
Competitive Online Scheduling Algorithms with
Applications in Deadline-Constrained EV Charging

Bahram Alinia⇤, Mohammad Sadegh Talebi†, Mohammad H. Hajiesmaili‡,
Ali Yekkehkhany§, and Noel Crespi⇤

⇤ Institut Mines-Telecom, Telecom SudParis, 91000 Evry, France
† Department of Automatic Control, EECS, KTH Royal Institute of Technology, Stockholm, Sweden

‡Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA
§University of Illinois at Urbana-Champaign, IL, USA

Emails: bahram.alinia@telecom-sudparis.eu, mstms@kth.se, hajiesmaili@jhu.edu,
yekkehk2@illinois.edu, noel.crespi@mines-telecom.fr

Abstract—This paper studies the classical problem of online
scheduling of deadline-sensitive jobs with partial values and
investigates its extension to Electric Vehicle (EV) charging
scheduling by taking into account the processing rate limit of
jobs and charging station capacity constraint. The problem lies in
the category of time-coupled online scheduling problems without
availability of future information. This paper proposes two online
algorithms, both of which are shown to be (2� 1

U)-competitive,
where U is the maximum scarcity level, a parameter that
indicates demand-to-supply ratio. The first proposed algorithm
is deterministic, whereas the second is randomized and enjoys
a lower computational complexity. When U grows large, the
performance of both algorithms approaches that of the state-
of-the-art for the case where there is processing rate limits on
the jobs. Nonetheless in realistic cases, where U is typically small,
the proposed algorithms enjoy a much lower competitive ratio. To
carry out the competitive analysis of our algorithms, we present a
proof technique, which is novel to the best of our knowledge. This
technique could also be used to simplify the competitive analysis
of some existing algorithms, and thus could be of independent
interest.

I. INTRODUCTION

Online scheduling of heterogeneous deadline-constrained
jobs in the presence of limited resources is a fundamental,
yet challenging problem in various application scenarios.
Notable examples are network buffer management [1], [2],
processors sharing [3], [4], as traditional applications, and
cloud job scheduling [5] and electric vehicle (EV) charging
scheduling [6]–[8], as the state-of-the-art examples.

In the classic form of the online scheduling of deadline-
sensitive jobs, there is a limited resource (e.g., router’s buffer,
CPU time, or the maximum power capacity of EV charging
station) that is shared among a set of jobs (users, task, or
EVs) that arrive over time in an online fashion. The jobs are
heterogeneous in terms of arrival, deadline, demand, and value
(or weight), and the goal is to maximize total value obtained
from the jobs, subject to the resource capacity constraints.
The target applications could be categorized into full [9], [10]
and partial [11]–[17] execution models. In the present work,
we focus on the latter, where partially completed jobs get
partial values proportional to their received resource. Notable
examples of partial models are job scheduling in web search

applications [18], multimedia content transmission [11], and
EV charging scheduling [8].

The underlying classic problem under partial execution
model has been first introduced in [11], where two simple
greedy heuristics are proposed. Our focus in this paper is
on online algorithms with a bounded worst-case performance
determined by their competitive ratio

1 to maximize charg-
ing station gain. Using the competitive analysis [19], the
authors in [11] demonstrated that both algorithms achieve a
competitive ratio of 2. However, the problem setup in [11]
does not take into account the maximum processing rate of
the jobs. With extensive applications in the recent research
topics, the problem has been extended to several other settings
such as multi-resource allocation [17], providing resource
commitment [20], and truthful analysis [10], among others.
We review the related literature on these in Section II.

This paper especially focuses on the application of schedul-
ing that is identified with the advent of EVs. EVs are a
promising alternative for the conventional vehicles considering
their significant advantages in energy efficiency, zero emission,
and relieve reliance on fossil fuels. With increasing number of
EVs, their charging demand can pose a tremendous challenge
to the power system operation [6]–[8]. EV charging demand,
however, is usually deferrable implying that there is often
considerable flexibility in charging schedule.

It turns out that the problem of EV charging scheduling in
a charging station and the cloud job scheduling problem share
some similarity in structure. Similarly to the job scheduling
problem, EVs arrive to the charging station in an online
fashion, each of which with different arrival time, deadline,
demand, and value. The resource constraint in EV charging
scenario is the limited power of the charging station to be
allocated to the EVs at each time slot. The power constraint is
determined by the chargers’ or transformers’ output power or
is set manually by the station operator. Despite these similari-
ties, EV scheduling problem poses an additional constraint that
makes the corresponding classic job scheduling problem more

1An online algorithm A is c-competitive for c � 1 if for any input instance
the optimal gain is at most c times the algorithm’s gain.

challenging. More specifically, the input power of EV’s battery
is limited to a specific amount called maximum charging

rate. Therefore, unlike the traditional scheduling problems, the
completion time of a demand in EV scheduling problem not
only depends on the availability of the resources, but it is also
dependent on the maximum charging rate of its battery.

In this paper, we revisit the deadline constrained job
scheduling problem with partial values and limiting maximum
processing rate of the jobs, and make the following key
contributions:

1) We propose a deterministic online algorithm, WFAIR,
along with a simple randomized algorithm, WRAND,
for the EV charging scheduling problem with capacity
constraint of charging stations and maximum charg-
ing rate constraint. We show that both algorithms are
(2� 1

U
)-competitive, where U is the maximum scarcity

level of the system (see Definition 1 for a formal defi-
nition). To the best of our knowledge, amongst existing
algorithms capable of respecting processing limit of the
jobs, none of them attains a competitive ratio better than
2.

2) We examine the performance of the proposed algorithms
by trace-driven experiments. As our results show, the
empirical cost ratios of our algorithms are much better
than the obtained theoretical competitive ratios.

3) To accomplish the competitive analysis of the two algo-
rithms, we propose a new proof technique that can be
applied to a wider class of deadline-constrained online
scheduling problems beyond this work. In particular,
when applied to derive competitive performance bound
of an existing algorithm in [11], the presented technique
recovers the same results using a simpler proof. We
therefore believe that it could be of independent interest
beyond EV charge scheduling problem as well.

The rest of this paper is organized as follows. In Section II,
we review the literature. In Section III, the tailored system
model for EV charging application is introduced and the
problem is formulated. Section IV proposes two deterministic
and randomized algorithms. Section V is devoted to the com-
petitive analysis of the proposed algorithms. Simulation results
are reported in Section VI. Finally, Section VII concludes the
paper and highlights future directions.

II. RELATED WORKS

The job scheduling problem has appeared in different ap-
plication domains including task scheduling in processors [3],
[4], cloud computing [5], [10], [16], [17], and network buffer
management [1]. In this problem, a decision maker aims to
maximize the total value of processed jobs in the presence of
deadline and resource constraints under heterogeneity in the
value of jobs. In this section, we first look over the existing
works in the related domains (Section II-A), and then review
the EV scheduling problem (Section II-B).

