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Abstract—Estimating the Quality of Transmission ((QoT) of the
optical signal from source (o destination nodes is the cornerstone
of destgn engineering and service provisioning in optical transport
networks. Recenl studies have turned to Machine Learning (ML)
technlgoes to Improve the accuracy of (QoT cstimation. In this
paper, we survey the literature on this tople and dassify the studies
into categories hased on their scope. Accordingly, we distinguizh
four categories of ML-based solutions: 1) check lightpath feasibil-
ity, i1} estimate a lightpath’s QoT, iii) enhance cxisting analytical
models and iv) improve model gencrallzation. We describe the
proposed solutions in each category in terms of ML algorithms,
inputsfoutputs of the models, source of data and performance
evilluation. Deploying a ML-based solution in the real fickd is not
straightforward and presents several challenges. Thercfore, we
also discuss from an operator’s perspective the potential of these
solutions for real-field deployment.

Index Terms—Machine learning. optical networks, OQoT, WDM.

I. INTROPDUCTION

N A constant attempt 1o meet increasing capacity demands,
I optical transport networks have steadily evolved through a
number of technological advances. Technologies such as cober-
ent transmission, flexible modulation and tunable transceivers
have led to a plethora of new parameters and configurations that
complicate network design and operation. At the same time,
revolutionary initiatives are emerging with the introduction of
Software Defined Networks (SDN) [ 1] that could open up new
opportunitics o deal with these complexities inoptical networks.
Among these initiatives are those that push towards the pro-
motion of the openness of Application Programming Interfaces
{AP1s) and the definition of common data models (e.g.. T-APT2]
and OpenROADM initiative [3]. [4]). Other inihatives propose
new control and monitoring protocols such as Netconf and gRPC
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[5]. [6]. These solutions will lead to providing large amounts of
data in standardized format that could be harmessed o solve
network issues using new paradigms in optical networks like
Artificial Intelligence (Al).

Al is the introduction of cognition to machines in order to
perform intelligent tasks in a similar manner o humans. The
most popular subficld of Al is machine leaming (ML). ML
consists of algorithms thal capture patterns and behaviors in
the data in order to produce models for a vanety of tasks such as
estimating a value based on inputs (i.e. regression lechniques)
and classifying data into groups (i.c., classification echnigues).
ML has seen an increase in popularity in research in recent years
in multiple fields. particularly computer vision, natural language
processing and speech recognition [7].

ML is subject to the same scrutiny in optical networks. A
large amount of papers have been published on the application
of ML techniques to multiple use cases: rootmg and wave-
length/spectrum assignment (RWA/RSA) [8], [9]. Quality of
Transmission (QoT) estimation | 10] and fault management [ 11].

QoT estimation is of particular interest for optical networks.
It consists of ascertaining the performance of an existing or
candidate lightpath based on its charactenstics and the network
configuration. The QoT is used to monitor the health of an
existing lightpath or check the feasibility of a candidate one by
comparing its predicted CoT to the receiver’s threshold. Estimat-
ing the QoT of alightpath is crucial in network design and service
provisioning. In fact, an underestimated QoT value can lead to
sigmificant loss in capacity and increase the network deployment
cost (c.g.. unnecessary equipment expenditure). On the other
hand. an overestimation of (QoT can lead to unstable lightpath.
QoT estimation is also the basis of network oplimization. as on
accurate QoT is required for optimal RWA/RSA and capacity
maximization

The difficulty of QoT estimation stems mainly from the var-
ous impairments in the fiber that optical ransmission is subject
to [12]. Linear impairments are due o the signal allenuation,
chromatic/polarization dispersion and the noise generaled by
the equipmeni. Monlinear impairments include effects such as
Korr and scattering effects. QoT estimation must also lake into
consideration the behavior of various transmission cquipment
that vary widely in their performance according o their models:
types and vendors. QoT estimation is generally performed using
analytical models. An analyiical model features a model of the
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fiber transmission also called a Physical Layer Model (PLM}
thal estimates the linear and nonlinear impairments. Analytical
models vary in their accuracy. execution ime and considered
assumplions which always leaves room [or improvement. ML
is being wsed to improve QoT estimation in several creative
ways such as building ML-based (QoT estimators, modeling the
response of oplical equipment or estimating nonlinear effects.

Several papers in recent lilerature have proposed surveys of
studies applying ML in optical networks [ 1 3]-] 15]. In this paper,
we focus specifically on papers that apply ML for the QoT
estimation use case. Our goal is to understand and discuss the
currenl stafe of the arl and give a perspective for future work. To
the best of our knowledge. only two surveys [ 10], [16] focused
on the same scope. They both list ML based solutions that have
been proposed in literature. While | 10] focuses of the sources of
uncertainty in QoT estimation. | 16] focuses more on deseribing
the proposed ML algonthms. Although our goal is similar, in this
survey we also offer a network operator’s point of view on the
surveyed papers, and we discuess the feasibility of the solutions
in an operational context.

This paper is structured as shown in Fig. 1. Section 11 gives
an in-depth look inlo the QoT cstimation problem from an
analytical point of view. Section 111 gives an overview of papers
that apply ML to estimate QoT in terms of ML models, used
data and the obtained performances. Section 1V discusses the
challenges of the proposed solutions and their applicability in
the real field.

II. Anarymical QoT ESTIMATION

QoT estimation is traditionally performed using analytical
models. An analytical model is built upon four elements: i) the
transmission impairments laken into consideration, i) the QoT
indicator to be estimated and 1i7) the physical layer model (PLM)
used to moxdel the transmission. In this section, we provide an
overview of each of these factors in order to show the eurrent
challenges of analytical QoT estimation.

