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a b s t r a c t

Communities are basic components in networks. As a promising social application, community recom-

mendation selects a few items (e.g., movies and books) to recommend to a group of users. It usually

achieves higher recommendation precision if the users share more interests; whereas, in plenty of com-

munities (e.g., families, work groups), the users often share few. With billions of communities in on-

line social networks, quickly selecting the communities where the members are similar in interests is a

prerequisite for community recommendation. To this end, we propose an easy-to-compute metric, Com-

munity Similarity Degree (CSD), to estimate the degree of interest similarity among multiple users in a

community. Based on 3460 emulated Facebook communities, we conduct extensive empirical studies to

reveal the characteristics of CSD and validate the effectiveness of CSD. In particular, we demonstrate that

selecting communities with larger CSD can achieve higher recommendation precision. In addition, we

verify the computation efficiency of CSD: it costs less than 1 hour to calculate CSD for over 1 million of

communities. Finally, we draw insights about feasible extensions to the definition of CSD, and point out

the practical uses of CSD in a variety of applications other than community recommendation.

© 2016 Elsevier Ltd. All rights reserved.
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1. Introduction

With the overwhelming explosion of Online Social Networks

(OSNs), a large number of online communities are naturally formed

by people who share certain properties. As reported, Google was

able to index 620 million user-created communities in Facebook by

20101; Orkut exhibits more than 100 million communities along

with hundreds of newly created communities every day (Chen,

Zhang, & Chang, 2008). This huge number of online communi-

ties and the common properties of users within communities have
∗ Corresponding author at: Shanghai University of Finance and Economics, Shang-

hai 200433, China. Tel.:+86 21 6590 1498.

E-mail addresses: xiaohan@mail.shufe.edu.cn (X. Han), leye.wang@telecom-

sudparis.eu (L. Wang), reza.farahbakhsh@telecom-sudparis.eu (R. Farah-

bakhsh), acrumin@it.uc3m.es (Á. Cuevas), rcuevas@it.uc3m.es (R. Cuevas),

noel.crespi@telecom-sudparis.eu (N. Crespi), hlnyh@hhu.edu.cn (L. He).
1 http://allfacebook.com/google-now-indexes-620-million-facebook-

groups_b10520
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ed to a new paradigm of recommendation systems through OSNs,

amely community recommendation.

Community recommendation suggests particular items (e.g.,

ovies, music, books) to a group of users and aims to convince

he users to adopt its recommended items; it will achieve better

erformance if more users are interested in the recommended

tems (i.e., higher recommendation precision) (Gorla, Lathia,

obertson, & Wang, 2013; Hu et al., 2014). Instead of target-

ng an individual user, community recommendation presents

any advantages. First, as human beings are of a social nature,

ecommendation for users within a community is required in

ome cases (Hu et al., 2014), such as recommending a tourist

ttraction to a group of friends to spend holiday, or advertising

o community forums in OSNs. Second, community recommen-

ation may also be conductive to address new-user problem

n recommendation systems by recommending the new users

tems based on the interests of other users in the same commu-

ity (Masthoff, 2011). Moreover, since recommending items to a

ommunity merely requires the community’s collective interest

nformation but not necessarily every user’s personal interests
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Aimeur, Brassard, Fernandez, & Onana, 2006), community recom-

endation can preserve privacy for the users who are unwilling

o reveal personal information by certain approaches such as

bfuscating interests of users in a community (Parameswaran &

lough, 2007).

Concerning the potential benefits of community recommen-

ation, much existing work puts effort to devise sophisticated

lgorithms for selecting items that are probably preferred by most

sers in a given community (Baltrunas, Makcinskas, & Ricci, 2010;

orla et al., 2013; Hu et al., 2014). However, recall that there exist

illions of communities with various natures in OSNs, whether

sophisticated algorithm can recommend satisfactory items to

ll the communities is in doubt. Intuitively, some communities in

hich users share many interests may be intrinsically appropriate

or community recommendation to achieve high recommendation

erformance; while for some other communities consisting of

sers with distinct interests (e.g., a Random-based community of

eople for a statistic survey), a community recommendation sys-

em with sophisticated algorithms may still hardly find any items

hat are preferred by most users in such a community. In order

o avoid unduly running sophisticated recommendation algorithms

or the inappropriate communities, in this paper, we investigate

ow to quickly select the appropriate communities in which

ommunity recommendation may achieve high performance, from

illions of communities in OSNs.