A. Classic Job Scheduling Algorithms

As there is a plethora of real-world applications for the
problem, extensive studies have been conducted on the basic
form of the problem [1], [10]–[18], [20]–[23] with a focus on
online algorithm design. These studies can be classified into
full execution and partial execution models. As our problem
belongs to the partial execution category, we only review
works related to partial execution. We refer to [9] as the offline
result, and [1], [10], [20]–[23] as online results.

Studies in [11]–[18] considered partial execution model
considered in this paper. Two simple and natural greedy
algorithms named FIRSTFIT and ENDFIT are proposed in
[11], where both algorithms are 2-competitive and the bound
is tight. For non-decreasing concave utility functions, the
ISPEED algorithm in [16] provides competitive ratio of 2+↵,
where ↵ is a shape parameter. The study is extended in [17]
to the case of multi-resource scenario by taking into account
the processing limit of jobs and providing a competitive ratio
of 2. In [14], the authors provide a lower bound of 1.236 for
the competitive ratio and propose MIXED, which is shown
to be 1.8-competitive. An improvement to this result appears
in [13], where the authors propose MIX, and show that it is
e

e�1 ⇡ 1.582-competitive. The idea is that each job receives
some resources according to its unit value unless its unit
value is less than a threshold. Furthermore, a lower bound of
1.25 is provided for the competitive ratio of any randomized
(and hence deterministic) online algorithm. We stress that
filling the gap between the lower and the upper bounds is
still an open problem. Moreover, authors provide an upper-
bound of 1.618 when time sharing is not allowed (i.e., only
one job can be processed at each time). [12] studied the
problem when time sharing is not allowed and the number
of concurrent jobs, m, is limited. Their proposed algorithm,
GAP, is 1.618-competitive when there are only two concurrent
jobs. However, GAP attains a larger competitive ratio when
the number of concurrent jobs increases. Studies in [15],
[18] address scheduling in interactive services such as web
servers and finance services but do not provide competitive
analysis for the proposed methods. We emphasize that in our
model jobs (EVs’ charging demand in our case) have limited
processing rate, which adds to the complexity of the problem.

B. EV Charging Scheduling

There is a growing number of studies in the EV scheduling
problem (see, e.g., [8], [24]) to provide efficient algorithms
aiming to optimize different objective functions including
aggregator profit, users’ comfort level, etc. In this section, we
will focus on the studies that propose competitive algorithms,
i.e., those algorithms whose worst-case performance with
respect to the optimal offline solution is bounded.

The EV scheduling problem is a special case of job
scheduling problem where the processing limit of jobs is an
essential constraint to be considered. Therefore, the studies
reviewed in Section II cannot be directly applied to the EV
problem. Although there are some exceptions [9], [17], [21],
yet none of them provide a competitive ratio better than 2.

Moreover, [9], [21] consider a slackness parameter in their
model (see Section II-A), which we believe cannot capture
the real world scenarios. Also, the algorithm in [17] reduces to
FIRSTFIT algorithm [11] which is compared to our algorithms
in simulation section. An online e

e�1 ⇡ 1.582-competitive
algorithm is developed in [25] but the constraint on the
charging speed of the EVs is missing from the formulation.
Moreover, the authors assume that all EVs have the same
demand. Assuming that there is no resource constraint in
charging station and the objective is to minimize the cost
for the aggregator, [26] and [27] proposed online algorithms,
called SOCA and ORCHARD respectively, that achieve the
optimal competitive ratio of 2.39. The studied problem in this
paper is fundamentally different than [26] and [27] in the
constraint set and the objective function. [28] considers the
same model as described in this paper and proposes a truthful
online scheduling algorithm assuming that discharging of EVs
can be done instantaneously in their departure (referred to as
on-departure burning) and EVs have the same charging rate.
The authors extended the work in [29] and [30] to the case
of heterogeneous charging rates, and proved that the proposed
algorithm is 2-competitive. However, the assumption of on-
departure burning is not realistic. [31] proposed the TAGS
algorithm and proved that it attains an optimal competitive
ratio. However, in their model all EVs have the same unit
value and there is no limit on the charging speed. Under
the same model, [7] proposed DSAC, an online scheduling
algorithm with admission control (i.e., on-arrival notification).
DSAC achieves an optimal competitive ratio for the case of
linear utility function. In this paper, we propose competitive
online algorithms for EV scheduling problem where their
competitive ratios are less than the best known results under
fairly reasonable assumptions. To the best of our knowledge,
there is no online algorithm achieving a competitive ratio
better than 2 that respects charging rate limitations of the EVs
(or jobs).

III. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a discrete time-slotted system where the time
horizon is divided into T time slots indexed by t 2 T :=
{1, . . . , T}. Time slots are assumed to be of equal lengths. We
present our model in the context of EV charging scheduling.
Consider a single charging station with capacity (resource)
constraint of C (in kWh, say) to serve a set comprising n users
(EVs, or jobs, used interchangeably) indexed by j. User j is
represented by its demand profile ⇡j = hTj , vj , Dji, where
Tj denotes the availability window and vj is the value for
receiving demand Dj . The availability window Tj consists of
all time slots from the arrival to the departure of user j. Let
K denote the maximum charging rate of the EV, which is
assumed to be fixed for all EVs2. We denote by ⇢j =

vj

Dj
the

unit value (a.k.a. marginal value [9] or value density [22]) of
user j.

2Our algorithms can be straightforwardly extended to the setting with
heterogeneous charging rate demands. We consider fixed rates to facilitate
our competitive analysis.

TABLE I: Summary of notations
Notation Description

T Set of time slots with |T | = T , indexed by t

Nt Set of available users at t with |Nt| = nt

Mt Set of active users at t with |Mt| = Mt

Tj Availability window of user j
Dj Demand of user j
vj Value of user j for receiving demand Dj
K The maximum charging rate of users
⇢j Unit value of user j, i.e., ⇢j = vj/Dj
Rj,t Residual demand of user j at t:

Dj �
P

t02Tj ,t0t yj,t0

C Capacity constraint of the charging station
yj,t decision variable, the amount that user j is charged at t

We consider an online setting in which the profile of each
user is only known to the scheduler upon its arrival.