A Transmission Impairments

Impairments in the transmission come either from the prop-
agation of the signal through the fiber, or from the behavior of
optical equipment. Fiber optical impairments can be split into
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lincar and nonlinear effects. Lincar effects include signal at-
tenuation, Chromatie Dispersion (CD), Polarization Dependent
Loss (PDL) and Polarization Mode Dispersion (PMD). Signal
attenuation is rectified using optical amplifiers, however. this
degrades the signal by adding Amplified Spontineous Emission
(ASE)noise. CD, PDL and PMID, on the other hand, are compen-
saled wsing modem digital signal processing (DSP) technigques
in the receiver. Nonlinear impairments are either due to the
Kemr effects that include Seli-Phase Modulation (SPM). Cross-
Phase Modulation (CPM) and Four-Wave Mixing (FWM). or
the inelastic scallering phenomenon that includes Stimulated
Brillowin-Scattering (SBS) and Stimulated Raman-Scatiering
(SRS}, The scatlering effects manifest themselves as a tilt in
the spectrum which can be correcled using power equalizers.
Kerr effects are usually modeled using equations that caleulate
the Power Spectral Density (PSD) of the signal such as the
Schridinger or Manakov equations [12]. Significant research
effort is dedicated to the mitigation of nonlincar effects. and
ML-based solutions have recently been proposed for this pur-
pose [17].

In addition Lo propagation impairments, equipment gencrate
impairments thal contribute o signal degradation. The ASE
noise generaled by amplifiers significantly degrades the signal
[ 18]. Additionally, wavelength and polarization dependent gain
in the amplifiers introduces a till and ripple effect on signal spec-
trum. The impairments in 4 Reconfigurable Optical Add-Drop
Multiplexer (ROADM) include PMD and PDL effects. insertion
losses. ASE noise from internal amplifiers, fillering effects from
imperfect filters and crosstalk effects between the channels.
The impairments from the eguipment are estimated by doing
laboratory characterization. or by modeling each equipment
analytically.

B. OoT Indicarors

(oT is generally measured using either the Bit Ermor Rate
(BER) or the Signal 1o Noise Ratio (SNR). SNR represents the
ratio of the power of the optical signal lo the noise contribution
of all the optical impairments mentioned above. Lincar SNR.
referred to as Optical SNR (OSNR), is defined as the ratio of
optical power of the signal Pgjq; to optical noise added to the
signal by optical amplifiers Pagp as in (1)

Psia

OSNR =
Pase

(1)

The (OSNR can be measurcd using an optical spectrum ana-
lyzer (OSA) [19], whichis not possible for the SNR. BER. on the
other hand, is 8 measure of the number of emrors in the received
bits. A lightpath is considered healthy if its BER is above a
certain threshold and the receiver's Forward Error Correction
(FEC) module is able to correct the error in the bits.

SNRE is computed before the deployment of a lightpath 1o
check its feasibility taking into account optical impairments
as well as vanous marging such as end of life margins and
equipment aging [20]. BER is measured al the transceiver in real
time, 50 it can be used to monitor the health of a lightpath. Before
service deployment, BER cannot be estimated but deduced from
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the SNR once the modulation formal, and the transceiver’s
back-to-back penalty arc provided. This characierization is done
by mapping the back-to-back OSNR (o the BER response of the
transceiver [21].

C. Physical Layer Models

Analytical models are based on PLMs that attempt to model
the propagation of the signal through the fiber medium. This
generally comes down to estimating the PSI) that is defined in
the Schridinger equalion. Each PLM takes into consideration
a number of impairments based on the assumplions taken into
consideration. A large number of models have been proposed in
literature [22].

We distinguish two families of QoT estimation analytical
models. The first family consists of exact models that use com-
prehensive and extremely accurate methods. These models are
heavy to execute and require a large number of parameters to
model the transmission line. Therefore, they are more suitable
for laboratory simulations as their execution time and parameter
requirements make them inconvenient to be wsed in the feld.
Among the models of this family, we find the Split-Siep Fourier
method [23] (S5FM) which is a numerical method of solving
Schridinger’s equation by splitting the transmission into a suc-
cession of small linear and nonlinear steps. It is highly flexible
and can be used to simulate network scenarios that have not yet
been deployed. Its high computational requirements make this
method unsuited for online QoT estimation.

The second family consists of approximate models that are
able to estimate the QoT accurately once a set of assumptions
are satisfied. The most popular class of these models are the ones
that consider nonlinear interference as a small perturbation of
the signal. Among perturbation models, we find models based on
truncated Volterra Serics [24], logarithmic perturbation models
[25] as well as Gaussian Noise (GN) models [26]. The light
computational load makes these models more likely 1o be used
in an operational context. The GMN-model [26] for instance con-
siders that the nonlinear interference in the fiber can be modeled
as white Gaussian noise. [t is based on threc main assumptions
[26] : 1) nonlinear noise is a perturbation of the signal, i) the
transmilted signal statistically behaves as stationary Gaupssian
noise and u1) interference in the fber is an additive Gaussian
noise. These assumptions simplify the expression of the PSD
defined by the Manakov equation (which itself is a simplification
of the Schridinger equation [27]). In GMN-model, the SNR is
redefined as the generalized SNR (GSNR) as in (2).

Pﬂrg
PN+ PASE

Several versions of the GN-model have been proposed such
a5 the enhanced GMN-model (EGN) [28] which removes the
third assumption (iii), or the generalized GN-model (GGN) [29]
which includes the SRS noise contribution. Analytical models
based on the GN-model are fast to compute and have been
experimentally demonstrated to have satisfying results [30].
However, their performance drops when the aforementioned
assumptions fail {e.z., in highly nonlinear regimes).