To address this issue, we rely on the principle that a community

s more effective for recommendation if the members in the com-

unity present more common interests (Baltrunas et al., 2010);

ence, we propose to measure the interest similarity among users

n a community and then select the communities of a large simi-

arity degree as the appropriate ones for community recommenda-

ion.

Although the basic idea seems straightforward, it is non-trivial

o be implemented. First, we need to measure interest similarity

mong multiple users in a community. Many similarity mea-

urements (Spertus, Sahami, & Buyukkokten, 2005) have been

roposed; whereas most of them focus on the similarity between

wo individuals rather than among multiple users. Second, the

nterest similarity measure should be efficient to compute, so that

t can be fast enough to select the appropriate communities over

huge number of ones in real-life OSNs.

For our purposes, firstly, we define a metric — Community Sim-

larity Degree (CSD) — to compute the degree of similarity among

he users in a community based on their common interests. The

SD value ranges from 0 when the users in a community do not

hare any interest, to 1 if all the users present exactly the same

nterests.

Subsequently, with 208K user profiles collected from Facebook,

e conduct extensive empirical studies to understand the proper-

ies of CSD by emulating four types of communities (i.e., Friend-

ased, Interest-based, Location-based and Random-based communi-

ies). We observe that CSD decreases with the increase of either

he number of users or the number of interests. We also notice

hat the Interest-based communities which are formed by users

aving one common interest normally exhibit 1.45× to 4.5× larger

SD than the Friend- or Location-based communities where users

hare one friend or come from the same city. As we exclude the

ommon interest in an Interest-based community to calculate its

SD, this observation indicates that users with one common inter-

st are likely to share more other interests than friends or people

n the same city.

Finally, with a simulated community recommendation system,

e validate the effectiveness and efficiency of CSD in commu-

ity selection. We demonstrate that selecting the communities

ith large CSD can achieve good recommendation performance,

.e., high average recommendation precision. We also compare dif-
erent average precisions when the recommendation is respectively

pplied to Interest-, Friend-, Location-, and Random-based commu-

ities. The experiment results confirm that the Interest-based com-

unities, which have larger CSD, gain 2× higher median average

recision when it compares to Friend-, Location-, Random-based

ommunities. This result further indicates that selecting commu-

ities with large CSD is effective to achieve good performance in

ommunity recommendation. Moreover, we verify the computation

fficiency of CSD and demonstrate that we can compute CSD for 1

illion of communities within 41 min.

In summary, the main contributions of this paper are: (i) We

efine a metric called CSD to estimate interest similarity degree

mong multiple users within a community, while most of the ex-

sting similarity metrics compute the similarity between two ob-

ects. (ii) We conduct extensive empirical studies on a large real

acebook dataset and reveal CSD’s characteristics based on 3460

mulated communities. (iii) We emulate a community recommen-

ation system and demonstrate that CSD is an effective and effi-

ient metric to select the appropriate communities for community

ecommendation. (iv) We give insights about feasible extensions to

he definition of CSD and present practical uses of CSD in various

pplications besides community recommendation.

The rest of this paper is organized as follows. Section 2 reviews

ome related work. Section 3 defines the metric of CSD. Section 4

ntroduces our dataset and the communities constructed based on

he dataset. We conduct empirical studies of CSD in Section 5. In

ection 6, we emulate a community recommendation system and

alidate the effectiveness and efficiency of CSD. Finally, Section 7

oncludes the paper.

. Related work

In this section, we briefly review the existing related work

hrough two aspects: (i) recommendation systems; (ii) similarity

etrics and the use of similarity in social applications.