We assume a preemptive model in which the scheduler is
allowed to pause charging of an EV at any time and resume
it later. We denote by yj,t 2 [0,K] the allocated resource
to the EV j at slot t. Moreover, Rj,t = Dj �

P
t0:t0t

yj,t0
is the residual demand of EV j at time slot t. We consider
the partial charging model, where if EV j receives its total
demand Dj within its availability window, the obtained value
is vj . Otherwise, its gain would be

P
t2Tj

yj,t⇢j .
Next we introduce some definitions. We say that EV j

is available at time slot t if t 2 Tj . Moreover, given the
scheduling policy, EV j is active at time slot t if it is available
at t but its charging demand is not fulfilled yet. Finally, EV
j is said to be selected at time slot t if yj,t > 0. For any
time t, let Nt and Mt denote the set of available and active
EVs at time slot t, respectively. Further, let nt and Mt be
the cardinality of Nt and Mt, respectively. Under a given
algorithm A, introduce SA,t as the set of selected EVs at time
t by A:

SA,t := {j : yA
j,t

> 0} .

Moreover, we define SOPT,t := {j : y?
j,t

> 0}, where y?
j,t

is
the allocated resource to j at t by the optimal solution.

The key notations used in this paper are listed in Table I.
Having introduced these notations and definitions, we may

formulate the EV scheduling problem under partial execution
model as follows:

RJSP : max
~y

nX

j=1

⇢j
X

t2Tj

yj,t (1a)

s.t.
X

t2Tj

yj,t  Dj , 8j (1b)

X

j:t2Tj

yj,t  C, 8t (1c)

0  yj,t  K, 8j, t, (1d)
yj,t = 0, 8(j, t) : t /2 Tj (1e)

The RJSP in Eq. (1a) maximizes the charging station gain.
The constraint in (1b) limits the total resources received by
an EV to its demand as there is no benefit for the charging

station to overcharge the EVs. The second constraint in (1c) is
the capacity constraint, and the third and the fourth constraints
enforce the charging station to respect the maximum charging
rate and to charge EVs only during their availability window.

First observe that RJSP is a linear program and can hence
be solved efficiently in offline scenarios. Second, in online
scenarios the problem is less challenging to solve if the
charging rate constraint in (1d) is omitted. In fact, with the
charging rate constraint, part of the resources at some time
slots might remain unused while there are some users that
have not received their entire demand yet. Such users may also
not receive their total demand in the next time slots if they
are not selected for charging due to resource scarcity. Third,
any c-competitive algorithm for RJSP is also a c-competitive
solution for the basic form of RJSP (i.e., the form without
maximum charging rate constraint). However, the inverse is
not necessarily true.

IV. ONLINE SCHEDULING ALGORITHMS

In this section, we propose two online algorithms for RJSP.
The competitive ratios of the two algorithms as well as their
computational complexities are summarized in Table II.

TABLE II: Summary of the proposed algorithms

Alg. comp. ratio Complexity Type
WFAIR 2� 1

U O(n2
T) Deterministic

WRAND 2� 1
U O(nT logn) Randomized

A. The WFAIR Algorithm

In this subsection, we present a deterministic algorithm,
which we refer to as WFAIR, as an online algorithm for RJSP.
The pseudo-code of WFAIR is listed as Algorithm 1.

WFAIR allocates the available resources to the users pro-
portional to their unit values. More precisely, at each time slot
t, the algorithm runs in multiple rounds, where at each round
an active user j receives

min
n ⇢jP

i2Mt
⇢i

⇣
C �

X

i2N

yi,t
⌘
, Rj,t,K � yj,t

o
(2)

units of the resource (Line 6 of the algorithm). The received
resource by each user is linearly correlated to its unit value.
Therefore, for all active users at t, it holds that yj,t > 0 as unit
values are non-zero, i.e., no user will be left unallocated but it
may receive an infinitesimal amount if ⇢jP

i2Mt
⇢i

is very small.
Note that for some users, the second or the third term in Eq. (2)
might be selected. In this case, the aggregate allocated amount
might be less than the total capacity. This potential issue
is resolved by re-allocating the residual resource in multiple
iterations until the entire resource allocated or all the active
users get their maximum possible requirements.

We stress that this allocation rule is in contrast to that of
FIRSTFIT algorithm [11], which allocates the resources to the
most valuable users first.

Fig. 1 shows a general example, which we will refer to
frequently to clarify the technical discussions. If we run
WFAIR over the scenario of Fig. 1, it will share the resources
in the first time slot equally between users 1 and 2 (because

Algorithm 1: WFAIR (for time slot t)

1 Lt Mt

2 yj,t 0, 8j
3 while

P
j
yj,t < C and Lt 6= ; do

4 for all j 2 Lt do
5 �j,t

min
�

⇢jP
i2Lt

⇢i

�
C �

P
i2Nt

yi,t
�
, Rj,t,K � yj,t

6 for all j 2 Lt do
7 yj,t yj,t + �j,t
8 Rj,t Rj,t � �j,t
9 if Rj,t = 0 then

10 Lt Lt\j

⇢1 = ⇢2) and set y1,1 = y2,1 = 0.5. Therefore, the gain (i.e.,
total valuation of allocated resources) of WFAIR at t = 1 is
1. The worst-case for WFAIR happens when no user arrives
at t = 2. In this case, OPT = 2 (by allocating user 2 in the
first slot and user 1 in the second slot) and WFAIR will set
y1,2 = 0.5. So, the total gain by WFAIR is 1.5.

We now illustrate a worst-case instance for WFAIR. For
more in-depth analysis on the competitive ratio of WFAIR see
Section V.

Worst-case instance for WFAIR: Consider a single time
slot scenario with C = K = T = 1 and n users where n is
sufficiently big. The charging profiles are ⇡1 = h{1}, 1

2 ,
1
2 i and

⇡2 = · · · = ⇡n = h{1}, 1
2n ,

1
2 i. Hence, we have ⇢1 = 0.5 and

⇢2 = · · · = ⇢n = 1
2n . Therefore,

P
j
⇢j = 0.5 + n�1

2n which
approximates to 1 as n is large. The optimal solution is to
fully schedule user 1 while giving no resources to the other
users. WFAIR shares the resources between all the EVs such
that EV 1 only receives half of the resource and the other half
is allocated to rest of the users. This leads to a total gain of
0.5 while the optimal gain is 1.

The above example indicates that the competitive ratio of
WFAIR could not be better than 2. We however note that the
presented worst-case scenario is quite unrealistic as the ratio
of demand-to-supply is a small constant in practice. Under this
assumption, the competitive ratio can be improved.

Next we define the notion of scarcity level:

Definition 1 (Scarcity Level [32]). The scarcity level Ut at

time slot t is defined as Ut =
ntK

C
. Moreover, the maximum

scarcity level of the system is U = maxt Ut.

Indeed the scarcity level Ut is an indication of demand-to-

supply ratio, where the demand is roughly Ut times higher
than the available resource.

