternating the process of data
recovery and clustering, we can obtain a high-performance padding matrix.
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3.3 Optimization procedure

This section presents the Alternating Direction Method of Multipliers (ADMMs) as
a solution for the problem stated in Equation (9). For that, we introduce several
auxiliary variables to transform Equation (9) into the following expression:

min
{R(v),E(v),A(v),H,Z(v),Z̃}

λ

c∑
i=1

m∑
j=1

uij∥hj − z̃i∥2

+ (1− λ)

s∑
v=1

c∑
i=1

m∑
j=1

uij∥xj
(v) − zi

(v)∥
2

+

s∑
v=1

(λ1∥Q(v)∥1 + λ2∥M (v)∥G + λ3∥E(v)∥2,1 + λ4∥A(v)∥2,1)

s.t.∀v,Pv(R̂
(v)X(v)

o ) = H + E(v), H⊤H = I,X(v) = R̂(v)X(v)
o

H ≥ 0,

c∑
i=1

uij = 1, uij ∈ (0, 1), 1 ⩽ j ⩽ m

R(v) = Q(v), R(v) = M (v)

(10)

Therefore, the augmented Lagrangian function of Equation (10) is equivalent to
the following function:

L = λ

c∑
i=1

m∑
j=1

uij∥hj − z̃i∥2 + (1− λ)

s∑
v=1

c∑
i=1

m∑
j=1

uij∥xj
(v) − zi

(v)∥
2

+

s∑
v=1

(λ1∥Q(v)∥1 + λ2∥M (v)∥G + λ3∥E(v)∥2,1 + λ4∥A(v)∥2,1)

+
µ

2

s∑
v=1

(

∥∥∥∥∥R(v) −Q(v) +
C

(v)
2

µ

∥∥∥∥∥
2

F

+

∥∥∥∥∥R(v) −M (v) +
C

(v)
3

µ

∥∥∥∥∥
2

F

+

∥∥∥∥∥R̂(v)X(v)
o A(v) −H − E(v) +

C
(v)
1

µ

∥∥∥∥∥
2

F

)

(11)

where C
(v)
1 , C

(v)
2 , C

(v)
3 are Lagrange multipliers and µ is a penalty parameter. Then,

we can solve all unknown variables in the objective function (11) by alternative
optimization as follows:

Update variable R(v): By removing irrelevant terms and fixing the other variables,
the function becomes:

L(R(v)) =

∥∥∥∥∥R(v) −Q(v) +
C

(v)
2

µ

∥∥∥∥∥
2

F

+

∥∥∥∥∥R(v) −M (v) +
C

(v)
3

µ

∥∥∥∥∥
2

F

+

∥∥∥∥∥R̂(v)X(v)
o A(v) −H − E(v) +

C
(v)
1

µ

∥∥∥∥∥
2

F

(12)

10



The partial derivative of L(R(v)) with respect to R(v) is given by:

∂L(R(v))

∂(R(v))
=

∂(
∥∥∥R(v) − S

(v)
1

∥∥∥2
F
)

∂(R(v))
+

∂
∥∥∥R(v) − S

(v)
2

∥∥∥2
F

∂(R(v))

+
∂
∥∥∥R(v)X

(v)
o A(v) + ι(S

(v)
3 )

∥∥∥2
F

∂(R(v))

= 2(R(v) − S
(v)
1 ) + 2(R(v) − S

(v)
2 ) + 2R(v)X(v)

o A(v)A(v)TXo
(v)T

+ 2ι(S
(v)
3 )A(v)TXo

(v)T

(13)

where S
(v)
1 = Q(v) − C

(v)
2

µ , S
(v)
2 = M (v) − C

(v)
3

µ , S
(v)
3 = −H − E(v) +

C
(v)
1

µ , and the ι
operation refers to selecting the row to represent the missing sample from the matrix
according to the index of the missing sample.

By setting ∂L(R(v))/∂(R(v)) = 0, the optimal R(v) can be obtained as follows:

R(v) =
−ι(S

(v)
3 )A(v)TX

(v)T

o + S
(v)
1 + S

(v)
2

2I +Xo
(v)A(v)A(v)TXo

(v)T
(14)

Update variable Q(v): By eliminating irrelevant terms and holding the other
variables constant, Q(v) can be computed as follows:

min
{Q(v)}

λ1

∥∥∥Q(v)
∥∥∥
1
+

µ

2

∥∥∥∥∥R(v) −Q(v) +
C

(v)
2

µ

∥∥∥∥∥
2

F

(15)

Equation (15) can be computed as[33]:

Q(v) = ϑλ1
µ
(R(v) +

C
(v)
2

µ
) (16)

Update variable M (v): By removing irrelevant terms and fixing the other variables
in Equation (11), we can calculate M (v) as follows:

M (v) =argmin
{M(v)}

λ2∥M (v)∥G +
µ

2

∥∥∥M (v) − P (v)
∥∥∥2
F

(17)

where P (v) = R(v)+
C

(v)
3

µ . We set the nonconvex surrogate of rank(M (v)) as ∥M (v)∥G.
It is difficult to obtain the solution from Equation (17) because it is a nonconvex
function. It can be solved for a nonconvex function through regularization techniques
and the difference of convex (DC) programming proposed by Moreau-Yosida [34].
Hence, the subproblem becomes:

M (v)t+1

=argmin
{M(v)t}

λ2∥M (v)t∥G +
µt

2

∥∥∥M (v)t − P (v)t
∥∥∥2
F

(18)
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To solve Equation (18), we develop Theorem 1 and provide the proof as below.
Theorem 1. Let P = UΣPV

T be the singular value decomposition(SVD) of P ,

where ΣP = diag(σP ). Set F (M (v)) = ∥M (v)t∥G = f ◦ σM .

min
{M(v)}

F (M (v)) +
µ

2

∥∥∥M (v) − P
∥∥∥2
F

(19)

Therefore, the problem of the next optimal solution is transformed into M∗ =
UΣ∗

MV T , where Σ∗
M = diag(σ∗) and σ∗ = proxf,µ(σP ), and proxf,µ(σP ) is the

MoreauYosida operator, as follows:

proxf,µ(σP ) = argmin
{σ}

f(σ) +
µ

2
∥σ − σP ∥22 (20)

Proof. Given P = UΣPV
T , ΣP = UTPV , and recording D(v) = U (v)TM (v)V (v).