.1. Recommendation systems

Recommendation systems are extremely promising for market-

ng in OSNs by providing users with suggestions, such as what

roducts to purchase, what movies to watch or what books to

ead (Ricci, Rokach, & Shapira, 2011). Much work proposes vari-

us approaches (e.g., hierarchical Bayesian model (Purushotham,

iu, & Kuo, 2012), trust circle-based model (Yang, Steck, &

iu, 2012), semantic similarity-based model (Dong, Hussain, &

hang, 2011)) to provide personalized recommendations to users.

uch recommendation systems are normally classified into three

ategories according to the ways of recommendation, includ-

ng content-based, collaborative and hybrid recommendation ap-

roaches (Adomavicius & Tuzhilin, 2005). Most of these systems

oncentrate on recommendation for an individual user (Deng,

uang, & Xu, 2014); however, our work tends to improve com-

unity recommendation which recommends items for a group of

sers instead of an individual.

In recent years, some studies have proposed to select items for

community of users. Baltrunas et al. (2010) exploit a collabora-

ive filtering algorithm to generate personalized recommendations

or an individual user and then leverage a rank aggregation

ethod to produce a joint ranking list of recommendations for

community of users. Focusing on better modeling the users

ithin a community, Gorla et al. (2013) design a probabilistic

ommunity recommendation method to improve the aggregation

f individuals’ recommendations. By considering the collective

eatures that may determine users’ choices within a community,

u et al. (2014) propose a joint community recommendation

odel which accommodates both users’ individual interests and
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community decision. Various methods, including content-based,

user-based and hybrid of content and user, for producing recom-

mendations for a community of users are examined and compared

by Ronen, Guy, Kravi, and Barnea (2014). These sophisticated

algorithms and models concentrate on how to select the items for

a given community of users, whereas it may work inefficiently if

the users in a community do not share many interests. To tackle

this issue, in this paper, instead of designing a recommendation

algorithm, we attempt to find the communities that can achieve

good performance in community recommendation.

With a similar research objective as our work, recently

Basu Roy, Lakshmanan, and Liu (2015) study how to form com-

munities so that most users in the formed communities are satis-

fied with the recommendations; while the difference between our

work and Basu Roy et al. (2015) is still significant: rather than de-

signing community formation algorithms to create new communi-

ties, we define an effective and efficient metric, CSD, to select the

appropriate communities from a huge number of self-organized

communities that have already existed in real-life networks nowa-

days.

2.2. Similarity metrics in OSNs

Evaluating similarity is a practical and fundamental problem

with a long history, which serves in various research domains

such as geographic information science (Schwering, 2008), biology

(Lei, Yin, & Shen, 2013), and decision-making (Tsebelis, 1995). In

OSNs, a series of classical metrics, including overlap, cosine similar-

ity, Jaccard similarity, Pearson correlation coefficient, etc., are em-

ployed to estimate the strength of user relationships, the similarity

of users’ tastes/interests, and the resemblance of users’ background

(Han, Cuevas, Crespi, Cuevas, & Huang, 2014; Han, Wang, Crespi,

Park, & Cuevas, 2015; Sarwar, Karypis, Konstan, & Riedl, 2001). To

recommend social events with holding a user’s home location, the

location similarity is calculated by weighted cosine similarity tak-

ing into account the common events that users from both locations

have attended (Quercia, Lathia, Calabrese, Di Lorenzo, & Crowcroft,

2010). Besides, Han et al. (2014) study similarity between two

users by both common friends and common interests and show

that friends generally share more interests than strangers. Pearson

correlation coefficient is rather popular in collaborative filtering

recommendation systems as it subtracts the average rating score

from each rating, thereby eliminates the individual subjective dif-

ferences (Sarwar et al., 2001).

Semantic objects, such as comments, posts, answers to ques-

tions, descriptions or reviews about services/products, and tags to

photos, videos, music, are widespread over OSNs nowadays. Es-

timating two users’ similarity by their semantic relatedness is a

fundamental task, which can in turn support a great number of

applications (e.g., recommendation system, information retrieval,

and link prediction) (Markines & Menczer, 2009). Accordingly, sim-

ilarity metrics, such as mutual information (Hindle, 1990), Lin’s

descriptive similarity (Lin, 1998), and maximum information path

(Markines & Menczer, 2009), are proposed to capture the structural

information between semantic objects.