The following theorem provides the competitive ratio of
WFAIR:

Theorem 1. WFAIR is (2� 1
U
)-competitive.

t=1 t=2

)1,1},2,1({1 S

)1,1},1({2 S

(a) Jobs 1 and 2 arrive at t = 1.

t=1 t=2

)1,1},2,1({1 S

)1,1},1({2 S

(b) Scenario 1: No arrival at t = 2.

t=1 t=2

)1,1},2,1({1 S

)1,1},1({2 S)1,1},2({3 S

(c) Scenario 2: Job 3 arrives at t = 2.

Fig. 1: A simple scheduling scenario. Dotted line indicates a time slot that is not visited yet and the scheduler has no information
about the arriving EVs in that slot.

t=1

)1,2/1},1({ nn S

)1,2/1},1({2 n S

...

)1,1},1({1 S

)1,2/1},1({3 n S

Fig. 2: A worst-case instance for WFAIR.

B. The WRAND Algorithm

In this subsection, we present WRAND, a randomized

algorithm for RJSP. In general, randomized algorithms bring
two main advantages over deterministic ones. First, they are
usually more efficient in terms of the algorithm cost. Second,
a randomized algorithm usually admits a simpler design than
deterministic ones, which in turn makes the implementation
easier. The competitive ratio of a randomized algorithm is
measured with respect to an adversary model, which deter-
mines the way the input sequence to the problem is generated.
We distinguish between two notions of adversary: oblivi-

ous adversary and adaptive online adversary. An oblivious
adversary knows the algorithm code but should choose the
entire input sequence in advance (i.e., before the start of the
algorithm), whereas an adaptive online adversary, can well
condition the input at each time step on the algorithm’s history
of plays.

The WRAND algorithm is motivated as follows (we refer to
Algorithm 2 for its pseudo-code). At each slot t, the algorithm
selects one or multiple active users randomly with a probability
proportional to their unit values: the more the unit value of
a user, the higher the probability it will be selected. More
specifically, the algorithm maintains a set Lt that comprises
all active users whose demand has not been met. Then, at each
round of the ‘while’ loop, it selects a user j with probability
proportional to ⇢jI{j2Lt}

, where for an event X , IX = 1
if X holds, and IX = 0 otherwise. Then, the selected user is
processed with the highest rate (Line 5). The process continues
until no more user can be processed.

Theorem 2. WRAND is (2 � 1
U
)-competitive against an

Algorithm 2: WRAND (for time slot t)

1 Lt Mt

2 yj,t 0, 8j
3 while

P
i
yi,t < C and Lt 6= ; do

4 Select user j with probability ⇢jP
i2Lt

⇢i
I{j2Lt}

5 yj,t min{K,Rj,t, C �
P

i
yi,t}

6 Lt Lt\j

oblivious adversary.

C. Discussion

We provide some remarks on the proposed algorithms.
• First, WFAIR and WRAND characterize the competitive

ratio as a function of the scarcity level. The worst compet-
itive ratio bound (equal to 2) for these algorithm, which
occurs when U tends to infinity, matches the existing
results with maximum charging rate [9], [17], [21]. In
practice, however, the scarcity level is expected to be a
small constant as the capacity is usually set based on
the expected demand (as in, e.g., a cloud). Fig. 3 depicts
the competitive ratio of the proposed algorithms against
different values of U .

• The time complexity of WFAIR and WRAND are O(n2T)
and O(nT log n), respectively. Thus, WRAND is a better
choice in terms of computational complexity while attain-
ing the same competitive ratio. Due to space constraints,
we omit the details of the time complexity analysis.

• Finally, we mention that both our proposed algorithms are
deadline-oblivious as they do not use the users’ deadline
in decision making. This property, on the one hand,
proves useful in scenarios where the users’ deadline are
not provided to the system. It also makes the implemen-
tation easier. On the other hand, deadline-aware schedul-
ing algorithms may enjoy a better a better competitive
ratio (than that of deadline-oblivious ones) by utilizing
the deadline information. Probably, no deadline-oblivious
scheduling algorithm for RJSP can attain a competitive
ratio better than 2 � " for all " > 0 when U grows
large. An intuitive proof for this could be obtained by
considering a scheduling problem in two time slots (i.e.,
T = 2) with n + 2 users, C = K = 1, and setting

1 1.4 1.8 2.2 2.6 3
Scarcity level (U)

1

1.2

1.4

1.6

1.8

C
om

pe
tit

iv
e

R
at

io
WFAIR/WRAND

Fig. 3: Competitive ratio of proposed algorithms w.r.t. scarcity
level (Definition 1).

⇡1 = · · · = ⇡n = h{1, 2}, 1, 1i and ⇡n+1 = h{1}, 1, 1i.
Since users 1 to n + 1 only differ in their deadlines,
they could not be distinguished by a deadline-oblivious
algorithm. This would lead to a situation in which, with
a high probability, user n + 1 at t = 1 would not be
allocated any resource. In this case, the adversary can set
⇡n+2 = h{2}, 1, 1i, thus resulting in a competitive ratio
of 2.

V. COMPETITIVE ANALYSIS

A. Preliminaries

The competitive analysis of our proposed algorithms relies
on a proof technique, which is novel to the best of our
knowledge. In this subsection, we describe our proof technique
and illustrate it through some examples.

Let A be an online algorithm that outputs a feasible solution
for RJSP. Let yA

j,t
denote the resource (charging rate) allocated

to user j at time t under A, and ALG be the corresponding
objective value. Fix an optimal offline algorithm with objective
value OPT and charging rates y?

j,t
, j 2 N , t 2 T . If yA

j,t
� y?

j,t

for all j and t, then A is optimal. However, if there exists
a user j and a time slot t such that y?

j,t
> yA

j,t
, then the

difference y?
j,t
�yA

j,t
might increase the gap between ALG and

OPT (by the amount (y?
j,t
�yA

j,t
)⇢j). Let Bj,t be the block

3 of
the resource that A allocated to user j at t with |Bj,t| = yA

j,t
.

Furthermore, denote by B̄j,t the block corresponding to the
additional resource that the optimal algorithm allocated to user
j at t as compared to A, which could be feasibly allocated by
A to user j at t.

We denote by �j,t the total gain that could be obtained by
A if it had allocated Bj,t [B̄j,t to j at time t. We have

�j,t = ⇢jy
A

j,t
+ ḡj,t , (3)

where ḡj,t denotes the gain of A in block B̄j,t. To calculate
ḡj,t, we need to know the valuation of EV(s) (if any) that
occupied block B̄j,t as well as the size of B̄j,t, which we
denote by �j,t. Based on the previous discussion, �j,t can be
determined as follows:

�j,t =

(
min{y?

j,t
� yA

j,t
, Rj,t} y?

j,t
� yA

j,t

0 otherwise.
(4)

3Block is a conceptual term that facilitates our theoretical analysis and is
not appeared in the main body of algorithm design.

