
62 IEEE Communications Magazine — Communications Standards Supplement • March 20160163-6804/16/$25.00 © 2016 IEEE

Abstract

This article argues that SDN and NFV, together
with cloud and edge-fog computing, can be seen
as different facets of a systemic transformation of
telecommunications and ICT, called softwariza-
tion. The first impact will be at the edge of cur-
rent telecommunications infrastructures, which are
becoming powerful network and service platforms.
The edge operating system (EOS)
software architecture is proposed
as the means to get there. In fact,
the main feature of EOS is to
bring several service domains, such
as cloud robotics, Internet of Things, and Tactile
Internet, into convergence at the edge. The devel-
opment of EOS leverages available open source
software. A use case is described to validate the
EOS with a proof-of-concept.

Context and Drivers
We are witnessing a period of rapidly growing
interest on the part of industry and academia
in software-defined networks (SDN) [1] and
network function virtualization (NFV) [2]. The
growing interest in these paradigms (re-propos-
ing principles have been well known) is most
probably motivated by the novelty of the over-
all context, specifically their techno-econom-
ic sustainability and high-level performance.
These advances are mainly due to the tech-
nological milestones achieved in the last two
decades: the impressive diffusion of fixed and
mobile ultra-broadband, the increasing perfor-
mance of chipsets and hardware architectures,
the ever-growing availability of open source soft-
ware, and the cost reductions (determined also
by a shift in how IT services are provided).

This article argues that, thanks to these tech-
no-economic trends, SDN and NFV principles
will soon impact not only current telecommuni-
cations networks, but also service and applica-
tion platforms. In fact, SDN and NFV, together
with cloud, edge and fog computing, can be seen
as facets of a broad innovation wave (called
softwarization) that is accelerating the ongoing
migration of “intelligence” toward the users.

In view of that, it is argued that the first
impact of softwarization will be at the edge,
which is defined as the peripheral part of current

infrastructures, ranging from the distribution and
access segments up to the direct proximity to
users (e.g., home, office).

While cloud computing is a well known para-
digm, already exploited from an industrial point
of view, the concepts of edge and fog computing
require, at least for this article, a short defini-
tion. Concerning the former, we basically refer to
ETSI [3] which defines mobile edge computing
as the method of providing IT and cloud-comput-
ing capabilities within the radio access network
(RAN) in close proximity to mobile subscribers.
Fog computing pushes the edge computing par-
adigm up to the end users terminals (e.g., smart
phones) and other devices, which will be able to
store pieces of data and to execute service com-
ponents locally.

Softwarization will be a radical change of
paradigm. Current telecommunications infra-
structures have been exploited with purpose-built
equipment designed for specific functions. In
the future, network functions and services will
be virtualized software processes executed on
distributed horizontal platforms mainly made of
standard hardware resources.

Standard hardware and open source software
will play a strategic role in this profound trans-
formation, by fuelling open innovation while
reducing the investments required to deploy

said infrastructures. For exam-
ple, OpenStack [4] is an open
source platform designed to
provide cloud services. Several
pre-standardization bodies and

fora regard OpenStack as an ideal candidate
for developing orchestration features in NFV
infrastructures. Other examples of open source
software are the SDN controllers that have been
released to date, and ONOS [5].

SDN and NFV open source software adop-
tions will fuel innovation and reduce software
costs. This does not not necessarily mean
CAPEX and OPEX reductions for operators and
service providers. In fact, most open source soft-
ware products may eventually require contracted
third party support to become exploitable in pro-
duction environments for commercial, industrial,
financial, and public service applications.

On the other hand, the entire value chain
will change radically: the “thresholds” for new
players to enter the telecommunications and ICT
(Information and Communication Technology)
markets [6] will be lowered.

Cost savings alone will not be enough to
assure the future sustainability of the telecommu-
nications industry: it is key also to enable inno-
vative service paradigms. Two often-mentioned
examples are “immersive communications” and
“anything as a service,” service paradigms that
are posing challenging requirements for future
telecommunications infrastructures.

“Immersive communications” looks beyond
the “commoditization” of current communication
paradigms (e.g., voice, messaging, etc.) by address-
ing new advanced forms of social communications
and networking (e.g., artificially intelligent avatars,
cognitive robot-human interactions, etc.).