Since it has the same singular value as M (v), the formula is converted as follows:

F (M (v)) +
µ

2

∥∥∥M (v) − P
∥∥∥2
F
, (21)

=F (D(v)) +
µ

2

∥∥∥D(v) − ΣP

∥∥∥2
F
, (22)

≥F (Σ
(v)
D ) +

µ

2

∥∥∥Σ(v)
D − ΣP

∥∥∥2
F
, (23)

=F (Σ
(v)
M ) +

µ

2

∥∥∥Σ(v)
M − ΣP

∥∥∥2
F
, (24)

=f(σ) +
µ

2
∥σ − σP ∥22 , (25)

≥f(σ∗) +
µ

2
∥σ∗ − σP ∥22 , (26)

It should be noted that Equation (22) is valid because the Frobenius norm is
unitarily invariant. Equation (23) is based on the Hoffman-Wielandt inequality and

Equation (24) holds as we have Σ
(v)
M = ΣD. Thus, Equation (24) is the lower bound

of Equation (21) as Σ
(v)
D = Σ

(v)
M = M (v) = U (v)TD(v)V (v) holds, and the SVD of D(v)

is D(v) = U (v)TΣ
(v)
D V (v). When we perform a minimization operation on Equation

(25), we obtain σ∗. Therefore, we have D∗ = Udiag(σ∗)V T , the optimal solution to
Equation (19). We have completed the proof of Theorem 1.

Through the inspiration from the Moreau-Yosida regularization technique and the
difference of convex (DC) programming, we transform Equation (18) to address the
difference between two convex functions. The concave term is iterated for optimization
in each iteration. Then, the optimization formula is as follows:

σt+1 =argmin f(σt) +
µt

2

∥∥σt − σt
P

∥∥2
2

(27)
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which admits a closed-form solution [35], as shown in Equation (28).

σt+1 = (σt
T − φt

µt
)+ (28)

at point σt, the gradient representation of f(·) is denoted as φt = ∂f(σt) and

U (v)diag(σt
P )

(v)V (v)T is the singular value decomposition of (R(v) +
C

(v)
3

µ ). Through
optimization iterations, the final convergence obtains the best advantage σ∗. The
solution can be derived as follows:

M (v)t+1

= U (v)diag(σ(v)∗)V (v)T . (29)

Update variable E(v): after removing the irrelevant terms and fixing the other
variables, the subproblem becomes:

L(E(v)) = λ3

∥∥∥E(v)
∥∥∥
2,1

+
µ

2

∥∥∥E(v) − S
(v)
4

∥∥∥2
F

(30)

where S
(v)
4 = R̂vX

(v)
o A(v) −H +

C
(v)
1

µ , by setting ∂L(E(v))/∂(E(v)) = 0, the solution
can be derived as follows:

E(v) =
µS

(v)
4

λ3Y (v) + µI
(31)

where Y (v) = diag
{ 1∥∥∥e(v)

1

∥∥∥
2

, 1∥∥∥e(v)
2

∥∥∥
2

, ... 1∥∥∥e(v)
1

∥∥∥
n

}
, e

(v)
i represents the i-th row vector of

E(v).
Update variable A(v): by removing the irrelevant terms and fixing the other

variables, we can calculate A(v) as follows:

L(A(v)) = λ4

∥∥∥A(v)
∥∥∥
2,1

+
µ

2

∥∥∥R̂(v)X(v)
o A(v) + S

(v)
3

∥∥∥2
F

(32)

where S
(v)
3 = −H − E +

C
(v)
1

µ . By setting ∂L(A(v))/∂(A(v))= 0, we can obtain the

optimal A(v) as follows:

A(v) =
−µX

(v)T

o R̂(v)T S
(v)
3

λ4G(v) + µX
(v)T
o R̂(v)T R̂(v)X

(v)
o

(33)

where G(v) = diag
{ 1∥∥∥a(v)

1

∥∥∥
2

, 1∥∥∥a(v)
2

∥∥∥
2

, ... 1∥∥∥a(v)
1

∥∥∥
n

}
, and a

(v)
i is the i-th row vector of A(v).

Update variable H: by removing the irrelevant terms and fixing the other variables,
we can calculate H as follows:

L(H) = λ

c∑
i=1

m∑
j=1

uij ∥hj − z̃i∥2 +
µ

2

s∑
v=1

(∥∥∥B(v) −H
∥∥∥2
F

)
(34)

where B(v) = R̂vX
(v)
o A(v) −E(v) +

C
(v)
1

µ . By setting ∂L(H)/∂(H) = 0, we can obtain
the optimal H as follows:

13



H =
2λ

∑c
i=1 UinZit + µ

∑s
v=1 B

(v)
nt

2λ
∑c

i=1 Uin + µs
(35)

Update variable U : We also use the K-means algorithm and Euclidean distance to
measure the similarity between samples. If the distance from the i-th sample to the
j-th cluster center is smaller than the distance to other cluster centers, the element in
the matrix uij is 1, and 0 otherwise. According to our proposed model, the distance
Dij can be expressed as:

Dij = λ

c∑
i=1

m∑
j=1

uij ∥hj − z̃i∥2 + (1− λ)

s∑
i=1

c∑
i=1

m∑
j=1

uij

∥∥∥x(v)
j − z

(v)
i

∥∥∥2 (36)