The gain of A in sum of the two blocks B̄j,t and Bj,t is
⇢j�j,t units less than that of the optimal solution unless A

allocates the difference �j,t to some other EVs and obtains
the corresponding gain, ḡj,t. If A allocates the whole block
B̄j,t to a single EV i, then ḡj,t = �j,t⇢i. More complex cases
where there are more than one EV that occupy B̄j,t will be
considered later in the competitive analysis of our algorithms.

Next we introduce the notions of gain and loss. The gain
of algorithm A at time t is defined as follows:

�A,t =
X

j

⇢jy
A

j,t
. (5)

Furthermore, we note that ALG =
P

t2T
�A,t.

Define LA,t as the loss of A at t expressed as

LA,t = OPT � OPT�t

A
,

where OPT�t

A
is the optimal value of a variant of RJSP

where the resource allocated to any user i at time t coincides
to that allocated by A. Equivalently, OPT�t

A
is the optimal

value of RJSP with the following additional constraint: for
all i, yi,t = yA

i,t
. Moreover, the total loss of A is given by

LA =
P

t2T
LA,t. The value LA,t characterizes the amount

that A deviates from OPT at slot t. Define the loss of user j
at slot t as

Lj,t = ⇢j�j,t, t 2 Tj . (6)

Then an upper bound on LA,t can be obtained as follows:

LA,t 

X

j2SOPT,t

Lj,t.

In the following theorem, we relate the notion of loss of an
algorithm A to its competitive guarantee.

Theorem 3. If Lj,t  c�j,t for all j and t, for some c � 0,

then A is (1 + c)-competitive.

In what follows, we first define the notion of work-
conserving algorithm and then provide two examples to il-
lustrate the application of the technical tool described above.

Definition 2 (Work-Conserving Algorithm [33]). A scheduling

algorithm is work-conserving if it processes requests as long

as there is some resources to allocate.

Example 1: Consider a scheduling problem during 2 time
slots (T = 2) with C = 1 and K = 1 as shown in Fig. 1a.
At the first time slot, users 1 and 2 arrive with demand
profiles ⇡1 = ({1, 2}, 1, 1) and ⇡2 = ({1}, 1, 1). Consider an
algorithm A that selects user 1 to process at time slot 1. The
gain at the first time slot is �A,1 = 1. For the second slot, we
consider two scenarios as shown in Figs. 1b-1c. In the first
scenario (Fig. 1b), where no EV arrives, we get OPT = 2
(by setting ~y?1 = [0, 1] and ~y?2 = [1, 0]). Since A already
fully charged EV 1, we get ALG = 1 (with ~y1 = [1, 0]
and ~y2 = [0, 0]). To obtain OPT�1

A
we fix algorithm A’s

decision at time slot 1 (that is selecting user 1) and find the
maximum objective value that can be obtained by A which

is 1. Therefore, OPT�1
A

= 1. The loss of A at t = 1 is then
LA,1 = OPT � OPT�1

A
= 2 � 1 = 1. Now let us consider

the second scenario, where user 3 arrives at t = 2 with
⇡3 = ({2}, 1, 1) (in Fig. 1c). In this case, if A sets y3,2 = 1,
then �A,2 = 1 and thus �A = 2. We have OPT = 2 and so,
OPT�1

A
= 2 and LA,1 = OPT � OPT�1

A
= 2� 2 = 0.

Example 2 (Competitive analysis of FIRSTFIT [11]):
FIRSTFIT [11] is a natural 2-competitive greedy scheduling
algorithm that sorts the users based on their unit values and
selects them one at a time until no more user can be allocated.
Each time, the most valuable EV from the sorted list is selected
and the processing rate is set to the maximum feasible rate.
The algorithm continues until no more feasible allocation is
possible (therefore, the algorithm is work-conserving). Ac-
cording to Theorem 3, the competitive ratio of FIRSTFIT is
(1 + maxj,t Lj,t/�j,t).

In what follows we apply our technique to derive the
competitive ratio of FIRSTFIT. For selected user j at slot t
by the optimal solution, we have Lj,t  ⇢jy?j,t. If �j,t = 0, it
means that the block B̄j,t is allocated to some other users with
at least the same unit values as j otherwise, FIRSTFIT would
process j with a higher speed. Therefore, ḡj,t � ⇢j�j,t. Thus,
noting that yj,t +�j,t = y?

j,t
, we get

Lj,t

�j,t

=
⇢j�j,t

⇢jyj,t + ḡj,t


⇢j�j,t

⇢j�j,t

= 1.

Applying Theorem 3 proves that FIRSTFIT is 2-competitive.
We conclude this subsection by the following definition:

Definition 3 (Saturated Time Slot). A time slot t is said to be

saturated if it satisfies
P

j
yj,t = C.

B. WFAIR Analysis (Proof of Theorem 1)

We first note that we assumed U > 1. For the case where
U  1, it is trivial to show that WFAIR is optimal as there
will always be sufficient resources to schedule all users with
the maximum speed.

To prove the theorem, we compute Lj,t and �j,t for WFAIR,
and then apply Theorem 3. Without loss of generality, assume
0 < ⇢i  1 for all i and

P
i2Mt

⇢i = 1. This is always
possible through normalization, namely by dividing the unit
value of each user to the sum of unit values of all active
users. Moreover, we assume that for any active job i 6= j
at time t, it holds that Ri,t  K. This assumption can be
relaxed by temporarily aggregating multiple demands into a
single demand for the current slot and then splitting them at
the next slot.

Let A = WFAIR, and to ease notation, in the rest of the
proof we omit the dependence of yA

j,t
on A for all j and t (so

yj,t := yA
j,t

). Fix an optimal solution and a user j 2 SOPT,t. Let
y?
j,t

denote the amount of resource allocated by the optimal
solution to j at time t. Since we consider the worst-case, in
the rest of the proof we assume that j is not completed by
WFAIR (otherwise, Lj,t = 0) and thus, j 2Mt.