SNR = (2)
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1L ML-Basen QT So1UTionNs

In this section, we provide a survey of papers dealing with
QoT estimation using machine leaming. We distinguish four cat-
ezones of solutions: A) check lightpath feasibility, B) estimate
lightpaths QoT. C) enhance analytical models and 1) improve
maodel generalization. These categories were chosen based on
the scope of the problem to be solved from an operational
context. In the first two categories. the scope is to provide an
alternative to analytical models cither in the form of a ML
lightpath leasibility decision model (category A) or a ML QoT
estimation model (category B). The scope in category C is to
improve the performance of existing analytical tools instead of
replacing them. Solutions in category [ aim to make ML based
solutions more usable in an operational context by improving
maodel generalization and solving dataset collection issues.

The general learning process to train a ML-based QoT estima-
tion model is shown in Fig. 2. A dataset must be collected using
gither a simulation. experimental set-up or operational network.
In cach case. a set of features X is extracted from the data and
are used as an input of the ML model. The features are selected
by cleaning up the dataset (removing noisy data) and selecting
the data that has the most impact on QoT estimation. Then, the
dataset 1s split into three smaller datasets to be used in lraining,
validation and testing. Training the model means constructing a
function fj; that predicts the target values in the training dataset
as closely as possible. The validation step is used to tune the hy-
perparameters /1 of the model [y 1o improve its performance. In
the testing step, the final pefformance of the model is calculated.
This learning process is used to train different types of ML model
such as regression and classification models. In Section [1.A we
survey papers that wse classification models 1o check lightpath
feasibility and in Section [L.B papers that use regression models
o estimate lightpath GoT. Section 1IL.C focuses on improving
analytical models and features a mix of regression models to
estimate impairments and optimization algorithms to reduce the
uncertainty on network parameters. Section LD introduces ML
technigques to improve ML model generalization such as transfer
leaming and active learming. Tables L IL M1 and 1V give an
overview of the particularities of the proposed algonthms in
each category based on a set of criteria

o algarithm: the ML technigues used by the solutions.

e inpul: the selected features to feed the machine learning

model.
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TABLE]
COMPARISON (OF PAPERS PROPOSING A ML MOML 10 CHECK TIGHTTATH FEASTILTY
Hel Algorithm Inputs Chatputs [ratn Sowrce Performance
31} | Casze based rensoning Channel wavelengih, laimch power, loss per span, C-factor Experimental | Accuracy bebween
mnwber of spans active lghtpaths, total inpul power, 0% annd 98, T%%
tival power of the adjacen channels
[37] | SVM Muanmiber of ROADMs, of links, of iber spans: lenh of | OSNR Swnthetic Avcuracy =05%,
fiber span, launch chonnel pawer
[al] AN Total length, max link length, central frequency, BER ased on slice Simulated Apcilracy =%,
mumber of nliocated stols, medulation femant, numbser FECUANCITH:EL depends on shices
af amplifiers, number of ks ik class per
experimenl
[36] | Loaistic regression, Hop lengths, nurmber of channets, hop losses, number 2 clazsps: bod ad Semulated Best performance
Drecision trees, 8V, of hops, modulation famog, bitrate, sggregation-hased good configuration wr 0% Ares TTnddar
random fonest, xgboost feature enginening the Curve (ALY
[31] K-Meurest Meighbors Wumber of hops, namber of spons, toml length, average | SMRE above Simulated Aceurncy P05%
(KN, logistic link length, maximuom link lenph, everage abenuontion. | threshold
regression, SVM, ANN avernge dispersion. modulaiion formal
[33] | KN, mndom forest Lightpath length, longest link leogth, number of links, Pap probabality thin | Symthet Actumcy up o
raffie virlunse, modulation format, lefteight guandbamd, | the BER of the D&%, of eertain
left'right traffic vohome, eftright modulation format lightpaih exceeds a topologics
predefined threshold
[34] | SVM., ANN Total link length, spen length, lawch power, SNR Synihetc Accuracy =99%,
rriebiblation formad, dita ride
[35] | 5. logsstie regression, | Lightpath length, hnk Jenpihs, wavelength, stonstcs on | BER Stmulaied Best performance
Classalication ail co-propigating gl paths a1 O0.9%, aecuracy
regreasion trees (CART),
random forest
|38] | Dwep graph convalunion- | Channel ndjsceney matrix, lightpoih kengeh, max tmk BER clussafication Synthetic Accuracy rates
ol newrnl netwaork lenggth, central frequency; number of slols, core bussed on threshold hetween 92% and
identifior, musdulution format, numbee of amplificrs, aTRy
numbsr of links, BER of the deploved lightpaths.
TABIEN
COMPARISON OF PAPIEE PROPOSING A M1 MOIHD. TO ESTIMATE A LIGHTPATH'S Q0T MEETRIC
Hel Algorithm Inpuis huipuis Dt Souree Performance
(411 | AMM Per channel founch power, per amplificr [gains, NFs, goin filis], per SKE Experimental | SNER standand
s{at LBpUE pwes deviation < (.14 dB
[43] | AMM Liunch power, leser bins. per nmplifier [inpul power, culgut power| C=lagtor Expenimental | Q RMSE <0,02 di
[40] | Rumdon forest Mumiber of links, wial ength, max Imk length, mtfic volome, GNSR Synthetic Best performance:
mndulation formal disiribution 0.02 RMSE
[62] | Decision tres, Recerved gignnl power, NLI, ASE. channel lrequency, tolil length GENR Synthetic Best performance:
random forest, 016 dB in average
MLF prediction emmor
[&%1 AN Per channel [power, frequency |, mumber of spans, analytical model SHR Simulated bl ermor <05 dI
ouiput [ASE. nonlimear moise]
[64] | Gaussiin process Wavelength, messured OSNR, OSHE nose OSMR Fichd trial MSE < .7 4B
[85] tezsibed
|44] | AMNN Chimngt under test fsymbol rate, transmit power, distunee to chammel, SWRE Tranned on Mux ermor = (5 dB
mamber of neighbor channels |, tial gaed bandwadih, nomber of WM synthetc amd
charmnels, number of spons, span lemgth parametess, overaee power upplied real
level dirta
|G} AN Channek, nokse power on each link OSkR Expenmental | Averape error <415
dB
[67] | AMM Source nisde, destination node, OSNR of required path Perchannel | Experimeninl | RMSE =02 dB
OSNR
[#2] | MM for festure Per channel [Power, ASE. KL1. number of spans. toul length] GEMRE Synthetic Muximum error =
extractian + ANMN L37 b
Tivr preadiction
[39] | Gaussian process | Inpud power, number of spang, baud mie, inter-channe] spacing BER, Q- Simulatd Average grroe= 0,3
FepTesEon factor sl dB
experimenial
|68} RME Foresi, Dhistanci, pumber of spans. ASE noise, nonlinear intesference, power GSMR Synthetic MAE store <0,007
ARN, KRN
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TARLE N
COMPARISON 0 PAPHES ATTIMIFTING TO ENHANCE ANALYTICAL MOH1S THROUGH MACHING LEARNING