According to the K-means algorithm, the specific update method of matrix U is
as follows:

uij =

{
1,∀k ∈ [1,m] and k ̸= j, Dij ≤ Dik

0, ∃k ∈ [1,m], Dij ≥ Dik

(37)

Update variable Z(v): To update the variable Z(v), we can calculate it by removing
irrelevant terms and holding other variables constant, as shown below:

L(Z(v)) = (1− λ)

c∑
i=1

m∑
j=1

uij

∥∥∥x(v)
j − z

(v)
i

∥∥∥2 (38)

Z(v) can be solved as follows:

z
(v)
i =

∑N
j uijx

(v)
j∑N

j=1 uij

(39)

Update variable Z̃: by removing the irrelevant terms and fixing the other variables,
we can calculate Z̃ as follows:

L(Z̃) = λ

c∑
i=1

m∑
j=1

uij ∥hj − z̃i∥2 (40)

Z̃ can be solved as follows:

z̃i =

∑N
j uijhj∑N
j=1 uij

(41)

Update Variables C
(v)
1 , C

(v)
2 , C

(v)
3 : We update C

(v)
1 , C

(v)
2 , C

(v)
3 as follows:

C
(v)
1 = C

(v)
1 + µ(R̂(v)X(v)

o A(v) −H − E(v)) (42)

C
(v)
2 = C

(v)
2 + µ(R(v) −Q(v)) (43)

C
(v)
3 = C

(v)
3 + µ(R(v) −M (v)) (44)
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Update Variables µ: we update µ by:

µ = min(ρµ, µ0) (45)

where ρ and µ0 represent preset parameters.

3.4 Complexity analysis of CCIM-SLR

As discussed in Section 3.3, the computational expense of our algorithm is mainly
due to operations such as matrix inversion and singular value decomposition of
self-matrices. The algorithm of CCIM-SLR is summarized in Algorithm 1. The com-
putational complexities of Steps 8, 10, and 11 in Algorithm 1 are approximately
O(m(v)3), O( m̄(v)m(v)2), and O(m(v)3), respectively. Therefore, the complexity of the

entire optimization of the algorithm is approximately O(τ(2m(v)3 + m̄vm(v)2)), where
τ is the number of iterations, m̄(v) is the number of missing samples, and m(v) is the
number of observed samples of the view.

Algorithm 1 CCIM-SLR

Require: Incomplete multi-view dataset X(v), parameters λ, λ1, λ2, λ3, λ4, ρ, µ0.
Ensure: The resulting clusters.
1: Initialize H;
2: Initialize U ;
3: Initialize E(v);
4: Initialize V (v);
5: Initialize Ṽ ;
6: while not converge do
7: for v = 1 to V do
8: Update R(v) via Eq. (14);
9: Update Q(v) via Eq. (16);

10: Update M (v) via Eq. (29);
11: Update E(v) via Eq. (31);
12: Update A(v) via Eq. (33);
13: Update Z(v) via Eq. (39);

14: Update C
(v)
1 via Eq. (42);

15: Update C
(v)
2 via Eq. (43);

16: Update C
(v)
3 via Eq. (44);

17: end for
18: Update H via Eq. (35);
19: Update U via Eq. (37);

20: Update Z̃ by solving Eq. (41);
21: Update µ by µ = min(ρµ; maxµ ) ;
22: end while
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3.5 Convergence analysis of CCIM-SLR

In addition to the update step of M (v), the other steps are easily found to be bounded.
Therefore, we analyze the effect of the update step of M (v) on our objective function.

We write ∥M (v)∥G as K(M (v)) in Eq. (9):

min J(M (v), R(v), C
(v)
3 , µ) =

s∑
v=1

(K(M (v)) +
µ

2

∥∥∥M (v) −R(v)
∥∥∥2
F

+ <
C

(v)
3

µ
,M (v) −R(v) >)

(46)

where < ., . > represents the sum of the products of corresponding components
between two matrices.

Lemma 1. M (v)t and R(v)t are bounded if
∑∞

t=1
(µt−µt−1)
2(µt−1)2 < ∞.

Proof. With some algebra, we can obtain:

J(M
(v)t , R(v)t , C

(v)t

3 , µt)

= J(M
(v)t , R(v)t , C

(v)t−1

3 , µt−1)

+
(µt − µt−1)

2

∥∥∥M (v) −R(v)
∥∥∥2
F

+ Tr[(C
(v)t

3 − C
(v)t−1

3 )(M (v) −R(v))]

= J(M
(v)t , R(v)t , C

(v)t−1

3 , µt−1)

+
(µt − µt−1)

2(µt−1)2

∥∥∥(C(v)t

3 − C
(v)t−1

3 )
∥∥∥2
F

(47)

Then,

J(M
(v)t+1

, R(v)t+1

, C
(v)t

3 , µt)

≤J(M (v)t+1

, R(v)t , C
(v)t

3 , µt)

≤J(M (v)t , R(v)t , C
(v)t

3 , µt)

≤J(M (v)t , R(v)t , C
(v)t−1

3 , µt−1)

+
(µt − µt−1)

2(µt−1)2

∥∥∥(C(v)t

3 − C
(v)t−1

3 )
∥∥∥2
F

(48)

By iterating the above inequality (48) t times, we obtain:

J(M
(v)t+1

, R(v)t+1

, C
(v)t

3 , µt)

≤J(M (v)1 , R(v)1 , C
(v)0

3 , µ0)

+

t∑
i=1

(µi − µi−1)

2(µi−1)2

∥∥∥(C(v)t

3 − C
(v)t−1

3 )
∥∥∥2
F

(49)
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As
∥∥∥(C(v)t

3 − C
(v)t−1

3 )
∥∥∥2
F
is bounded, the other terms included in the right-hand side

of the inequality are also bounded. Therefore, J(M (v)t+1

, R(v)t+1

, C
(v)t

3 , µt) is upper
bounded.