If
P

i2Mt
min{K,Ri,t}  C, then all active users can be

scheduled with the maximum feasible rate at t and the gain is

⇢i min{K,Ri,t} for all i 2Mt. In this case, LA,t = 0 since
for any available user i, yi,t = min{K,Ri,t} � y?

j,t
or i is

completed in an earlier time slot.
Now, we focus on the case whereP
j2Mt

min{K,Ri,t} > C. First, observe that WFAIR
is work-conserving since the “while” loop in WFAIR will not
terminate if more resources can be allocated to the users. We
further deduce that time slot t is saturated. This implies that
there must be a non-empty set H ✓ Nt\{j} of users such
that they received the difference �j,t. Let H = |H| and note
that H  nt � 1. Let yi,t, i = 1, . . . , H be the amount that
WFAIR allocated to user i 2 H with

�j,t =
X

i2H

yi,t

Then, we have ḡj,t =
P

i2H
⇢iyi,t. According to allocation

strategy of WFAIR, yj,t = min{⇢jC,K,Rj,t}. Since �j,t >
0, thus, yj,t < K. Also, as j is not yet finished by WFAIR at
t, yj,t < Rj,t. Therefore, yj,t = ⇢jC. Since yi,t  ⇢iC for all
i 2 H. Thus, X

i2H

⇢iyi,t �
1

C

X

i2H

y2
i,t
,

which further gives ḡj,t �
1
C

P
i2H

y2
i,t
. The right-hand side

of the above is minimized with yi,t =
1
H
�j,t. Hence,

ḡj,t �
1

C

X

i2H

�2
j,t

H2
=

�2
j,t

CH
,

and we get
Lj,t

�j,t


⇢j�j,t

⇢2
j
C +

�2
j,t

CH

.

Let �j,t = a⇢j where a > 0 is a constant to be identified.
By replacing �j,t we have Lj,t

�j,t


aCH

C2H+a2 . The maximum
value of this term is obtained by setting a = C. Therefore,

Lj,t

�j,t


C2H

C2H + C2
= 1�

1

H + 1
.

It just remains to find an upper bound for H . To this end,
we define the notion of importance ratio.

Definition 4 (Importance Ratio [13]). Given a set M of users,

the importance ratio of M is defined as the maximum ratio of

unit values of users in M, i.e., rM := maxi,j2M

⇢j

⇢i
.

In this paper, we assume that the importance ratio does not
grow with the number n of users. We have:

Lemma 1. Assume that at each time slot t, the unit values of

active users are normalized and add up to 1. Then,

⇢j �
1

n+ rMt � 1
, 8j 2Mt.

Having yj,t +
P

H

i=1 yi,t  K and Ri,t � K for all i 2 H,
we get yi,t = ⇢iC for all i 2 H. Using Lemma 1, we get

HC

n+rMt�1 + ⇢jC  K, thus giving

H 
K(n+ rMt � 1)� C

C
⇡

nK � C

C
= U � 1.

Here, we made the approximation based on the fact that rMt

is a constant and n is large. Therefore,

Lj,t

�j,t


U � 1

U
.

Finally, applying Theorem 3 we conclude that WFAIR is
(2� 1

U
)-competitive. ⇤

C. WRAND Analysis (Proof of Theorem 2)

To analyze competitive ratio of WRAND, we assume an
oblivious adversary model [34], which is reasonable in practi-
cal scenarios. Recall that an oblivious adversary has complete
knowledge about the algorithm’s code but has no information
about the random choices made by the algorithm during its
execution.

Let A = WRAND and for brevity, in the rest of the proof,
omit the dependence of yA

j,t
on A for all j and t (so yj,t :=

yA
j,t

). Fix an optimal solution, and consider a user j and a
time slot t such that j 2 SOPT,t. Without loss of generality,
we make the following assumptions:
(i) Using a similar argument as in the proof of Theorem 1

and to consider a worst-case scenario, we assume that j
is not completed by WRAND at t and slot t is saturated.

(ii) We assume that y?
j,t

> yj,t, since otherwise Lj,t = 0.
(iii) If j 2 SA,t, then Rj,t > y?

j,t
. This is because in the

otherwise case (i.e., Rj,t  y?
j,t

), we get Rj,t  K and
considering the fact that WRAND allocates the maximum
feasible resource to selected users, then j should be
finished at t and thus �j,t = 0 and subsequently Lj,t = 0.

Given that Rj,t > y?
j,t

, we get �j,t = min{Rj,t, y?j,t �
yj,t} = y?

j,t
� yj,t, and using Eq. (6), we have

Lj,t =

(
⇢jy?j,t j /2 SA,t,

0 j 2 SA,t,
(7)

thus giving

E[Lj,t] = Pr(j /2 SA,t)⇢jy
?

j,t
.

If j /2 SA,t, the algorithm prefers another user, name i, with
occupied block B̄j,t. Note that the case that B̄j,t is allocated
to more than one user does not affect the analysis of WRAND
as in this case the weighted average of users’ unit value can be
considered. Therefore, the gain ḡj,t = ⇢iy?j,t and ⇢jyj,t = 0.
On the other hand, when j 2 SA,t, since �j,t = 0, then
ḡj,t = 0. Therefore, using Eq. (3), we can calculate �j,t as

�j,t =

8
><

>:

⇢iy?j,t j /2 SA,t,

⇢jy?j,t j 2 SA,t, Rj,t � y?
j,t
,

⇢jRj,t j 2 SA,t, Rj,t < y?
j,t
.

Using (iii), we ignore the third case and so,

�j,t �

(
⇢iy?j,t j /2 SA,t,

⇢jy?j,t j 2 SA,t.
(8)

Let h : SOPT,t ⇥ T ! R+ be a function with h(j0, t0) =
Lj0,t0/�j0,t0 if j0 /2 SOPT,t and h(j0, t0) = 0, otherwise. Note

that �j0,t0 > 0 as unit values are positive numbers. Using
Eqs. (7) and (8), we obtain

h(j, t) 

(
⇢j

⇢i
j /2 SA,t,

0 j 2 SA,t,

and thus,
E[h(j, t)]  ⇢j

⇢i
Pr(j /2 SA,t).

By the design of WRAND, the selection probabilities are
proportional to the unit values. Hence,

Pr(j /2 SA,t) =
⇢i
⇢j

Pr(i /2 SA,t).

Lemma 2. Let t be a saturated time slot. Then, under A =
WRAND,

Pr(j /2 SA,t)  1�
1

U
, 8j 2Mt.

Now applying Lemma 2 gives

E[h(j, t)]  ⇢j
⇢i

1

⇢j/⇢i
Pr(i /2 SA,t)  1�

1

U
.

Applying Theorem 3, we finally conclude that WRAND is
(2� 1

U
)-competitive. ⇤

VI. SIMULATION RESULTS

In this section, we evaluate the average performance of the
proposed algorithms. Although we provided theoretical bounds
for the worst-case performance of our methods, the average
case performance is still important. We note that it is possible
that an algorithm with poor competitive ratio can beat another
algorithm with a good competitive ratio in the average case.

A. Setup

The default parameter setting, unless otherwise mentioned,
is as follows: we consider a charging station in a time period
of 16 hours with T = 16. The resource constraint at each time
slot is 200 kWh. Similarly to [17], we assume that the number
of arrivals at each time slot follows a Poisson distribution with
a mean of 10. Moreover, the length of availability window
of an EV is independent from the others and follows an
exponential distribution. For each EV, the maximum charging
rate is drawn uniformly at random from the interval [1, 10].
The demand of each EV j is sampled uniformly at random
from the interval [13K|Tj |,K|Tj |], and the value vj is sampled
uniformly from the interval [12Dj , 5Dj].