“Anything as a service” is about providing
(anytime and anywhere) wider and wider sets
of ICT services by means of new terminals, even

An Edge Operating System
Enabling Anything-as-a-Service

The authors argue that SDN and NFV, together with cloud and edge-fog computing, can be seen
as different facets of a systemic transformation of telecommunications and ICT, called softwariza-
tion. The first impact will be at the edge of current telecommunications infrastructures, which are

becoming powerful network and service platforms. The edge operating system (EOS) software
architecture is proposed as the means to get there.

Antonio Manzalini and Noel Crespi

COMMUNICATIONS
TANDA RDS S

Antonio Manzalini is with
Telecom Italia, Strategy
and Innovation — Future
Centre.

Noel Crespi is with
Institut Mines-Telecom.

IEEE Communications Magazine — Communications Standards Supplement • March 2016 63

going far beyond our imagination (e.g., intelligent
machines, robots, drones, and smart things) [7].
Imagine, for example, services for improving
industrial and agricultural efficiency, for enabling
decentralized micro-manufacturing, for improv-
ing efficiency in private-public processes, and for
creating and maintaining smart environments.

In summary, softwarization is a systemic
transformation. It is not just about the introduc-
tion of another technology or network layer in
current infrastructures. Rather, it goes beyond
the networks to also impact the service platforms
and the future role of terminals. In this respect,
beyond the technological aspects, softwarization
implies business sustainability and strategic reg-
ulatory issues.

The outline of this article is as follows. We
outline the main enabling technologies, and we
describe the software architecture of the edge
operating system (EOS). We then describe a use-
case and elaborate on the design and development
of the EOS, leveraging open source software.
Closing remarks are provided in the last section.

Enabling Technologies of
Telco Softwarization

SDN and NFV are two of the most-discussed
technologies capable of enabling the softwariza-
tion of telecommunications.

SDN relies on the separation of control and
data-forwarding functions. In principle, this is
applicable to any node of a telecommunication
network (e.g., a switch, a router, or other trans-
mission equipment). Another key character-
istic of SDN is the possibility of executing the
above-mentioned (control) software outside of
the equipment boundaries, for example on ded-
icated IT servers or even in a data centre (e.g.,
cloud computing). Control programmability (via
APIs) is a third relevant aspect of SDN.

NFV is about the virtualization of network
functions and their dynamic allocation and exe-
cution on (almost) general purpose processors
(e.g., x86), shared over multiple customers, data-
streams, and applications. SDN and NFV are
not directly dependent, but they are mutually
beneficial. In fact, when coupled, they amplify
their potential innovation impact on telecommu-
nications infrastructures.

If software-hardware decoupling and the vir-
tualization of functions and services can be seen
as the “common denominator” of softwarization,
the potential differentiation and evolution of
cloud toward edge and fog computing represents
other interesting and synergistic expressions of
the same overall transformation.

TPC is a serious performance bottleneck for
video and other large files (as it requires receiver
acknowledgement) and throughput is inversely
related to round trip time (RTT) or latency. It
is impossible to provide HD-quality streams if
the servers are not relatively close to the users.
At the same time, with just best effort traffic it
will not be possible to achieve the low latency
requirements posed by services such as caching
or interactive applications.

In fact, the “last mile” connection between
a user and the ISP is a significant bottleneck.
According to the FCC’s Measuring Broadband

America report [8], during peak hours ”Fiber-to-
the-home services provided 17 milliseconds (ms)
round-trip latency on average, while DSL-based
services averaged 44 ms.”

It should be mentioned that PON and DSL
delays are intrinsic in the access protocols.
Achieving lower delays means either changing
said protocols or locating all of the necessary
data at the subscriber, including content caches
and databases.

In the latter direction, fog computing pushes
the edge computing paradigm even further, up
to the end users’ terminals and devices, which
are storing data and locally executing pieces of
service logic. This will further amplify the diffu-
sion of applications and the migration of “intelli-
gence” toward the users.

In summary, it is very likely that techno-eco-
nomic drivers and emerging technologies will
create the conditions for exploiting very powerful
network and service platforms at the edges of
current infrastructures. Such platforms will be
able to carry out a substantial amount of storage
and real time computation, thereby supporting
a wide range of innovative communications and
ICT services.

The Edge Operating System
The edge of current telecommunications infra-
structures (i.e., the access areas up to the direct
proximity to users) will become powerful net-
work and service platforms. The EOS software
architecture proposed by this article is the means
to get there. EOS will provide the typical ser-
vices of an operating system, e.g., abstractions,
low-level element control, commonly-used func-
tionalities, message-passing between processes,
management of packets of processes, etc.