Besides, a collection of global structural similarity metrics (e.g.,

Katz, PageRank) are proposed to capture the global topology in-

formation based on structural network. These metrics are widely-

used to measure the similarity in link prediction, trust estimation,

and community detection. To predict the structure of social net-

work without knowing any author-author relationships, Makrehchi

(2011) constructs auxiliary networks based on author-topic and

topic-topic relations and uses Katz metric to calculate the close-

ness of either author-topic or topic-topic relations. Backstrom and

Leskovec (2011) calculate PageRank score to predict and recom-

mend links in a supervised way. Rossi et al. (2015) survey the ex-
sting graph-based and feature-based similarity methods for role

iscovery in networks, and propose a flexible framework for dis-

overing roles using the notion of similarity on a feature-based

epresentation.

Recently, with the arrival of the big data era, a real-life network

an grow up to billions of nodes and edges. Thus, improving

he computation efficiency and scalability of similarity metrics

egins to attract much research interest. Kusumoto, Maehara, and

awarabayashi (2014) propose a fast and scalable algorithm to

ompute the top-k similar nodes for a given node in terms of the

imRank metric; while Tao, Yu, and Li (2014) design an efficient

lgorithm to select the k most similar pairs of nodes with the

argest SimRank similarities among all possible pairs. Zhang et al.

2015) use the idea of random path to quickly select the top-k

imilar nodes for a given node in a huge network and applies this

ethod in two applications — identity resolution and structural

ole spanner finding. In our definition of CSD, we also consider

he computation efficiency so that we can use CSD for selecting

ppropriate communities for recommendation from millions of

ommunities in a reasonable time period.

In summary, most of these state-of-the-art works focus on the

etrics considering the similarity between two users, whereas this

aper intends to compute the similarity among a community of

sers.

. Community similarity degree

In this section, we define Community Similarity Degree (CSD)

o measure the interest similarity among users in a community.

e start with some intuitive concepts about interest similarity of

set of users (or called community members). Then, we introduce

ome assumptions and criteria to formulate the similarity intu-

tions. Finally, we give the definition of the metric (CSD) to meet

he established criteria based on the assumption. During the met-

ic definition, we note that: (1) if a user reports an interest we call

he user a fan of the reported interest; and (2) we aggregate all

he users’ interests and construct an interest set for a community.

ach element in the interest set is a distinct interest.

Before defining the metric, we first clarify some intuitions of

imilarity among multiple users. The being defined similarity met-

ic is expected to capture the following intuitions.

• Intuition 1: If all the community members exhibit exactly

the same interests, their interest similarity reaches the highest

value.
• Intuition 2: If any two members share no interest, the interest

similarity of the community should be the lowest value.
• Intuition 3: Assume only one distinct interest is reported in a

community with a certain number of users, then the more fans

the distinct interest has (some users may report no interest),

the higher the interest similarity is.
• Intuition 4: Given a community with a certain number of

members and distinct interests, the interest similarity of the

community should be higher if there exist more fans for ev-

ery single distinct interest (i.e., the sum of the fan number for

each distinct interest is larger).

To formulate the intuitions and define the metric, we introduce

ome notations here. We mark a given community as c = {Uc,Rc},
here Uc represents the users in the community and Rc stands

or the set of all the users’ interests (i.e., the distinct interest set in

he community c). The number of users and the number of distinct

nterests in the community are respectively denoted as Nu(c) and

r(c). For each distinct interest r ∈ Rc, we count the number of

ts fans as its popularity, denoted as p(r); then, we can sum the

umber of fans for all the distinct interests as the weight of the

ommunity, i.e., W (c) = ∑
r∈Rc

p(r).
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Fig. 1. Examples of intuitions and criteria for CSD definition.
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Following the intuitions, we establish the following assump-

ions and criteria:

• Assumption: We assume the highest value of the being defined

metric CSD is 1 while the lowest value equals 0.
• Criterion 1: When all the users in a community have exactly

the same interests, i.e., all the users are interested in each

distinct interest in Rc, CSD is 1; i.e., CSD(c) = 1, iff: W (c) =∑
r∈Rc

p(r) = ∑
r∈Rc

Nu(c) = Nr(c) × Nu(c). (According to Intuition

1)
• Criterion 2: When any two members do not share any inter-

est, i.e., each distinct interest only has one fan, CSD is 0; i.e.,

CSD(c) = 0, iff: W (c) = ∑
r∈Rc

p(r) = ∑
r∈Rc

1 = Nr(c). (According to

Intuition 2).
• Criterion 3: Given two communities c1 and c2 with the same

number of users (i.e., Nu(c1) = Nu(c2) = Nu) and the same

number of distinct interests (i.e., Nr(c1) = Nr(c2) = Nr ), then

the community presenting the larger weight has the larger

CSD; i.e., 1 ≥ CSD (c1) > CSD (c2) ≥ 0, iff: Nr × Nu ≥ W (c1) >

W (c2) ≥ Nr . (According to Intuition 3 and 4)