In addition, we have

J(M
(v)t+1

, R(v)t+1

, C
(v)t

3 , µt) +
1

2µt

∥∥∥(C(v)t

3 )
∥∥∥2
F

=K(M (v)t+1

) +
µt

2

∥∥∥∥∥M (v)t+1

−R(v)t+1

+
C

(v)t

3

µt

∥∥∥∥∥
2

F

(50)

By observing several terms on the right side of Equation (50), we find that each of

them is finite, so M (v)t+1

and R(v)t+1

are also finite respectively. Therefore,
{
M (v)t

}
and

{
R(v)t

}
are also bounded.

Lemma 2. Let
{
M (v)t , R(v)t , C

(v)t

3

}
be the sequence and

{
M (v)∗ , R(v)∗ , C

(v)∗

3

}
be an accumulation point. Then

{
M (v)∗ , R(v)∗

}
is a stationary point if we have

limt→∞ µt
(
R(v)t+1

−R(v)t
)
→ 0.

Proof. The sequence
{
M (v)t , R(v)t , C

(v)t

3

}
is bounded as shown in Lemma

2. By the Bolzano-Weierstrass theorem, at least one accumulation point must

exist in this sequence, e.g.,
{
M (v)∗ , R(v)∗ , C

(v)∗

3

}
. Therefore, we presume that{

M (v)t , R(v)t , C
(v)t

3

}
itself converges to

{
M (v)∗ , R(v)∗ , C

(v)∗

3

}
.

Since R(v)t−M (v)t= (C
(v)t

3 − C
(v)t−1

3 )/µt−1 holds, we have limt→∞ R(v)t−M (v)t =
0. Therefore, the primal feasibility condition is fulfilled.

For M (v)t+1

, it holds that

∂M

(
M (v)t+1

, R(v)t , C
(v)t

3 , µt
)
|M(v)t+1

=∂MK
(
M (v)t+1

)
+ C3

(v)t + µt
(
R(v)t −M (v)t

)
=∂MK

(
M (v)t+1

)
+ C3

(v)t+1

+ µt
(
R(v)t+1

−R(v)t
)
= 0

(51)

If the singular value decomposition of M (v) is U (v) diag
(
σ
(v)
i

)
V (v)T according to

Theorem 1,

∂MK
(
M (v)t+1

)
|M(v)t+1= U diag

(
τ (v)

)
V (v)T , (52)

where τi = γ/(γ + σi)
2 when σi ̸= 0; else, it acts as 1/γ. Since σi ∈

(0,1/γ] is finite, ∂MK
(
M (v)t+1

)
|M(v)t+1 is bounded. C

(v)t

3 is bounded as a

Lagrange multiplier. µt
(
R(v)t+1 −R(v)t

)
is bounded. Under the assumption that

limt→∞ µt
(
R(v)t+1 −R(v)t

)
→ 0,
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∂MK
(
M (v)∗

)
+ C3

(v)∗ = 0 (53)

Hence,
{
M (v)∗ , R(v)∗ , C

(v)∗

3

}
satisfies the Karush–Kuhn–Tucker conditions of

J(M (v)t+1

, R(v)t+1

, C
(v)t

3 ). Therefore,
{
M (v)∗ , R(v)∗

}
is the point satisfying the condi-

tion.

4 Experiments

This section reports in detail the performance evaluation of CCIM-SLR by compar-
ing it with the state-of-the-art methods against five real-world datasets. Furthermore,
we present experimental results on the proposed optimization approach, and its con-
vergence property to demonstrate the efficiency of CCIM-SLR and the robustness of
CCIM-SLR.

4.1 Datasets

To validate the clustering performance of the proposed method under different data
dimensions, we used the five representative datasets in our experiments. The statistics
of the datasets are listed in Table 1.

Table 1 Statistics of the datasets

Dataset Clusters Views samples Features

SensIT300 3 2 300 50/50
Statlog 7 2 2310 9/10

Wisconsin 5 2 265 1703/265
WebKB 2 2 1051 1840/3000
Yale 15 3 165 4096/3304/ 6750

• SensIT300 1[36]: SensIT300 contains sensory data collected from an intelligent
transportation system targeting three vehicle types. This is one of the main datasets
used in many research papers to evaluate the performance of clustering algorithms.
This dataset consists of 300 samples under three different classes with two views,
and the sample data in each view consists of features of 50 dimensions respectively.
The three classes are three types of transportation, while the views are split into
vibration information and sound view obtained through sensor transmission.

• Statlog 2[37]: The Statlog dataset was collected by the Vision Group, University
of Massachusetts. The total number of samples in this dataset is 2310. The dataset
contains seven kinds of outdoor images that were hand-segmented to create a classi-
fication for every pixel. Each sample in the dataset has feature dimensions of either
9 or 10.

1https://github.com/Liuzhenjiao123/multiview-data-sets/blob/master/sensIT300.mat
2https://github.com/Liuzhenjiao123/multiview-data-sets/tree/master
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• Wisconsin 3[38]: The Wisconsin dataset is a real-world multiview dataset that
contains 256 samples with different descriptions from 5 different categories (Student
Pages, Program Pages, Course Pages, Staff Pages, and Faculty and Staff Pages).
The content view and reference view are the two types of views identified from each
sample, with 1703 and 265 feature dimensions, respectively.

• WebKB 4 [39]: The WebKB dataset consists of 1051 samples under 2 classes. Each
sample in this dataset corresponds to two types of features: i) those derived from
the textual content of the web page, and ii) those derived from the anchor text
containing links to other web pages. In this dataset, the dimension of the linked
representation is 1840, while the other dimension is 3000.

• Yale 5[40]: The Yale dataset is a collection of 165 pictures from 15 people. The
pictures are distinguished by different expressions, gestures, and lights. The Yale
dataset contains three views. The feature dimensions of each view are 4096, 3304,
and 6750, respectively.