For the basic design of the EOS, we took our
inspiration from the architecture of the robot
operating system (ROS) [9], an open source,
widely adopted meta-operating system for robotic
systems. Among the merits of ROS that have been
adopted by EOS is the variety of processes (called
nodes), executed on a number of different hosts,
connected at runtime with logical topologies.

Moreover, another main reason for that
design choice is the observation that a robot,
generally speaking, can be considered a dynamic
aggregation of resources such as sensors, actua-
tors, and processing-storage capabilities, imple-
menting a cognitive loop. These are the same
categories of resources that will populate the
edges of current infrastructures, named infra-
structure elements (IE).

Obviously the domain contexts ROS and EOS
applications are quite different; in fact, the design
of the EOS software architecture has been extend-
ed to meet the edge requirements. In particular,
a physical IE (Fig. 1) has been defined to include
any dynamic combination of sensors, actuators,
processing-storage resources, and data forwarding
capabilities. Sensors, actuators, robots, drones,
routers, and terminals can all be seen as particular
physical IEs. This generalization will help in struc-
turing the functional model of the EOS.

From a functional perspective, IE will provide
a set of services, leveraging the concept of the
self-managed cell reported in [10]. For example,
the set of services may include: discovery services

It is very likely that the
techno-economic driv-
ers and the emerging

technologies will create
the conditions for

exploiting very power-
ful network and service
platforms at the edges
of current infrastruc-
tures. Such platforms

will be able to carry out
a substantial amount of

storage and real time
computation.

IEEE Communications Magazine — Communications Standards Supplement • March 201664

to discover local resources and components as
part of the physical IE; policy services to man-
age the policies specifying IE behavior; or even
cognitive services to implement a certain level of
cognition (Fig. 2), even more when coupled with
sensing and actuating capabilities.

Generalizing, we can say that cognition
(implemented through artificial intelligence
methods, deep learning techniques, heuristics,
algorithms, etc.) will allow IEs to learn and rea-
son about how to behave in response to goals in
a complex context, or at least be able to optimal-
ly execute their service and network functions.

Key characteristics of the Robot Operating System
The ROS is a widely adopted meta-operating sys-
tem for robots. The full source code of ROS is
publicly available and currently runs only on Unix-
based platforms. A robotic system built using the
ROS consists of a number of processes (ROS
nodes), potentially on a number of different hosts,
connected at runtime in a peer-to-peer topology.
ROS has a lookup mechanism (ROS master) to
allow processes to find each other at runtime.

ROS master acts as a name-service, storing
topics and service registration information for
ROS nodes. Nodes communicate with the master
to report their registration information. As these
nodes communicate with the master, they can
receive information about other registered nodes
and make connections as appropriate (bypassing
messages and structuring data).

Nodes connect to other nodes directly; the
master only provides lookup information, much
like a DNS server. Nodes that subscribe to a
topic will request connections from nodes that
publish that topic, and will establish that connec-
tion over an agreed upon connection protocol
(e.g., standard TPC/IP sockets). This is repre-
sented in Fig. 3.

An ROS node sends a message by publishing
it to a given topic, which is simply a string such as
“map.” A node that is interested in a certain kind
of data will subscribe to the appropriate topic.
There may be multiple concurrent publishers and
subscribers for a single topic, and a single node
may publish and/or subscribe to multiple topics.

Although the topic-based publish-subscribe
model is a flexible communications paradigm, it is
not appropriate for synchronous transactions, which

can simplify the design of some nodes. Therefore,
ROS developers have introduced the concept of
services, defined by a string name and a pair of
strictly typed messages, one for the request and one
for the response. This is analogous to web services,
which are defined by URIs and have request and
response documents of well defined types.

The special characteristics of the ROS archi-
tecture allow for decoupled operation, where-
in names are the primary means by which
larger and more complex systems can be built.
This decoupling is one of the main reasons why
we have taken most of our inspiration from
ROS when designing the EOS. One of the EOS
requirements, in fact, is to allow the flexible and
scalable operations of complex and dynamic sys-
tems, built by aggregations of IEs.