Bel Algarithm Inputs Fargel parameier Duta Source Performance
Realecing iincerfainty o paameters
(6] Gradient descend SNR MNoise [fgure, powerprofile | Synthetic Design murgns reduced
firiam feiw dids o 0,1 dB
[70] 3 dep optimizations | Consecutive power éstimaiion, end o end | Lumped loss belore'afler Experimental SWR estimotion nwproved
hasad om Crnchien SHR estimation fiber spauts, amplifier pawer Troim 2dT e (208
descent ripple
[4€] Custany lomesar Tasget Crtnctor value, iniial motse Gypure Metse rgure, monlinenr Expenmental Frror reduced from |4 dB
FeEnesgion walue: initial nonlinear coofMcient value. coclficient 1o 0.6 dB
[47] Gradient descen: Target SNR voloe, imitial noise fioure Moise figure, input pawer Symhetic Error reduced by up to
vitlue, inital input power valuge, 4, 1848
[4%] | MNonlinear curve Tasget SWR value, initial valwes of Angnuation, dispersion and | Syadhelic Dresign margin reduction is
finting uitenuation, dispersion pnd non-linesr nan-lincar cocfficients up e 155 dB
coefficients,
48] Mewropolis OSKR cstimation Muonlincar diseortion Experimental Error reduction from 1.7dB
wlgexriibim coetficient, filter Lo £ 513,
warvelength detuning,
amplificr gain, amplifier
noise figure
Srpgirmens mivedellng
[52] AN Speciral load (MR Experimental Average eiror < (L. 2dB
[50] | ANN Moise covarance, ouipot of annlyiical Nonlinegr SNE Swymihetic 10133 dB-of SNEq deviation
mpeide], onimber of spoans, mox spon lengih, using eombmatmon of all
average power, lonch power, Bink lengrh, features
chromatic dispersion, avernge fiber
immarn, sverige fiber alpha, number of
channels.
[31] | ANN Fibwr atenuation, dispersion coeflicient, Momlinear SN Simulated Error below 0.5 dB for
effective area, non-lingar vefinctive index 0% of cases
[43] | BY¥M Per channel power, oplical spectrum, pre- | SNR Synthetiv Average eror<(hE JB
FEC BER
[34] | Lamear Kegeession, Mumbir of fiber waans, span lenjtlh, SMR {when lightpath leagth | Synthetic Decreased the caser where
Multivariate channel bundwidth, peard band. number of | <200km) the phaclute ermor wos
pobymomal channels, chonnel power higher than 2 di from
Regression, 1T, 230 10 0.4T%.
Random Forest,
5% M, KNN, ANN
TABLE IV
COMPARIZON OF PAMRS FEATURING MACHING LEARNING TRECHNIQUES FOR DATASET MANAGEMENT
Ref Algorithm Tnputs Duipots Daia Sonree Performance
[39] | ANN, Active leaming through Monte Signal handwidth, modulation Cieneralized Expetinnial Requires 25% less data than
Carle (MC) dropping fior undertainty format, peak-to-penk voltage, rmafisal ruadom sanpling, while
sampling received power informaticn mamtammy blow (055 n MSE
[TL] | DN, Evolutionary transfer leiming Poweer profile at each aptical Q-Factor Experimantal Only 1% dala size required for
switch refrnining
[72] DN DT comstellation SNR Experimental Average Error = (L2(]H
[60] | Giomsslan process, Achve leorning using | dofal Behipath length, fongess SKR Symibenic Drepends on method and dataset
a MC method, Domain adaptation wsing | link length, number of Z1EE
Bayesian updatng. feature traversed lmks, tmific volume,
nurmentation, Comelntion aligmment and mexbulation farmn
[55] | AWM Span lengths SNR Simulnted RMSE improved by 2 after
TetmInig
[36] T OQ-factor of diffesent lines D-Tautor Expistinmsental S0P lesy datnset size o
retraining
[38] b Total length, nurnber of lks, RBER Symhetic 20t less datn regqured for
mzximum link length, demand classification fetraining
eapacity, modulation format
[57] DNN Arnplitude histogram of OEMR Experumentul 20 times less datn required for
received samples retrining
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s output: the outpul of the ML model. This is generally the
(QoT indicator that the study secks to compute.

* cource of data: information about how data was collected
{i.e.. synthetie, simulated or experimental or real data).

* resuliy: the key resilis from the study. Asmostof the papers
provide results from multiple experiments, we choose o
only mention the most relevant resulis.