We used Gurobi solver [35] to find the optimal solution
and compare the performance of WFAIR and WRAND to the
optimal offline solution as well as two other benchmarks:

• FIFO (First In First Out): At each time slot, the priority
is given to the EVs with earlier arrival time.

• EDF (Earliest Deadline First): At each time slot, the
priority is given to the EVs that are closer to their
deadline.

Two major metrics are studied in the simulation: a) the gain
of the system which is identified by the objective function in
RJSP, and b) average response time of the EVs, defined as

50 75 100 125 150 175 200
#of jobs

70

80

90

100

G
ai

n
(%

 o
f o

pt
im

al
)

WFAIR
WRAND
EDF
FIFO

(a) Gain

50 75 100 125 150 175 200
#of jobs

4

5

6

7

8

R
es

po
ns

e
tim

e

WFAIR
WRAND
EDF
FIFO

(b) Response time

Fig. 4: Varying number of EVs.

the average number of time slots to complete EVs’ demand.
To compute the response time, we only considered EVs who
received their total demand and ignored partially charged EVs.

B. Impact of Number of Users

In the first scenario in Fig. 4, the number of EVs is changed
from 50 to 200 while the other parameters are set to their
default values as described in Section VI-A. When the number
of EVs is small, the scheduling problem is less challenging.
As it can be seen in Fig. 4a, for n = 50 the gain of all
methods is close to the optimal one. As n increases, the gain
falls down for all algorithms. On average, WFAIR has the
best performance by achieving 91% of the optimal while the
difference between WRAND, EDF and FIFO is minuscule
(86%, 85% and 85% of the optimal, respectively). The average
response time of all methods increases by increasing number
of EVs, where WFAIR and FIFO show more sensitivity to
this change. Another observation is that the response time of
WFAIR is higher than WRAND while this is reverse for the
gain in Fig. 4a.

C. Impact of Resource Constraint

In the second scenario, the resource constraint at each time
slot, C, is varied from 50 kWh to 300 kWh and the methods
are compared based on their gain and average response time.
By increasing the resource constraint, it is expected that both
gain and response time of the algorithms improve. The reason
is that with more available resources, EVs have not to wait too
long to be allocated. Besides, more EVs can be served at each
time slot. This is observable in Figs. 5a and 5b. Similarly to
the scenario of Fig. 4, WFAIR outperforms WRAND in terms
of gain while there is a small gap between WRAND, EDF,
and FIFO. When the available resource is sufficient to easily
serve all EVs (at C = 300), the gain of all methods converges
to the optimal gain.

D. Confirming the Theoretical Bounds

The analysis in Section IV-A demonstrates that the perfor-
mance of WFAIR should not fall down its competitive ratio
under any input scenario. To verify, we generated 50 random
scenarios with n = 100, C = 200 and set K = 5 which
gives U = 2.5 and the competitive ratio of 1.6. Then, we
compared the WRAND algorithm with the optimal solution in

50 100 150 200 250 300
Resource constraint per time slot

70

80

90

100

G
ai

n
(%

 o
f o

pt
im

al
)

WFAIR
WRAND
EDF
FIFO

(a) Gain

50 100 150 200 250 300
Resource constraint per time slot

4

6

8

10

R
es

po
ns

e
tim

e

WFAIR
WRAND
EDF
FIFO

(b) Response time

Fig. 5: Varying resource constraint.

10 20 30 40 50
Iteration

60

65

70

75

80

85

G
ai

n
(%

 o
f o

pt
im

al
)

WFAIR

Theoretical bound

Fig. 6: Tracking worst-case performance in 50 random scenar-
ios for WFAIR.

each single scenario and plotted the result in Fig. 6. It can be
observed that the gain of WFAIR is always significantly better
than the worst-case gain suggested by the competitive ratio.
The simulation result here confirms the theory.

VII. CONCLUSION

This study set out to tackle deadline constrained job
scheduling problem with its application in electric vehicles.
Two deadline-oblivious online algorithms (one deterministic
and one randomized) have been developed and their perfor-
mance are analyzed by a new proof technique, which can be
used to find upper bound for competitive ratio of a class of
algorithms designed for the studied problem. Under realistic
scenarios where the demand-to-supply ratio is not too high, the
proposed algorithms improve the state of the art result. Further
research should be conducted on the scheduling algorithms
which can utilize deadline information of the users. Moreover,
the proposed proof technique could be extended to support a
wider range of the problems.

REFERENCES

[1] F. Li, “Competitive scheduling of packets with hard deadlines in a finite
capacity queue,” in IEEE INFOCOM, pp. 1062–1070, 2009.

[2] L. Yang, W. S. Wong, and M. H. Hajiesmaili, “An optimal randomized
online algorithm for QoS buffer management,” Proceedings of the ACM

on Measurement and Analysis of Computing Systems, vol. 1, no. 2,
pp. 36:1–36:26, 2017.

[3] M. Weiser, B. Welch, A. Demers, and S. Shenker, “Scheduling for
reduced CPU energy,” in USENIX OSDI, 1994.

[4] F. Yao, A. Demers, and S. Shenker, “A scheduling model for reduced
CPU energy,” in IEEE FOCS, pp. 374–382, 1995.

[5] Y. Zheng, Scheduling and design in cloud computing systems. PhD
Thesis, The Ohio State University, 2015.

[6] Y. Zhou, D. Yau, P. You, and P. Cheng, “Optimal-cost scheduling
of electrical vehicle charging under uncertainty,” to appear in IEEE

Transactions on Smart Grid.

[7] S. Chen, Y. Ji, and L. Tong, “Large scale charging of electric vehicles,”
in IEEE PESGM, pp. 1–9, 2012.

[8] J. C. Mukherjee and A. Gupta, “A review of charge scheduling of electric
vehicles in smart grid,” IEEE Systems Journal, vol. 9, no. 4, pp. 1541–
1553, 2015.

[9] N. Jain, I. Menache, J. S. Naor, and J. Yaniv, “Near-optimal scheduling
mechanisms for deadline-sensitive jobs in large computing clusters,”
ACM Transactions on Parallel Computing, vol. 2, no. 1, pp. 3:1–3:29,
2015.

[10] Y. Azar, I. Kalp-Shaltiel, B. Lucier, I. Menache, J. S. Naor, and J. Yaniv,
“Truthful online scheduling with commitments,” in ACM EC, pp. 715–
732, 2015.

[11] E.-C. Chang and C. Yap, “Competitive on-line scheduling with level of
service,” Journal of Scheduling, vol. 6, no. 3, pp. 251–267, 2003.