Assumptions of the Edge Operating System
EOS leverages the concept of services as repre-
senting a sort of “unifying” abstraction across
physical edge resources, across multiple infra-
structure domains, and across different service
levels. A service provides a function (e.g., from
ISO-OSI L2 to L7, so it could also be a network
function, or a middle-box), it exports an API, it
is available anywhere and anytime (location-time
independent), is scalable, elastic, and resilient,
and it can be composed with other existing S/W
components (e.g., to create a service chain). Ser-
vices are executed into one or more infrastruc-
ture virtual slices, which are made of a set of
logical resources (e.g., virtual machines, contain-
ers) connected through virtual networks.

The allocation and orchestration of logical
resources, in charge of executing a service chain,
requires solving constraint-based double optimi-
zation problems. Not only do VMs have to be
properly allocated (to avoid hot-spots), but also
the traffic crossing the VMs has to be properly
routed (to avoid congestion).

The term orchestration has long been used in
the IT domain to refer to the automated tasks
involved with arranging, managing, and coordi-
nating higher-level services provisioned across
different applications and enterprises [11]. In
the SDN-NFV, orchestration is concerned with
lower-level (i.e., network) services, with a com-
prehensive management of both IT and network
logical resources.

EOS software adopts a publish-subscribe
model (Fig. 3) [13] as a basic way to distribute
software task execution requests. Each software
task execution request is coded as a tuple and
written on the tuple space, named blackboard,
while a take operation is used by IEs to offer
their process capability.

Functional Architecture of the Edge Operating System
This sub-section describes the main characteris-
tics of the EOS, whose high-level architecture is
reported in Fig. 4.

The main elements of the EOS are listed
below.

•An EOS node is an S/W module that can be
executed on top of any operating system (e.g.,
Linux-based OS, Android, Robot Operating
System, etc.) of an IE. Similar to the ROS, any
EOS node communicates with an EOS master to
whom it registers (e.g., services that it can pro-

Figure 1. Edge elements.

IE = Infrastructure element (it may include IPE, IFE, and also sensors, actuators, ...)
IPE = Infrastructure processing element (e.g., IT computing, storage resources)
IFE = Infrastructure forwarding element (e.g., forwarding traffic)

IPE

IFE

IPE

IFE

EE

IPE

IFE
VPNs

Forwarding IP traffic packets
(data plane)

VNs

Allocation Processing service component
or a network function (e.g., VNF)

Service component or
network function (S/W tasks)

Logical flow

Service chain

IEEE Communications Magazine — Communications Standards Supplement • March 2016 65

vide) and updates the status (e.g., resource utili-
zation) of its associated IEs. This data is stored in
the EOS master data base (EOS MDB). IE nodes
are interconnected on the data plane via fixed
and virtual radio links (these links could be either
local, in a single edge domain, or across a WAN).

•An EOS master is dynamically allocated to
a specified edge domain. It is responsible for the
local creation (and deletion) of the slice(s) where
service chains are executed in order to provide
the requested services. It has to interact with a
higher-level EOS orchestrator and with other
EOS masters, in case the service chain has to
be allocated across multiple edge domains. The
EOS MDB stores the data related to the IEs
belonging (assigned) to the specified domain.

•The master blackboard is a sort of virtual repos-
itory shared among the EOS master and the EOS
nodes. The EOS master publishes (using the pub
primitive) the task/component of the service chain
that has to be allocated. In turn, EOS nodes sub-
scribe (using the sub primitive) to the S/W task/com-
ponent if the associated IE can provide the logical
resources to execute it (i.e., can serve the specific
task of the chain). Multiple subscriptions are pos-
sible, so in a next stage the EOS master will make
an optimized selection of the IEs to whom the S/W
task/component will eventually be allocated.

•The collector abstraction [12] has been intro-
duced to make master blackboards recursive, thus
overcoming scalability limitations. In this sense,
a collector can be seen as an agent acting as an
ensemble of IEs together with their shared black-
board. A collector thus can act toward other col-
lectors as a super-IE, as it can take tasks on its
blackboard from other overloaded collectors.

•The EOS master includes a capability called
the selection method, which makes it possible to
select the proper IEs to assign the execution of
the service chain tasks. Selection is done accord-
ing to specific criteria, for example through the
minimization of specified KPI, as with end-to-
end application latency. Interacting with the

Figure 2. Cognitive loop implementable in an IE.

External
world

Cognition loop

Actuators
(to make actions)

Sensors
(to collect data)

Processing-storage
(to execute cognition)

Act

Orient

Decide

Observe

Figure 3. ROS: pub-sub model.