A ML Based Models to Check Lighipath Feasibility

The goal of a ML classification model is to attribule a class
to each data entry composed of a combination of features.
In the case of QoT estimation, ML classification models are
used in literature to decide il a candidate lightpath is feasible
or nol based on a sel of optical parameters. The classes in
this case are generally binary: the lightpath’s QoT indicator is
bevond a predefined threshold or not. Thus, ML is used as a
simple decision ool for lightpath deployment. Table 1 lists the
characteristics of surveyed papers that fall into this category. The
performance of a classification model is usually represented by
the accuracy score: the ratio of correetly classified lightpaths to
the total number of lightpaths:

A case-based reasoning (CBR) approach is proposed in [31]
Lo classify lightpaths based on a QQ-factor threshold. proving that
only a simple classification model is required o achieve high
accuracy scores up to 98.7%. More conventional ML models like
Suppor Vector Machines (SVM) and random forest. are used in
[32]-37]. These two models usually have the best performance.
Authors in [38] uses a more complex ML model based on a deep
graph Convolutional Newral Network (CNN) 1o model inter-
channel interferences in multi-core fibers which can classify
lightpaths with up 1o 97% accuracy.

Most studies use end-to-end line features. such as total light-
path length and number of spans. However, authors in [33]
prove that using additional features from neighboring channels
improve the classification results. In [36], the statistical represen-
tations ol the features are calculated and used in the classification
in order to reduce the number of features without losing infor-
mation. Almost all studies use the BER. as a QoT indicator and
choose the FEC limit as the threshold to separate the two classes
(i:e.. feasible/unfeasible lightpath). Authors in [33] additionally
provide a degree of certainty to the classification, which can be
used to choose between multiple feasible lightpaths.

B. ML Baxed Models to Estimate a Lightpath's QoT

In this category, the scope of the proposed solutions is
lo estimate the precise value of a QoT indicator. Therefore,
ML-regression models are used. The leamning process to train
such a model is outlined in Fig. 2. However, this scope can
be more challenging than the previous one since the model
output space is continuous. Having the exact QoT value allows
Lo compare lwo feasible potential lightpaths. Regression models
are usually scored using an error opertor, such as Root Mean
Squared Error (RMSE) or Mean Absolute Error (MAE). MAX
and MIN errors are also wsed, as they allow to sct network
margins. Table I lists the surveyed papers that belong to this

calegory.
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The features used in regression models are more diverse than
those used inclassification. Basie line features, such as the num-
ber of spans or length of the link, are always used. noticeably in
[39] and [40]. Additionally, authors in |41 ] consider per-channel
features, for instance input power and amplifier gain for each
channel in the link. The per-channels features are generally fat-
tened into a single vector, except in the case of [42], where atwo
dimensional CNN is used 1o obtain a one-vector representation
of all the features. Furthermore, [41]. [43] use l[eatures from
multiple points of the line, such as input power al each amplifier.

In terms of QoT indicator, we notice that noise based QoT
indicators (SNR and OSNR) are more frequently used than BER.
Authors in [40] propose to estimale Lthe distribution of the (oT
indicator rather than jest a single value. Authorsin [4 1] compare
the estimation of a ML model to that of an analytical model and
show that ML models perform better than analytical ones for
lightpaths in the edge of the spectrum.

While the majority of the surveyed papers are based on
synthetic and experimental data. 8 couple of papers have also
used real data. Moticeably, authors in [44] showcase a model
trained on synthetic data then tested on real network data.

C. ML Meodels to Enhance Analytical Models

The goal of the first and second categories was o build a
standalone ML estimator, while the goal of this category is Lo
use ML models and analytical models intandem. This means that
ML is used to improve the accuracy of analytical models instead
of replacing them. This can be achieved by, either improving
the accuracy of inpul parameters of an analytical mode] (i.e.,
reducing the unceriainty on inpul parameters) or asscssing hard
o compute impairments or physical coefficients.

Studies focusing on “Reducing uncertainty on parameters”
justify the usefulness of their approach by the faet that some
parameters values are nol up to date in the operators” databases
because they undergo changes due o multiple factors (e.g.,
temperature and equipment aging). This could be due to the
imability of eguipment to measure these parameters (e.g.. the
fiber nonlinear coefficient) or the inability of the monitoring
protocols deployed between the equipment and network: man-
agement system (NMS) to communicate parameters values in
real-time. As an altemative, fixed values like design/beginning-
of-life values are used to compute QoT [45]. In literature; opti-
mization algorithms such as gradient descent, are generally used
to reduce uncertainty in parameters using the leaming process
outlined in Fig: 3. The objective function of the optimization is
generally set to the difference between measured and estimated
QoT indicator (also called GoT error). Then, the values of a set of
uncertain parameters are iteratively changed until the QoT error
is minimal. The amplifier's noise figure is the most commonly
considered uncertain parameter [46]-[48]. The performance of
the solution is assessed pccording to the ability of the algorithm
to improve the QoT estimation of the analytical model and
reduce the QoT error. This performance closely depends on the
number of uncertain parameters assumed in the experiments.

Authors in [46] propose two different approaches for QoT
estimation. The first is a purely ML-based estimator that assesses
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the SNR value. The second approach iteratively reduces the
uncertainty of the paramelers required as inpul of an analytical
model in order lo improve the model's QoT estimation. An
elaborale closed-loop controller architecture lor optical net-
works is proposed [49] in order to use fecdback from network
measurements o improve the accuracy of the ML-model by
reducing parameter unceriainty.