An example is provided in Fig. 1 to better illustrate the intu-

tions and criteria. Suppose that we have a community with three

sers ua, ub and uc. If all these users report that they are interested

n r1, r2 and r3, then their interests are exactly the same and the

nterest similarity of this community should be the highest (Intu-

tion 1/Criterion 1). Whereas, if ua prefers r1, ub likes r2 and uc

avors r3, then there is no common interest among ua, ub and uc.

n this case, the interest similarity of the community is the lowest

Intuition 2/Criterion 2). Assume r1 is the only reported interest

y the community members. The community interest similarity of

he case that three users all prefer r1 is higher than another case

hat ua and ub are interested in r1 but uc does not claim any pref-

rence (Intuition 3/Criterion 3). On the basis of Intuition 3 where

nly one interest is considered, we can extend the case to multi-

le interests. Specifically, compared to a community where all the

hree users ua, ub and uc like interests r1 and r2, another commu-

ity in which ua and uc prefer r1 meanwhile ub and uc favor r2

resents lower interest similarity (Intuition 4/Criterion 3).

Definition: Based on the assumption, while meeting the afore-

entioned criteria, we define CSD as:

SD(c) = W (c) − Nr(c)

Nu(c) × Nr(c) − Nr(c)
= W (c)/Nr(c) − 1

Nu(c) − 1
(1)

here W (c)/Nr(c) calculates the average popularity of interests in

ommunity c. Therefore, in other words, CSD assesses the inter-

st similarity of users in a community approximately by the ratio

etween the average popularity of interests (W (c)/Nr(c)) and the

otal number of community members (Nu(c)). We note that the

alue of CSD ranges from 0 to 1.

In addition, CSD is an easy-to-compute metric. The computa-

ion complexity of CSD is O(N), where N denotes the number of

sers in a community, because we only need to enumerate all the

sers’ interests once to calculate CSD. Comparatively, if we esti-
ate the community interest similarity by computing the conven-

ional pairwise interest similarity (e.g., cosine similarity) between

ny two users and then averaging all the pairwise similarities, the

omplexity would be O(N2) as the total number of user pairs in a

ommunity is N(N − 1)/2.

. Data and community description

In this section, we briefly introduce our dataset and its collec-

ion procedure. We also describe four different types of communi-

ies created with our collected dataset.

.1. Data description

In order to validate our proposed metric, we have developed

web crawler to collect users’ information from Facebook. Given

ne root user, the crawler then follows the Breadth-First Search

BFS) approach (Gjoka, Kurant, Butts, & Markopoulou, 2011) to go

hrough the user’s friends and friends of friends (i.e., two-hop

riends). For each user/friend, the crawler captures the user pro-

le which includes the user’s demographic information (e.g., birth-

ay, gender, home town) and interests in terms of five well-defined

ategories (i.e., television, books, music, movies and games) (Han

t al., 2015). Note that we respect the users’ privacy by collecting

nly their public information and anonymizing the user IDs.

To count, the collected Facebook dataset contains 208, 634

sers and 542, 597 distinct interests from the above-mentioned

ve categories. In our dataset, the users present 11 interests on av-

rage; and 12% of the users only report one single interest, while

% of them include more than 100 interests. Furthermore, the

sers in our dataset are from more than 150 countries and 9K

ities; meanwhile there exists a wide variability in the number of

sers’ friends, which ranges from dozens to 5K. Finally, we note

hat most of the collected distinct interests show a small popular-

ty (85% of the distinct interests have fewer than 10 fans). How-

ver, we still find more than 10K and 1K distinct interests with

ore than 100 and 1K fans respectively; the top 100 interests are

hared by more than 8K users.