SubscriptionPublication
Topic

Service invocation

NodeNode

Figure 4. High-level functional architecture of the EOS.

••••••
Blackboard

Collector

Collector Collector

Task1

EOS master

TaskM

••••••
Blackboard

Task1

EOS node

IE
N

Hardware

Operating system
(e.g., Linux, Android,

RobotOS)

EOS node

IE
N

Hardware

Operating system
(e.g., Linux, Android,

RobotOS)

TaskM ••••••
Blackboard

Task1 TaskM

EOS orchestratorEOS
ODB

EOS
MDB

EOS
MDB

EOS node

IE
N

Hardware

Operating system
(e.g., Linux, Android,

RobotOS)

EOS node

IE
N

Hardware

Operating system
(e.g., Linux, Android,

RobotOS)

EOS master

IEEE Communications Magazine — Communications Standards Supplement • March 201666

EOS node, the EOS master can configure the
logical resources hosted by the IEs at run time.

•The EOS orchestrator is a higher-level S/W
module that is set up to receive the service request
that must span multiple edge domains. It decom-
poses the request in a service chain, selecting and
interacting with the appropriate EOS masters for
the end-to-end allocation of IEs across multiple
domains. The EOS master can communicate with
the EOS orchestrator to whom it registers and
updates its status. This data is stored in the EOS
orchestrator data base (EOS O-DB).

•The orchestrator blackboard is a higher-level
virtual repository shared between the EOS orches-
trator and the EOS masters. As above, for the mas-
ter blackboard, the collector concept can be applied
at this level also for the orchestrator blackboard.

The EOS software architecture can be seen
as an expression of the integration of the SDN
functional architecture defined in ONF (e.g,
EOS nodes are like controllers) and the NFV
reference architecture framework by ETSI NFV
(e.g., an EOS master has VIM capabilities).

Next we briefly describe an example that
shows the functioning of EOS. At the startup
of an IE, the EOS node sends the EOS master
a description of the associated IE services and
the status (including the configuration) of the
resources. The description can adopt a variety of
formats, e.g., YANG modeling [13].

The users’ service requests are sent to the
EOS master through their terminals (which run
EOS nodes). If a service request can be executed
just locally, within the EOS master domain, then
it is simply decomposed into a sequence of ser-
vice components and required network functions
(i.e., a service chain).

The EOS master then publishes (pub primi-
tive) the software tasks of the service chain. EOS
nodes subscribe (sub primitive) to said tasks if
the related IEs can execute them. At the end, the
EOS master must make an optimized selection of
the IEs (selection method). On the other hand, if
the EOS master realizes that the service request
cannot be executed locally, it forwards it to the
EOS orchestrator. In turn, the EOS orchestrator
decomposes the service request and publishes it
on its blackboard. The flow of actions then pro-
ceeds as above within each edge domain.

The EOS is a distributed software architecture
where the states of the resources are store in dis-
tributed DBs. The well-known CAP theorem [14]
will dictate some limitations. In fact, it states
that any networked shared-data system can have

at most two of the following three properties:
1) consistency (C) equivalent to having a single
up-to-date copy of the data; 2) high availability
(A) of that data (for updates); and 3) tolerance
to network partitions (P).

The general idea is that two of the three
properties have to be privileged (CP favors con-
sistency, AP favors availability, and with CA
there are no partitions), a trade-off that will be
needed then for storing/configuring the states of
the infrastructure while achieving specific per-
formance levels. End-to-end latency (or delay)
and partitioning are deeply related, and such
relations become more important in the case of
a widely distributed infrastructure. This situa-
tion contributes even more to the requirement
of minimizing the application end-to-end latency.
These areas require further investigation.

 Use Case: Mobile Cognitive Machines
The use case described in this section aims at
both the definition of main challenges and
requirements for EOS and the feasibility demon-
stration of a prototype. The main concept of
the use case is about the pervasive adoption of
mobile cognitive machines (Fig. 2) provisioning
any sort of ICT services.

Already today we are witnessing growing
interest in using drones, robots, and autonomous
machines in agriculture, industry, security, and
several other domains. For example, the advent
of robots remotely controlled via 5G connections
would create a tremendous impact on Industry
4.0. Also, the contexts of the Tactile Internet and
cyber physical systems envision several applica-
tions for cognitive machines.