4.2 Baseline approaches

To validate the performance of the proposed CCIM-SLR, we compared it with five IMC
methods: IMC-GRMF [41], IMSC-AGL [42], UEAF [14], DAIMC [12], and HCP-IMSC
[43].

• IMC-GRMF: The IMC-GRMF method uses the orthogonal matrix factorization
technique to learn the latent subspace. The local information of each view is incor-
porated to help fuse the complementary information of views, which results in a
better-shared representation.

• IMSC-AGL: The IMSC-AGL method utilizes low-rank representations of adaptive
learning of graphs in a multiview scenario. To obtain more refined low-dimensional
representations, this model employs a number of spectral constraints.

• UEAF: The UEAFmodel is designed for incomplete multiview clustering and serves
as a unified and robust embedding alignment approach. Differing from other meth-
ods, UEAF infers incomplete information by maintaining the consistency of the
local structure of the views and learning the local structure shared among multiple
views through reversing graph regularization.

• DAIMC: The DAIMC method is characterized by weighted semi-NMF: semi-
nonnegative matrix factorization, which learns a weight matrix that can be adapted
to multiple incomplete cases. This model performs an L2,1 regularization to obtain
a supplemental cluster-friendly matrix representation that can be shared by views.

• HCP-IMSC: The HCP-IMSC method uses higher-order information to improve
the clustering performance of incomplete multiview. Tensor decomposition is
adopted in the process of capturing higher-order association relations. Then, under
hypergraph-induced superLaplace regularization, the missing view samples are
restricted to be reconstructed by neighboring samples.

3https://lig-membres.imag.fr/grimal/data.html
4https://github.com/Liuzhenjiao123/dataset4
5http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html
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4.3 Experimental setups

We removed 10%, 30%, 50%, 70%, and 90% of the sample data in each view from
the five datasets with the incomplete view. Specifically, all IMC-GRMF, IMSC-AGL,
UEAF, DAIMC, and HCP-IMSC perform post-clustering operations (e.g., K-means)
based on obtained latent representations to produce their final clustering results. Con-
sidering that the clustering results of K-means are affected by the initialization of seed
points, we performed K-means 10 times in the experiment to obtain the average value.
For setting the parameters of the compared methods, we choose the values within the
parameter ranges specified in the original papers.

4.4 Evaluation metrics

In our experiments, we used four performance metrics to evaluate the clustering per-
formances: NMI - Normalized mutual information [44], ACC - Accuracy [45], ARI -
Adjusted Rand index [46], and F-score [47].

Table 2 Mean NMIs(%), ACCs(%), ARIs(%) and F-scores(%) of different methods on SensIT300 ,
Statlog , Wisconsin , WebKB and Yale datasets

Dataset Method \ PER
NMI ACC ARI F-score

0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

SensIT300 IMSC-AGL 22.50 19.86 16.20 14.40 15.00 65.74 62.73 60.00 58.00 56.33 24.78 21.31 17.24 14.56 15.18 49.85 47.69 44.93 43.37 43.60
SensIT300 DAIMC 20.44 17.29 15.67 10.58 8.89 64.08 60.63 59.18 51.90 50.12 22.54 17.87 16.27 10.43 8.28 48.68 45.73 44.80 41.28 40.59
SensIT300 UEAF 21.23 17.83 15.85 14.09 15.00 65.00 60.67 59.33 58.00 56.00 23.74 17.93 16.05 15.11 12.92 49.52 45.35 44.10 43.32 41.92
SensIT300 IMC-GRMF 15.50 8.36 5.65 4.74 2.19 60.20 51.00 47.33 39.13 35.67 16.51 8.45 5.72 4.18 0.07 44.85 38.98 36.99 36.57 47.59
SensIT300 HCP-IMSC 32.17 30.08 21.22 18.67 15.32 72.12 65.17 57.86 57.33 56.67 32.17 30.16 21.35 18.67 15.12 56.12 50.15 48.05 46.59 43.88
SensIT300 Ours 32.70 26.88 24.65 19.93 17.37 68.13 67.00 64.07 61.27 57.27 29.27 26.84 24.51 19.86 15.21 53.79 51.57 50.30 47.12 44.39

Statlog IMSC-AGL 10.81 20.51 13.51 8.76 3.08 27.45 37.69 30.95 24.11 17.92 5.91 15.09 7.63 2.28 0.27 21.71 27.89 21.59 18.96 18.77
Statlog DAIMC 47.35 39.59 34.15 30.49 26.61 56.66 51.29 44.52 41.19 35.26 36.11 27.27 18.80 18.01 13.56 45.98 38.65 32.63 30.99 27.52
Statlog UEAF 48.83 37.61 34.98 32.61 29.83 48.09 46.10 43.51 37.40 39.18 25.62 23.60 18.28 13.48 10.42 40.48 35.90 32.40 29.54 27.34
Statlog IMC-GRMF 43.93 41.76 38.21 31.07 30.31 54.68 53.84 47.45 36.36 40.61 33.85 30.46 28.53 18.14 16.97 43.43 40.69 39.45 30.62 29.41
Statlog HCP-IMSC 50.43 46.16 40.21 36.05 32.51 57.12 53.84 49.45 45.06 39.56 38.12 32.11 26.31 20.17 17.32 48.23 44.19 39.25 34.42 30.25
Statlog Ours 50.53 45.22 41.43 37.39 33.84 57.52 53.97 49.76 45.36 41.40 39.02 34.09 29.98 24.93 20.09 48.52 44.45 40.66 36.14 32.15