To improve QoT estimation models. other sindies focused on
estimating oplical parameters thal represent hard to compute
impairments. This means (o assess a certain coefficient required
by the analytical model such as the nonlinear coefficient in GN
models [26] or by modeling the behavior of an equipment. for
instance amplifier’s ripple [63]. In Table IV, we survey the papers
that follow one of these two approaches. Authors in [50] and [51]
allempl to estimate the nonlinear SNR. Thus, a neural network
model is proposed in [50] to directly estimate the nonlinear
noise from line features and fiber characteristics. Authors in
[51] propose to mix line features with covariance coefficient
calculated from DSP constellations, as well as the output of an
analytical model. They show that the nonlinear SNR estimation
can be enhanced by feeding all this information as an input of
an aortificial neural network (ANN). Papers [52] and [53] are
focused on modeling the effect of different spectral loads on
amplifiers. The aim is o estimate the SNR and OSNR taking into
consideration only the impairments generated by the amplifier.
This estimation is used alongside an analytical model in order
to estimate the overall QoT. In a similar vein. authors in [54)
propose 4 ML model to estimate the SNR of a lightpath. The ML
maodel 15 used when the total length of the lightpath is infenior
to 200 km. otherwise. the GNLI is used.

D. ML Technigues to Improve Model Generalization

Model generalization refers to the ability of the model to
adapt to data with different distibutions. A ML model trained
on data cxtracted from a specific network would not necessanly
perform similarly using another network dataset. In order to
improve midel generalization, more diverse datasets are needed

Tralning .| Modsl
clata A training
Traingd Transdar Small sampla
mdel ¥ = lsarming (=t of Training
Flx) ulgorithm dila B
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data A M It midal - TEE&?
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domaln A aaiiation far darmain B
Fig 4. Learmng process W adapt o M. model from one domam @ apother

using Trumsfer Leaming.

to train the model which is not always possible due to the lack
of datasets extracted from different networks. Techniques such
as transfer learning and active leaming are generally used to
resolve this issue. In Table 111, we have surveyed papers thai
try o improve ML model performance using these technigues.
It is worth noting that each of these papers propose its own
QoT estimation mode]l which means that it can also fil into the
category A or B. However. we choose to survey them in this
category as we consider their main contnibution is to solve the
maodel generalization problem. In the charctenistics. we provide
both the ML algorithm used for QoT estimation and the ML
algorithm used for mode]l generalization. The performance is
assessed sccording o the ability o reduce the datasetl reguire-
ments of 1o improve error rates.

The goal of Transfer Leaming (TL) algonthms is domain
adaptation. which micans ensuring that a ML model 15 gener-
alizable to multiple datasets with different feature distnbutions.
Fig. 4 shows how transfer leaming can adapt 2 ML model to
multiple network domains. Pesic et al. study in [55] the impactof
using networks with different span lengths on the performance of
ML-based solution. They show the importance of pre-training a
model on unbiased data. This study isextended in [56] to include
more network: features. Authors also study the effect of domain
adaptation on the structure of an ANN model. In [57], [58] and
[55]. avthors use a ML model initially trained on data from a
network A in another network B. To adapt the model, a dataset
from network B, up to 50 times smaller than that of network A
is used for retraining.

Active Leamming (AL) approaches are proposed in [59] and
[60]. AL algorthms seck to reduce the dataset size by selecting
datn that best improve model perfformance. The method typically
staris with an initial small dataset, then progressively adds
more data entries using an algorithm to compute and rank the
importance of each data point. Only the selected data poinis
arc measured which avoid the need of a large dataset from the
beginning. Both papers use a Monte Carlo based process for data
selection. Authors in [60] also propose three domain adaptation
technigues. namely Bayesian updating, feature augmentation,
comelation alisnment, then provide an extensive benchmark of
each method.

Authorized beensed use limited to: Telecom SudPans | Frmiy Telecom et management SudPans INT). Downloaded on August 27,2022 at 18:56:14 UTC from |EEE Xplore. Restnctions apply,



B0

IV, IMsCussion

In this section, we discuss the ML-based solutions described
in the previous section. Through this discussion, we present
the challenges of these solutions and explore their feasibility
in the context of operational networks. We also propose some
perspectives for future work. Our discussion focuses on four
main points: i) the relevance of the tackled scopes, ii) the dataset
used for traming. iii) the feature and model choice and iv) the
evaluation metrics.

A Adopted Approaches

The four calegories thal we have identified to classify the
solutions proposed in the literature tackle the wse of ML o
estimale the QoT in different manners. Each solution has its
own benefits and challenges that make it more or less useable in
an operaional context

By proposing an ML-based QoT estimator, whetheritisaclas-
sification or a regression model (Categories A and B), the objec-
tive is Lo provide an altemmative to analytical models. In order to
justify the substantial efforis needed Lo train the model correctly
and the extra-costs to deploy such solution, especially when it
comes to data collection, ML-based solution must outperform
the analytical models in lerms of QoT estimation precision.,
number of required inpul parameters orand computational load.
Guaranteeing, at least. the performance achieved by analytical
model seems to be feasible because the capacity of ML-solutions
to model complex physical phenomenon has been extensively
proven not only in optics but also in various areas of research
[7]. Reducing the execulion time is also not 2 concern, because
outside of the training phase, model inference is gencrally
not compulationally extensive. In [44]. ANN prediction lakes
microscconds, compared 1o minutes using a full EGN maodel.
Additionally, ML models may use leature representations with
fewer input parameters, for instance by averaging the list of
span lengths as in [32]. ML models can also be more robust to
uncertain parameters as featured in [73]. However. the challenge
facing solutions involved in these categories (i.e.. A and B)isto
build a model that is effective. easy to maintain and works on
all the scenarios where it is applied with acceptable deployment
cxtra-cost,

The choice between classification and regression depends on
the operational requirement. If only checking the feasibility of
an optical path is needed, classification is better. However, if the
vatlue of the QoT is needed {e.g., to compare the performance of
different models of equipment), the regression model will be the
best option. For both methods, it is useful, from an operational
point of view, to additionally assess the estimation error in order
to facilitate the computation of operational margins. which might
be easier o compute with a regression approach.