In all these contexts, among the major require-
ments for the EOS there will be, for example,
the optimal allocation of logical resources while
minimizing end-to-end network and application
latencies. Let’s see how this requirement has
been taken into account in the EOS prototype
design and development.

The EOS prototype leverages available open
source software complemented with the devel-
opment of other required software modules. In
particular, the two main pieces of open source
software are OpenStack and ONOS. The former
will be used to manage the virtual machines exe-
cuting the network and service functions of the
virtual infrastructure; the latter will be in charge
of managing the fabric of connections, while exe-
cuting the control applications. EOS can be seen
as an overarching operating system that runs on
top of both OpenStack and ONOS.

The software architecture of the EOS pro-
totype is shown in Fig. 5, where the circle rep-
resents code additions to OpenStack. These code
additions mainly address the capability of Open-
Stack to handle chains of VMs (i.e., service chains)
and the Nova-scheduler of OpenStack, which cur-
rently uses algorithms (i.e., Filter&Weight) for
scheduling VMs in isolation, without considering
the status of the underlying network links.

Looking at Fig. 5, from a purely architectural
viewpoint, EOS looks similar to XOS [15]. On
the other hand, there are major differences that
should be highlighted.

XOS is a service orchestration layer that man-
ages scalable services running in a central office

Figure 5. EOS prototype.

Orchestration of
services (L1 to L7)

ONOSOpenStack

EOS

Infrastructure
Physical/virtual resources

(up to terminals, things,...)

Management and control of
the virtual infrastructure

(VMs and fabric)

IEEE Communications Magazine — Communications Standards Supplement • March 2016 67

re-architected as a datacenter (CORD). On the
other hand, EOS is a highly pervasive software
architecture, i.e., it is extended up to the termi-
nals (current and future ones), smart things, and
elements of capillary networks (e.g., aggregations
of sensors, actuators, etc.).

XOS unifies management of a collection of
services that are traditionally characterized as
being NFV, SDN, or cloud specific. EOS also
addresses services that can also be executed at
the edge (also leveraging edge and fog comput-
ing). This difference dictates profound implica-
tions, i.e., EOS is implemented with a scalable
software architecture leveraging a trade-off
between top-down and bottom-up intelligence.

In the specific use case shown in Fig. 6, a
mobile cognitive machine is seen as an IE, with
its own operative system. The control system of
a mobile cognitive machine usually comprises
many ROS nodes. For example, one node con-
trols a laser range-finder, one node controls the
wheel motors, one node performs localization,
one node performs path planning, one node pro-
vides a graphical view of the system, one node
for the cognitive service logics, and so on. Other
remote ROS nodes may be required to provide
other services. In this perspective, it can be argued
that ROS nodes can be seen as service compo-
nents of a service chain executed over the EOS.

Let’s focus on a service request to allow a
mobile cognitive machine to perform some artic-
ulated task (e.g., at the scene of a disaster) with
ultra-low reacting times (e.g., a mobile robot
being controlled remotely to act in an environ-
ment that is changing dynamically).

These requirements are dictating the need to
execute said cognitive service by using a prop-
er balance of local, edge, and centralized pro-
cessing-storage resources. In fact, the machines’
reaction times very much depend on IT response
time and network latency, and even small chang-
es in the area’s layout, or delays in the actuation
commands, can lead to catastrophic failures.

EOS, with the software architecture described
previously, will be able to exploit this intelli-
gence. For example, the selection method makes
it possible to select the proper IEs to assign the
execution of the service chain tasks, minimizing
end-to-end network and application latencies.

Concluding Remarks
Broadband diffusion and ICT performance
acceleration, coupled with cost reductions, are
boosting innovation in several industrial and
society sectors, thus creating the conditions for
a socio-economic transformation, called soft-
warization. In particular, softwarization of tele-
communications will make possible virtualizing
network and service functions and executing
them in software platforms fully decoupled from
the physical infrastructure.

This article has focused attention on the edge
of telecommunications infrastructures, arguing
that softwarization will transform it in very pow-
erful software platforms, enabling anything-as-a-
service. EOS software architecture is proposed to
achieve this, even in the short term. In fact, the
development of EOS leverages available open
source software. A use case was described to val-
idate an EOS prototype with a proof-of-concept.

References
[1] “Software-Defined Networking: The New Norm for Networks,” Open Netw.

Found., Palo Alto, CA, USA, white paper, available: https://www.opennet-
working.org/.