Wisconsin IMSC-AGL 20.98 18.81 14.10 13.64 12.24 42.66 38.87 34.34 34.72 32.57 16.56 11.10 8.29 5.01 5.76 41.04 33.01 32.02 32.11 32.57
Wisconsin DAIMC 29.87 26.52 24.04 22.10 16.75 51.39 43.77 45.66 48.83 44.00 24.96 16.95 16.52 15.88 12.70 46.01 39.37 39.02 40.87 36.07
Wisconsin UEAF 35.94 40.14 34.25 33.71 29.21 60.75 57.35 50.56 55.47 45.28 34.56 34.00 25.34 26.25 16.06 53.18 50.78 44.07 47.57 41.32
Wisconsin IMC-GRMF 25.69 18.57 10.63 7.9 6.2 43.69 37.21 33.28 39.17 44.10 14.52 9.87 5.22 4.80 0.51 40.04 33.78 30.51 34.16 45.97
Wisconsin HCP-IMSC 27.21 24.13 26.63 25.53 23.63 50.16 40.11 49.32 44.15 38.11 21.12 17.41 20.32 17.01 14.13 42.14 39.18 40.21 14.78 37.42
Wisconsin Ours 42.33 35.35 36.45 28.90 24.68 65.51 60.98 54.26 44.45 43.92 42.32 35.57 27.56 17.93 14.24 59.10 54.17 47.38 39.72 40.14

WebKB IMSC-AGL 65.50 30.11 50.13 35.22 7.1 95.05 82.78 91.34 85.06 62.13 79.36 40.73 67.53 46.84 5.83 92.74 76.54 87.62 79.25 59.30
WebKB DAIMC 60.57 52.35 41.54 44.96 38.16 93.14 90.67 84.64 90.56 88.79 69.79 63.84 50.72 59.51 53.33 90.89 88.30 83.63 87.80 85.73
WebKB UEAF 68.41 70.05 64.51 59.63 61.76 95.43 95.62 94.86 94.10 94.57 80.97 81.77 78.60 75.31 76.99 93.23 93.48 92.47 91.55 92.26
WebKB IMC-GRMF 51.70 34.37 2.8 9.1 2.9 92.01 87.82 61.08 78.21 71.36 67.85 52.22 4.36 21.92 10.11 88.59 83.80 59.61 74.87 68.52
WebKB HCP-IMSC 71.11 68.23 61.12 53.92 45.72 95.12 93.21 92.08 91.72 86.86 82.12 79.21 77.12 67.45 52.75 93.12 92.60 91.13 87.23 81.23
WebKB Ours 73.31 72.25 69.57 67.52 57.99 96.63 96.44 95.87 95.61 93.82 85.53 84.77 82.61 81.33 73.85 94.99 93.88 94.77 93.60 91.30

Yale IMSC-AGL 68.49 65.67 70.38 65.71 68.80 67.09 62.55 68.97 61.33 64.36 44.52 43.71 47.32 44.46 46.97 59.75 56.67 62.06 56.33 60.12
Yale DAIMC 57.16 53.68 54.26 44.24 41.36 53.21 50.18 48.79 37.21 34.42 32.44 26.87 25.21 14.49 11.36 44.83 42.32 41.42 31.36 28.92
Yale UEAF 61.21 61.87 61.02 60.84 61.97 55.21 55.88 54.85 55.15 55.58 37.81 38.70 37.91 36.84 38.31 50.85 50.93 49.89 50.02 51.14
Yale IMC-GRMF 63.67 64.12 56.58 46.55 45.27 57.64 58.24 48.30 37.82 36.06 41.75 42.22 32.40 19.04 17.38 53.65 53.71 44.67 33.52 31.67
Yale HCP-IMSC 64.42 63.77 58.51 53.36 47.92 56.85 60.85 54.79 53.36 47.92 41.60 41.38 35.07 27.81 20.56 52.28 53.12 47.07 40.88 33.90
Yale Ours 66.58 72.37 69.76 65.74 64.12 65.55 63.79 67.73 62.41 60.21 43.12 54.19 46.13 45.02 43.46 57.79 63.87 62.14 56.95 56.78
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Table 3 Ablation study of the CCIM-SLR performance (%) on SensIT300 , Wisconsin, and
WebKB datasets

Dataset Method \ PER
NMI ACC F-score

0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

SensIT300 Ablation-1 19.84 15.22 12.78 10.11 6.06 61.82 57.13 55.06 51.06 46.13 47.60 44.18 41.81 39.90 37.46

SensIT300 Ablation-2 20.19 15.41 13.14 7.1 4.2 56.82 53.61 47.13 42.41 56.67 47.85 44.24 42.18 37.55 35.78

SensIT300 Ours 32.70 26.88 24.65 19.93 17.37 68.13 67.00 64.07 61.27 57.27 53.79 51.57 50.30 47.12 44.39

Wisconsin Ablation-1 39.75 36.18 33.71 27.13 24.19 62.64 53.50 51.84 42.86 42.19 53.86 47.25 47.13 39.05 37.98

Wisconsin Ablation-2 37.20 38.01 31.43 27.67 23.25 60.75 55.39 51.92 44.08 41.88 52.39 49.59 45.25 39.70 38.21

Wisconsin Ours 42.33 35.35 32.45 28.90 24.68 65.51 60.98 54.26 44.45 43.92 59.10 54.17 47.38 39.72 40.14

WebKB Ablation-1 68.33 57.15 49.34 41.11 4.1 94.53 88.69 85.11 56.17 50.12 92.09 84.78 80.71 57.82 56.77

WebKB Ablation-2 63.82 41.49 26.64 14.12 5.23 93.92 83.93 73.26 57.51 57.01 91.32 78.06 66.19 57.84 61.71

WebKB Ours 73.31 72.25 69.57 67.52 57.99 96.63 96.44 95.87 95.61 93.82 94.99 93.88 94.77 93.60 91.30

Table 4 Two incomplete multi-view clustering methods based on association models exhibit
differences in ACCs(%), F-scores(%), running time (seconds), and computational complexity when
applied to datasets SensIT300 and Statlog, with 50% incomplete samples in each view. mo denotes
the number of observed samples.