The idea behind the category Cisto use ML in tandem with an-
alytical models. Analytical models are already vsed extensively
in the field, so proposing solutions to improve their usability
is better than replacing them. In fact, missing or inaccurate
parameter values is a recurring issee in data extracted from
operational networks as outlined in [74]. Studies that focus
on reducing the inaccuracy of parameters values have mostly
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focused on optimization approaches using the error in QoT
estimation between measurements and the analytical model as
an ohjective function [69]. The solutions proposed within this
scope risk not being able to converge towards the real values
because some impairments that are nol taken into consideration
by the analytical model may contribute to the eror in QoT
estimation. In this case, allemative values of the input parameters
are provided by the ML algorthm which improves the accuracy
of the QoT. although the values of input parameters do not
correspond 1o the real values [75].

As analytical models are showing promising resulis with
decent rapidity [45], we believe that solutions that aim Lo assist
analytical models (ie.. Category C) are pragmatic and could
provide promising results in shortmedium terms. For solutions
of categories A and B, we consider thal the main benefit of using
a ML estimator rather than an analvtical one could be in one of
these cases: 1) the ML estimator can achieve accurate perfor-
miance when the analvtical model is not appropriate because its
assumplions are not satisfied [54], i) some input parameters off
the anatytical model could not be provided, whereas they are not
needed by ML-based solution {e.g.. a better feature representa-
tion in [46] leads 1o reduce the number of inputl parameters).
or iii) the analytical model is unusable due to execution time
constrainis.

The interest of improving the generalization of ML models
(Category D) is justified by the issues around data collection
in optical networks. Models proposed within this category do
not focus only on compauting the QoT itself but to muke models
proposed under the other categories lechnically feasible in terms
of dala and able to be generalized in many scenarios. Concepls
presented inthis category could be applied to any ML-model that
requires training. We believe that this approach will be the key to
making ML models aviable solutionin the field. especially when
it comes to domain adaptation between heterogeneous networks
as in |60]. Another point of interest that was rarely addressed in
papers is continuous leaming. Operational networks are suscep-
tible to change, which might make ML models incfficient if they
are not updated regularly. Therefore, proposing a closed-loop
process, based for example on active learning as in [76] would
help to solve this problem.

B. Dataset Collection

Training ML models requires large datasets. Some approaches
do not have a proper training phase, as in the case of solutions
based on optimization algorithms such as [46] and [47]. How-
ever, even in this case QoT mdicator mensurements are still
required. In general. the performance of ML methods is tightly
linked to the guality of the dataset used in the training phase. The
different steps to build the dataset which are data collection, data
annotation, feature engineering. data augmentation and splitting
datasets for training and validation., must be carefully performed
in order o ensure a successlul training and avoid biased resulis.

Data collection remains the first boltleneck in optical net-
works due to several factors: equipment lock-in (i.e., mability
to access equipment data), lack of standardized data models and
monitonng protocols, lack of data collection and monitoring
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Lools and the cost of deploying optical signal probes in the net-
work. Datasets used in the surveyed papers are either synthetie,
experimental or operational. Synthetic datasets are generated
by simulating network scenarios using an analytical model. for
instance, authors in [40] and [68] usc the GNPy tool [77]. This
method allows greater control over data entry points, (eature
variation. fAexibility in the definition of the scenario and selling
the datasel size. However. models trained with synthetic data
learn the behavior of the simulation platform and the analytical
model behind which might not faithfully represent a real optical
network behavior. In fact, the performance of the ML in this
case is tightly related o the aecuracy of the simulation platform.
Transfer learning approaches proposed in Section 111D could
solve this problem by retraining the model vsing field data in
order Lo increase its aceuracy and remove the synthetic data
bias, bul. to our knowledge. this has not vel been demonstrated
in the literature.

Experimental setups on the other hand better reproduce the
conditions of an operational network. while keeping the flexi-
bility of simulation approaches. For example, in [52], a selup
consisting of cascaded amplifiers is used 1o model amplifier
response o spectral load. while in [41] an expernimental setup
of a [ull transmissicn line is used. Through expernmental data,
maodels can learn the behavior of a real transmission using
physical fbers and eguipment. Generating this kind of data
is costly and time-consuming given the large number of mea-
suremenis required to train an ML model. Therefore, a full
automation of the experimental setup, as proposed in [78]. is
highly recommended. The experimental setup is usually limited
1o a small-scale network. Thus, applying the ML model in a
large-scale operational network requires the use of adaption and
generalization techniques.

Training ML algorithms with operational data confronts the
maodel to the real condition of the field. However. the data collec-
tion process in this case is complex due to the lack of monitoring
and data extraction tools in the optical layer and the inability to
define on-demand data extraction scenario. For instance, data
cannot be extracted from unfeasible or low QoT lightpath and
cguipment configuration settings cannot be changed for training
purposes. Moreover, operational datasets are less diverse in
terms of features availability and variation. In fact, these datasets
are tightly linked to the network from which they were collected.
Since feature distributions could change from one network o
another. transfer learmning could be applied to generalize the
model between heterogeneous networks (or domains} as shown
in [56].

We notice that most papers use synthetic or experimental data
to train ML models. Only a few studies have used data from an
operational network such as [44]. [64] and [65] use data extracted
from a ficld tnal testbed with a total 436.4 km optical path over
the national dark fiber facility in U.K. The choice of a dala
source reguires a balance between simulation flexibility and
represenfation. The ideal scenario is to have enough vanation
in ficld data to train the models correctly. But since this is far
from being immediately achievable, we consider thal it is more
convenient to train models with synthetic or experimental data
mixed with samples of operational data to generalize the model's
performance.