[2] “Network Functions Virtualisation,” Eur. Telecommun. Std. Inst. (ETSI),
Sophia-Antipolis Cedex, France, white paper, available: http://portal.etsi.
org/NFV/NFV_White_Paper.pdf.

[3] “Mobile-Edge Computing,” Eur. Telecommun. Std. Inst. (ETSI), Sophia-An-
tipolis Cedex, France, white paper, available: https://portal.etsi.org/
Portals/0/TBpages/MEC/Docs/Mobile-edge_Computing_-_Introducto-
ry_Technical_White_Paper_V1%2018-09-14.pdf.

[4] “OpenStack,” available: http://www.openstack.org/.
[5] “ONOS,” available: http://onosproject.org/.
[6] A. Manzalini et al., “Software-Defined Networks for Future Networks and

Services,” presented at the IEEE Workshop SDN4FNS, Trento, Italy, Nov.
2013, white paper, available: http://sites.ieee.org/sdn4fns/whitepaper/.

[7] A. Manzalini and A. Stavdas, “The Network is the Robot,” Communications &
Strategies, ERN Economics of Networks eJournal, Dossier. No. 96 — 4th
Quarter 2014.

[8] “Measuring Broadband America,” FCC report, available: https://www.fcc.
gov/measuring-broadband-america.

[9] “Robot Operating System,” available: http://wiki.ros.org/ROS/Introduction.
[10] M. Sloman and E. Lupu, “Engineering Policy-Based Ubiquitous Systems,”

published by Oxford University Press on behalf of The British Computer
Society, 2005; doi:10.1093/comjnl/bxh000.

[11] B. Martini, M. Gharbaoui, and P. Castoldi, “Cross-Functional Resource
Orchestration in Optical Telco Clouds,” ICTON 2015.

[12] R. Alfano and G. Di Caprio, “Turbo: An Autonomous Execution Environment
with Scalability and Load Balancing Features,” IEEE Wksp. Distributed Intel-
ligent Systems: Collective Intelligence and Its Applications, 2006.

[13] “A YANG Data Model for System Management,” Internet Engineering Task
Force, Aug. 2014, available: https://tools.ietf.org/html/rfc7317.

[14] E. Brewer, “Towards Robust Distributed Systems,” Proc. 19th Ann. ACM
Symp.Principles of Distributed Computing (PODC 00), ACM, 2000.

[15] “Central Office Re-architected as a Datacenter,” available: https://wiki.
onosproject.org/pages/viewpage.action?pageId=3441030.

Biographies
Antonio Manzalini (antonio.manzalini@telecomitalia.it) received the M. Sc. Degree
in electronic engineering from the Politecnico of Turin. In 1990 he joined CSELT,
which then became part of Telecom Italia. He is the author of a book on network
synchronization (for SDH), and his RT&D achievements have been published in more
than 100 papers. He was active in ITU as Chair of ITU-T Questions, leading standards
developments on transport networks. Since 2000 he has had leading roles in several
EURESCOM and European Projects. In 2008 he was awarded with the International
Certification of Project Manager by PMI. In 2013 and 2015 he led two projects on
software defined networks (SDN) funded by EIT – Digital. He is currently a senior
manager in the Strategy & Innovation Dept. (Future Centre) of Telecom Italia. His
main interests are innovative architectures and services enabled by SDN and NFV,
primarily for 5G. He is General Chair of the IEEE initiative on SDN.

Noel Crespi holds masters degrees from the Universities of Orsay (Paris 11)
and Kent (UK), a diplome d’ingénieur from Telecom ParisTech, and a Ph.D. and
habilitation from Paris VI University (Paris-Sorbonne). In 1993 he joined CLIP,
Bouygues Telecom and then went to Orange Labs in 1995. He took leading roles
in the creation of new services with the successful conception and launch of
Orange’s prepaid service, and in standardization. In 1999 he joined Nortel Net-
works as a telephony program manager, architecting core network products
for EMEA region. He joined Institut Mines-Telecom in 2002, and is currently a
professor and program director, leading the Service Architecture Lab. He is
also an adjunct professor at KAIST, an affiliate professor at Concordia Univer-
sity, and is the scientific director of the French-Korean laboratory ILLUMINE.

Figure 6. Use-case.

Terminals

Core network

Edge
platforms

Edge
platforms

Data center

Cloud
computing