.2. Community description

In order to investigate the characteristics of CSD and evaluate

ts effectiveness and efficiency in community selection for recom-

endation, we construct four different types of communities us-

ng our collected Facebook dataset: Friend-based, Random-based,

nterest-based and Location-based communities. Next we describe

ow each type of community is generated.

.2.1. Friend-based communities

A Friend-based community is formed by a user and all her

riends with at least one interest. Creating these communities was

traightforward due to the BFS technique employed by our crawler.

ur dataset allowed us to define 865 Friend-based communities. It

s worth mentioning that Friend-based communities are typically
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2 https://developer.yahoo.com/boss/placefinder/
3 It does not make sense to evaluate communities with a single user.
used for recommendation purposes in OSNs (Chen, Geyer, Dugan,

Muller, & Guy, 2009). For instance, when a Facebook user starts

utilizing an application, her friends may receive a notification indi-

cating that fact. This notification/recommendation is based on the

belief that two friends likely have similar tastes.

Finally, as we will see later, the community size (i.e., the

number of users) has a direct impact on the CSD value for the

communities under study. Therefore, in order to perform a fair

comparison, the remaining community types replicate the commu-

nity size distribution of Friend-based communities. Fig. 2 shows

the distribution for the size of the 865 Friend-based communities

(that is the same for the other community types). Note that the

rightmost bin in the figure represents all the communities whose

size is larger than 1000.

4.2.2. Random-based communities

We create 865 Random-based communities. As mentioned be-

fore, we decide the size of each Random-based community ac-

cording to the size distribution of Friend-based communities. For

a Random-based community of size N, we select N random users

from our dataset to create the community.

4.2.3. Interest-based communities

An Interest-based community is formed by a set of users who

all present one common interest (e.g., users who are interested in

a same movie). Note that each user will typically have some other

interests in addition to the common one. Similarly, we generate

865 Interest-based communities by following the same size dis-

tribution of Friend-based communities. Given a size of N users to

generate an Interest-based community, we find the list of all those

interests whose popularity is N (i.e., N users present that interest

in their profile) and randomly select one interest to construct the

community with all its fans.

4.2.4. Location-based communities

A Location-based community is formed by all the users show-

ing the same Current City attribute. As Facebook allows users freely

to input any text in their profile attributes, a city can be marked by

several diverse notations (e.g., New York, New York City, NY, NYC,

etc. all indicate the same city). Therefore, we use Yahoo PlaceFinder
PI2 to unify all the different notations for a city and obtain 9K

nique cities. Accordingly, the users in a same unique city are

rouped into a community. We then select 865 Location-based

ommunities with the same size distribution as the other three

ypes of communities.

. Empirical studies on CSD

In this section, we carry out extensive empirical studies on CSD.

e first study how CSD varies with number of users (Nu(c)), num-

er of interests (Nr(c)) and community weight (W(c)) respectively.

hen we compare the distributions of CSD by the four community

ypes. We further look into CSD of Interest-based communities by

ifferent interest categories in the end.

.1. CSD characterization

As we have seen in Section 3, CSD is a metric varying with the

ommunity weight, the number of users (i.e., community size) and

he number of interests. Here we study how each of these factors

ould influence CSD. We conduct the investigations separately on

our types of communities and obtain the similar conclusions. For

he sake of brevity, we only show the results of Friend-based com-

unities as a representative.

.1.1. Influence of number of users

This section analyzes the impact of the number of users on CSD.

e group communities of similar sizes into bins. In particular, we

se two methods to construct the bins, equal width binning and

qual frequency binning (Dougherty et al., 1995).

In equal width binning, we consider 10 different bins such that

in(b) includes all those communities whose size belongs to the

nterval ((b − 1) ∗ 100, b ∗ 100], for b going from 1 to 9. Hence, the

rst bin (b = 1) includes communities with size in the interval [2,

00]3, the second bin is [101, 200], and so on. The last bin (bin(10))

ncludes communities with size larger than 900 users.