BLAR|

Data collection concerns hamper research focused on the
application of ML in optical networks. While it is justified to
adopt an optimist outlook and assume that the data scarcity
will be resolved in the future. we believe that it will be more
beneficial to actively tackle the problem by proposing detailed
data collection schemes alongside the ML solutions as in [64], or
by only taking inlo consideration parameters that are available
in the field as feastures as in [75].

. ML Models and Inpui/iOutpui Feafures

The choice of input features and ML model is motivated
primarily by the scope of the solution. If we assume thal the goal
is Lo estimate a QoT indicator., the input feature of the model must
fully describe the factors that impact this indicator. Stmilarly, the
ML maodel must be sufficiently complex to model the impact of
said leatures on the indicator. In the surveyed papers, we find
different levels of features. The first level concerns the end-to-
end lightpath features. such as total length of the lightpath, and
number of hopsfspans [37]. These leatures are ofien related Lo the
lightpath under study rather than considening the entire network.
The next level include data related (o specific equipmentifiber
through the path such as the attenuation coefficient of the fiber
spans, or the amplificr gains in [41]. The third level concern in-
formation about the co-propagating lightpaths (iL.e.. neighboring
wavelengths). These features can runge from a simple number
of wavelengths toa detailed description of the spectral load [52].
The fourth level is to use a feature representation of the whole
network and its lightpaths. This can be modeled using matrixes
or graphs as i [38]. Feaiure representation of the network can
alzso be provided with other information depending on the use
case: information about shices [61]. calculated features from DSP
constellations [44]. or analytical model output [51]. Setting the
level of details n features depends on the impairments Lo be
considered and the level of precision to be achieved by the
ML-model. For instance, study [38] proposes a graph based
feature representation of all the lightpaths in the networks (i.c.,
fourth level of festure representation) because they aim to lake
into consideration inter-core crosstalk effects between all the
lightpaths. Fig. 5 shows the various levels of feature extraction
that can be used as input of ML models. Table V further shows the
data that must be extracied from the network: in order to exiract
these features. as well as the operational requirements to collect
them. The wse of higher level of data probably improves the
precision of estimated QoT but it could lead 1o more complex ML
model as well as increase the cost of deploying such solution for
a network service provider. For instance; the existing data in the
NMS are sufficient to retrieve level L 1-data. In this case. the cost
needed o deploy such solution mainly concerns the data storage
and ML processing. For illustrative purposes. we estimate the
rental cost for data storage and execution of algorithm at 10 k€
per month for an ML-solution deployed in one thousand-node
network. For levels L2, L3 and L4, streaming telemetry protocol
and dedicated hardware are needed to obtain measurement from
ports. We estimate the cost of the cards in the order of 1€ per
port.

The output of the ML model mainly depends on the scope of
the solution. If the output is a QoT indicator that could not be
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measured in the real network, the only source of data to train
and validate the model will be expenments and simulations.
Furthermore. the model could not be adjusted in a closed loop
architecture during the life of the network. Therefore, the QoT
indicator should be carefully chosen to ensure a practical vali-
dation of the solution.

D, Performance and Evaluation Metrics

Several metrics exist o assess the performance of ML mod-
els. The choice of metric depends primanly on the type of
model (regression or classification). and on the performance
1o evaluste. In the case of classification. some studies such as
[61] use the accuracy metric, which gives the rate of successful
classifications but does not give information on false positives or
false negatives. In the case of regression, a Root Mean Squared
({RMSE) orfand Mean Absolute Emmor (MAE) operator are used
[40][68]. Using a varied list of evaluation metrics assesses better
the model's performance. for instance. providing AUC scores for
classification as in [36], and error distnbulion for regression as
in [40]. These evaleation metrics allow to precisely know the
model capability which could be helplul for some operational
settings like the specification of network margins.

Furthermore, careful attention must be given to data biases.
such as a dataset with higher percentage of a class over another.
Multiple papers have used cross validation to detect overfitting
problems like in [68] and [33]. But the best approach is to
validate the performance on completely different dataset such
as in [44].

In addition to the accuracy of QoT estimation, other evaluation
metrics such as network capacity gain [49] or potential resource
saving [33] are relevant to show the added-value of the proposed

solution. Nevertheless. the assessment of resource saving should
also take into consideration the extra cost of deploying the ML
sojution such as the probes for data monitoring. Finally, a com-
parison must be established with existing solutions, especially
with analytical models in the case of ML-based QoT estimators
as im [54].

V. CONCIUSION

Using machine leaming to improve the QoT estimation has
sech @ surge in popularty over the last years. Therefore, we
provide in this paper a survey on studies that tackle this rescarch
topic from different angles. We distinguish four categories of
models using ML for QoT estimation. The first category consists
of building ML model to check the feasibility of a path. The
second category aims to make the ML-based model as full
alternative of analytical models. The third category uses ML 1o
improve analytical models by either reducing the uncertainly on
inpul parameters, modeling equipment or assessing hard to com-
potc impairments or coefficients to supplement the analytical
muoxdels. The last category consists of improving the performance
and generalization ability of ML-based solotion by enhancing
the samples of the dataset in the training phase through transfer
learning or active leamning techniques.

While the results of the proposed algorithms are generally
satisfactory, some concerns remain regarding their ability 1o be
generalized in order to support complex optical transport net-
work topologies and various equipment configurations. More-
over, the data scarcity and additional cost related to monitoring
data and implementing these solutions arc among the challenges
that hinder the deployment of ML-based QoT estimator in the
operational networks.
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