Dataset Method ACC F-score Running time (seconds) computational complexity

SensIT300 HCP-IMSC 57.86 48.05 1.4312 O(sm3 + s(m−mo)
3 + cmslog(s) + cm2s)

SensIT300 CCIM-SLR 64.07 50.30 1.4284 O(τ(2m(v)3 + m̄vm(v)2))
Statlog HCP-IMSC 49.45 39.25 219.9447 O(sm3 + s(m−mo)

3 + cmslog(s) + cm2s)

Statlog CCIM-SLR 49.76 40.66 62.7427 O(τ(2m(v)3 + m̄vm(v)2))

• NMI - Normalized mutual information: The NMI indicator measures the
quality of clusters defined as:

NMI =

∑C
i=1

∑C
j=1 Ni,j ln

Ni,j

NiN̂j√
(
∑C

i=1 Ni ln
Ni

N
)(
∑C

j=1 N̂j ln
N̂j

N
)

(54)

where N is the number of samples in a complete view, Ni and N̂j are the numbers of
samples in the i-th cluster and the number of samples of the j-th label, respectively.
The number of samples in the intersection between the i-th cluster and j-th label
is represented by Ni,j .

• ACC - Accuracy: ACC measures the cluster quality. ACC is estimated by:

ACC =

∑N
i=1 δ(map(ri), li)

N
(55)

where N is the number of samples, ri and li are a predicted cluster label of xi and
the corresponding ground-true label, respectively. If x=y, then δ(x, y) = 1, and 0
otherwise. map(ri) represents the function of the optimal permutation mapping.

• ARI - Adjusted Rand index (ARI): ARI is a performance evaluation indicator
of the clustering model. A larger value indicates a better clustering result. ARI is
calculated using the following four indicators: 1) A true positive (TP) represents
true positive, 2) A true negative (TN) means true negative, 3) A false-positive (FP)
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is false-positive, and 4) A false-negative (FN) is false-negative. ARI is formulated as:

ARI =
2× (TP · TN − FN · FP )

(TP + FN)(TN + FN) + (TP + FP )(FP + TN)
(56)

• F-scores: The F-score integrates the recall and precision of a classifier into a single
metric that compares the performances of two classifiers:

F − score = 2× precision× recall

precision+ recall
(57)

where precision =
TP

TP + FP
, and recall =

TP

TP + FN
.

4.5 Comparisons of the performance of clustering and
discussion

Table 2 lists the evaluation scores of NMI, ACC, ARI, and F-score and the results
of different IMC baseline methods and our proposed method on the five datasets
with different missing rates. From this table, we can make the following important
observations.

1) Based on the experiments, our proposed CCIM-SLR achieved the best perfor-
mance compared with all other state-of-the-art methods. In particular, our method
achieved 96.63% accuracy on the WebKB dataset with missing 10% samples. Com-
pared to the proposed CCIM-SLR, IMSC-AGL obtained comparable results on the
Yale dataset. However, CCIM-SLR still shows its superiority on other datasets with
an increased missing rate.

2) Although UEAF exhibits good performance in terms of metric scores, it lacks
robustness. The main reason for this is that performing well, UEAF must satisfy the
condition that the feature dimensions of all views are larger than the cluster number.
From this perspective, our method has stronger robustness in handling complex types
of incomplete multiview.

3) In general, DAIMC ignores padding for missing views. As a result, the achieved
NMI score of our proposed CCIM-SLR is 28.03% higher than that of DAIMC in a
case in which 50% of samples in the Webkb dataset are missing. CCIM-SLR uses an
advanced filling mechanism. The experimental results show that this mechanism can
result in better clustering performance.

4) Compared with IMC-GRMF, CCIM-SLR can maintain meaningful semantic
relationships between the original view by building a consistent structure. In particu-
lar, clustering performance on the datasets with large differences in sample dimensions
between Wisconsin and WebKB. CCIM-SLR can handle all kinds of incomplete data,
which is much better than IMC-GRMF.

5) From Table 2, the performance of HCP-IMSC in terms of several metric scores
is superior to other compared methods, which shows the advantage of capturing high-
order correlation. In a case of an increasing missing rate, CCIM-SLR, however, can
produce excellent incomplete multiview clustering results.
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4.6 Parameter sensitivity of CCIM-SLR

Comparative experiments are performed in this section to investigate the sensitivity
of each parameter of CCIM-SLR. Because the NMI index can objectively evaluate the
accuracy of the comparison between a community division and the standard division,
we use NMI to determine the range of parameters under satisfactory clustering results.
Our main focus is on the following parameters in Equation (9): clustering model weight
parameter λ, sparsity term parameter λ1, low-rank term parameter λ2, noise term
parameter λ3, flexible term parameter λ4, and Lagrange operator control parameters
µ and ρ.

(a) SensIT300 (b) Statlog

(c) Wisconsin (d) WebKB

Fig. 4 NMI (%) versus parameter λ of the proposed CCIM-SLR on the (a) SensIT300 dataset with
10% incomplete samples of each view, (b) Statlog dataset with 10% incomplete samples of each view,
(c) Wisconsin dataset with 10% incomplete samples of each view, and (d) WebKB dataset with 10%
incomplete samples of each view.

1) Parameter λ: Fig. 4 shows the NMI (%) scores for different scales of λ parame-
ters. Our proposed CCIM-SLR achieved satisfactory performances on the SensIT300,
Statlog, Wisconsin, and WebKB datasets when λ was in the range of [0, 0.9], [0,
0.9], [0, 0.9], and [0.6, 0.9], respectively. Based on the results, the best values for
the λ parameter should range between [0.6, 0.9]. These values are used in further
experiments.
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(a) SensIT300 (b) Statlog

(c) WebKB (d) Wisconsin

Fig. 5 NMI (%) versus parameters λ1 and λ2 of the proposed CCIM-SLR on the (a) SensIT300
dataset with 10% incomplete samples of each view, (b) Statlog dataset with 10% incomplete samples
of each view, (c) Wisconsin dataset with 10% incomplete samples of each view, and (d) WebKB
dataset with 10% incomplete samples of each view.