[12] F. Y. Chin and S. P. Fung, “Improved competitive algorithms for online
scheduling with partial job values,” in COCOON, pp. 425–434, 2003.

[13] F. Y. Chin and S. P. Fung, “Online scheduling with partial job values:
Does timesharing or randomization help?,” Algorithmica, vol. 37, no. 3,
pp. 149–164, 2003.

[14] M. Chrobak, L. Epstein, J. Noga, J. Sgall, R. van Stee, T. Tichỳ, and
N. Vakhania, “Preemptive scheduling in overloaded systems,” Automata,

Languages and Programming, pp. 800–811, 2002.
[15] Y. He, Z. Ye, Q. Fu, and S. Elnikety, “Budget-based control for

interactive services with adaptive execution,” in ACM ICAC, pp. 105–
114, 2012.

[16] Y. Zheng, B. Ji, N. Shroff, and P. Sinha, “Forget the deadline: Scheduling
interactive applications in data centers,” in IEEE CLOUD, pp. 293–300,
2015.

[17] Z. Zheng and N. B. Shroff, “Online multi-resource allocation for dead-
line sensitive jobs with partial values in the cloud,” in IEEE INFOCOM,
pp. 1–9, 2016.

[18] Y. He, S. Elnikety, J. Larus, and C. Yan, “Zeta: Scheduling interactive
services with partial execution,” in ACM SoCC, 2012.

[19] A. Borodin and R. El-Yaniv, Online computation and competitive

analysis. Cambridge University Press, 1998.
[20] S. Chen, L. Tong, and T. He, “Optimal deadline scheduling with

commitment,” in Allerton, pp. 111–118, 2011.
[21] B. Lucier, I. Menache, J. S. Naor, and J. Yaniv, “Efficient online

scheduling for deadline-sensitive jobs,” in ACM SPAA, pp. 305–314,
2013.

[22] M. T. Hajiaghayi, “Online auctions with re-usable goods,” in ACM EC,
pp. 165–174, 2005.

[23] A. Gupta, R. Krishnaswamy, and K. Pruhs, “Online primal-dual for
non-linear optimization with applications to speed scaling,” in WAOA,
pp. 173–186, 2012.

[24] W. Tang, S. Bi, and Y. J. Zhang, “Online charging scheduling algorithms
of electric vehicles in smart grid: An overview,” IEEE Communications

Magazine, vol. 54, no. 12, pp. 76–83, 2016.
[25] R. Deng and H. Liang, “Whether to charge an electric vehicle or not?

A near-optimal online approach,” in IEEE PESGM, pp. 1–5, 2016.
[26] W. Tang, S. Bi, and Y. J. Zhang, “Online speeding optimal charging

algorithm for electric vehicles without future information,” in IEEE

SmartGridComm, pp. 175–180, 2013.
[27] W. Tang, S. Bi, and Y. J. A. Zhang, “Online coordinated charging

decision algorithm for electric vehicles without future information,”
IEEE Transactions on Smart Grid, vol. 5, no. 6, pp. 2810–2824, 2014.

[28] E. H. Gerding, V. Robu, S. Stein, D. C. Parkes, A. Rogers, and N. R.
Jennings, “Online mechanism design for electric vehicle charging,” in
AAMAS, pp. 811–818, 2011.

[29] V. Robu, S. Stein, E. H. Gerding, D. C. Parkes, A. Rogers, and
N. R. Jennings, “An online mechanism for multi-speed electric vehicle
charging,” in AMMA, pp. 100–112, 2011.

[30] V. Robu, E. H. Gerding, S. Stein, D. C. Parkes, A. Rogers, and
N. R. Jennings, “An online mechanism for multi-unit demand and
its application to plug-in hybrid electric vehicle charging,” Journal of

Artificial Intelligence Research, vol. 48, pp. 175–230, 2013.
[31] S. Chen and L. Tong, “iems for large scale charging of electric vehicles:

Architecture and optimal online scheduling,” in IEEE SmartGridComm,
pp. 629–634, 2012.

[32] Z. Zhang, Z. Li, and C. Wu, “Optimal posted prices for online cloud
resource allocation,” Proceedings of the ACM on Measurement and

Analysis of Computing Systems, vol. 1, no. 1, pp. 23:1–23:26, 2017.
[33] K. Funaoka, S. Kato, and N. Yamasaki, “Work-conserving optimal real-

time scheduling on multiprocessors,” in ECRTS, pp. 13–22, 2008.

[34] R. Motwani and P. Raghavan, Randomized algorithms. Chapman &
Hall/CRC, 2010.

[35] “Gurobi optimizer 5.0,” Gurobi: http://www.gurobi.com, 2013.

APPENDIX

A. Proof of Lemma 1

Let ⇢max,t and ⇢min,t denote the maximum and minimum
unit values at t, respectively. Recall that by definition, rMt =
⇢max,t

⇢min,t
. To prove the lemma, it suffices to derive a lower bound

on ⇢min,t. Observe that the minimal value of ⇢min,t occurs
when there are nt � 1 users with unit value ⇢min,t and one
user with ⇢max,t. It then follows that

(nt � 1)⇢min,t + rMt⇢min,t = 1,

since unit values are normalized. Using nt  n gives the
desired result. ⇤
B. Proof of Lemma 2

Let j 2Mt and consider a saturated time slot t. First note
that by definition, at least C/k users are selected in time
slot t (i.e., nt � C/k), where at each round the selected
users in previous rounds are excluded from the selection pool.
This can be modeled as a hypergeometric distribution with nt

balls, where ⇢jnt of them are of our interest. Furthermore, the
number of draws is C/k and we will succeed if at least one
of those ⇢jnt balls are selected (to simplify the presentation,
we assume that ⇢jnt, C/k 2 N). It then follows that the
probability that user j is not selected is given by:

Pr(j /2 SA,t) =

�
nt�⇢jnt

C/k

�
�

nt

C/k

� .

Using Lemma 1, ⇢j � 1
n+rMt�1 ⇡

1
n

. Moreover, nt
Ut

= C

k
so

that

Pr(j /2 SA,t) ⇡

�
nt�1
nt/Ut

�
�
nt

Ut

� = 1�
1

Ut

 1�
1

U
,

which concludes the proof. ⇤
C. Proof of Theorem 3

To prove the theorem, we provide lower and upper bounds
on LA. First observe from the definition of LA,t that the gap
between OPT and �A is less than or equal to the aggregate
loss over the time horizon:

OPT � ALG  LA.

On the other hand, we have

LA =
X

t2T

LA,t 

X

t2T

X

j2SOPT,t

Lj,t



X

t2T

X

j2SOPT,t

c�j,t

= c
X

t2T

�A,t = cALG.

Putting the two bounds together gives OPT  (1+c)ALG and
completes the proof. ⇤