2) Parameters λ1 and λ2: We explored the details of parameters λ1 and λ2 in
Equation (9) by applying CCIM-SLR to the SensIT300, Starlog, Wisconsin, and
WebKB datasets with a 10% incomplete-view rate, as shown in Fig. 5. In our analyses,
the performance of our algorithm is shown to be insensitive to λ1 and λ2 parameters.
As shown in Fig. 5, the values of the indicators of clustering do not change significantly
as the values of the parameters change.

3) Parameters λ3 and λ4: We evaluated the NMI score for different values of λ3

and λ4 parameters in Equation (9) on the SensIT300, Statlog, Wisconsin, and WebKB
datasets with an incomplete-view rate of 10%. Fig. 6 depicts the best clustering results.
Based on the experiments, the most suitable values for the candidate parameters λ3

and λ4 range from [1,10] and [0.1,100], respectively.
4) Parameters µ and ρ: Fig. 7 shows the NMI versus µ and ρ parameters in Equation

(45) on the SensIT300, Statlog, Wisconsin, and WebKB datasets with an incomplete-
view rate of 10%. The experimental results show that if µ ranges from [0.5,10] and ρ
from [1,1.1], our CCIM-SLR performed best.
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(a) SensIT300 (b) Statlog

(c) Wisconsin (d) WebKB

Fig. 6 NMI (%) versus parameters λ3 and λ4 of the proposed CCIM-SLR on the (a) SensIT300
dataset with 10% incomplete samples of each view; (b) Statlog dataset with 10% incomplete samples
of each view; (c) Wisconsin dataset with 10% incomplete samples of each view; and (d) WebKB
dataset with 10% incomplete samples of each view.

4.7 Ablation study

To investigate the impact of each component of CCIM-SLR on its overall perfor-
mance, we performed two ablation experiments on the three datasets. Specifically, we
removed the hidden view from the clustering part in Ablation 1. Ablation 2 replaced
the adjustable Γ-norm with the traditional kernel norm to produce a low-rank rep-
resentation. The experiment results are reported in Table 3. From this table, we can
find that although the NMI score of Ablation 2 is 2.66% higher than that of CCIM-
SLR at a missing rate of 30%, CCIM-SLR still performed well in all other cases. This
indicates that the adjustable low-rank representation Γ-norm can obtain better filling
performance than the traditional kernel norm. In addition to this, we can find that
clustering with the removed hidden views produced the worst results, which indicates
that the fusion results of multiview directly affect the clustering results.

4.8 Robustness experiments

To further demonstrate the robustness of the proposed CCIM-SLR algorithm, we
conducted experiments on two datasets, SensIT300 and Statlog, with varying degrees
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(a) SensIT300 (b) Statlog

(c) Wisconsin (d) WebKB

Fig. 7 NMI (%) versus parameters µ and ρ of the proposed CCIM-SLR on the (a) SensIT300 dataset
with 10% incomplete samples of each view, (b) Statlog dataset with 10% incomplete samples of each
view, (c) Wisconsin dataset with 10% incomplete samples of each view, and (d) WebKB dataset with
10% incomplete samples of each view.

of missing data. Specifically, we set missing rates to (50%, 40%, 60%, 70%, and 80%)
and (40%, 40%, 80%, 60%, and 70%) for SensIT300 and Statlog, respectively.

In Fig.8(a), we compare the clustering performance of CCIM-SLR, HCP-IMSC,
and IMC-GRMF on the SensIT300 dataset across the different missing rates. Our
proposed algorithm is the most stable, except for the 40% missing rate. Similarly,
in Fig.8(b), we show the clustering performance of CCIM-SLR, HCP-IMSC, and
UEAF on the Statlog dataset with the above-mentioned missing rates. Our proposed
algorithm still performs the best, except for the 40% missing rate.

Overall, our experimental results demonstrate that CCIM-SLR is robust and
performs well on datasets with varying degrees of missing data.

4.9 Experiments on the convergence of CCIM-SLR

As presented in Section 3.3, the objective function of CCIM-SLR is divided into sev-
eral subproblems, with each subproblem being analytically solved. The CCIM-SLR
algorithm adopts an alternating iterative optimization procedure. The objective func-
tion monotonically decreases until it converges. As shown in Fig. 9, the experimental
results have demonstrated the correctness of the theoretical proofs in Section ??.
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(a) SensIT300 (b) Statlog

Fig. 8 Comparisons of robustness experiments on SensIT300 and Statlog Datasets.

(a) Statlog (b) WebKB

Fig. 9 Objective function values versus the iteration steps of CCIM-SLR on the (a) Statlog and
(b) WebKB face databases, in which 10% samples are randomly selected as the paired samples.

4.10 The effectiveness of CCIM-SLR on the datasets

As shown in Table 4, the following presents the performance of two methods that utilize
association information to constrain the reconstruction of missing view samples in
terms of clustering metrics, execution time, and complexity. One employs hypergraph-
induced hyper-Laplacian regularization, while the other focuses on intra-view and
inter-view association information.

5 Conclusion

In reality, datasets that are collected often contain data samples with incomplete mul-
tiview, and the number of such samples varies significantly. This presents a challenge
for clustering methods. To address this issue, a novel incomplete multiview cluster-
ing method called CCIM-SLR has been presented in this paper based on a sparse
low-rank representation. In particular, CCIM-SLR measures the correlations between
samples with the same views using sparse low-rank learning, while also capturing
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the correlations between different views through shared hidden view learning. More-
over, the proposed method learns the shared hidden space, visible view, and cluster
partition alternatively, thus avoiding the sensitivity of postprocessing methods like
K-means to initial parameter values. This improves performance, as demonstrated
through both theoretical proof and experimental comparison with advanced meth-
ods for IMVC on five representative datasets. The experimental results showed that
our CCIM-SLR achieved good performance, especially on datasets with an increasing
number of incomplete samples.
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