In equal frequency binning, we also generate 10 bins where

ach bin contains approximately 10% of all the communities.

https://developer.yahoo.com/boss/placefinder/
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Fig. 3. CSD vs. community size. (a) The size of communities in bin(b) (b ∈ [2, 9]) belongs to ((b − 1) ∗ 100, b ∗ 100]; particularly, the communities in bin(1) have a size

belonging to [2, 100] while the size of communities in bin(10) is larger than 900; (b) each bin contains the same number of communities and the size of communities in

bin(b) is larger than bin(b − 1).
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The Number of Interests The Number of Interests

Fig. 4. CSD vs. the number of interests. (a) The number of interests of communities in bin(b) (b ∈ [1, 9]) belongs to ((b − 1) ∗ 1000, b ∗ 1000]; while the communities

in bin(10) have interests larger than 9000; (b) each bin contains the same number of communities and the number of interests of communities in bin(b) is larger than

bin(b − 1).
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pecifically, we first rank all the communities according to the

umber of users ascendingly. Then the first bin includes the first

0% of communities in the sorted list, the second bin includes 10–

0%, and so on. Note that the number of users of the communities

n bin(b) is large than the ones in bin(b − 1).

Fig. 3(a) presents the average CSD and the corresponding stan-

ard deviation by the number of users of communities with

qual width binning. The results show that CSD decreases with

he increase of the community size. The major drop appears be-

ween the two first bins where the average CSD in bin(1) doubles

in(2); while the drop gets stable as the community size increases.

ig. 3(b), with equal frequency binning, shows the similar trend.

his is an expected result since larger communities present more

sers (by definition), and then generally contain a larger number of

nterests. In particular, for the 865 Friend-based communities, we

ave found (by using a linear regression model) that the number

f available interests in a community is roughly 12× the size of the

ommunity. Therefore, bigger communities typically bring a larger

iversity of both users and interests, which intuitively leads to a

ower similarity degree (CSD). Although there is an obvious drop

rend, a community with a larger size does not necessarily achieve

lower CSD and small communities also probably have a very low

SD. This is demonstrated by the large standard deviation of CSD,

specially for the bins of smaller sizes (e.g., bin(1)).
.1.2. Influence of number of interests

We now analyze how the number of interests in the commu-

ity impacts CSD. We repeat the methodology used in the previous

ubsection and group communities with similar number of inter-

sts in 10 different bins. With equal width binning, bin(b) includes

hose communities with a number of interests within the interval

(b − 1) ∗ 1000, b ∗ 1000] for values of b ranging from 1 to 9, while

he last bin (b = 10) includes those communities with more than

000 interests. With equal frequency binning, the bin(1) includes

he first 10% of communities in the ranking list sorted ascendingly

y the number of interests, the bin(2) includes 10–20%, and so on.

Fig. 4(a) plots the average CSD with its standard deviation by

he number of interests with equal width binning. Not like the

teady drop of CSD by community size, the figure presents a de-

reasing trend of CSD with micro-fluctuations by the number of

nterests. For instance, it shows a slight but obvious increase of av-

rage CSD of communities when the number of interests in com-

unities grows from (2K, 3K] to (3K, 4K]. The change of standard

eviation in the figure indicates that the variability of CSD gets

maller with the increase of the number of interests. According to

ig. 4(b) with equal frequency binning, we can also find a similar

on-steady drop trend of CSD as the number of interests increases.

The observed behavior can be explained since, in the case of

he interests there are two important aspects to consider. On one
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Fig. 5. CSD vs. community weight. (a) The weight of communities in bin(b) (b ∈ [1, 9]) belongs to ((b − 1) ∗ 2000, b ∗ 2000]; while the communities in bin(10) have a weight

larger than 18,000; (b) each bin contains the same number of communities and the weight of communities in bin(b) is larger than bin(b − 1).
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hand, a higher number of interests lead to a higher diversity, which

tends to reduce the CSD. This factor is responsible for the general

reduction trend. On the other hand, with the increase of the num-

ber of interests, the total popularity of all the interests within the

community (i.e., community weight) would probably increase as

well, which may produce the flat or increasing evolution of CSD

between some bins4. We further explore the factor of community

weight in the next subsection.

5.1.3. Influence of community weight

In this subsection, we discuss the impact that the community

weight has on the CSD. We used the same technique as in the pre-

vious subsections. With equal width binning, we have 10 bins so

that bin(b) includes those communities having a weight within the

interval ((b − 1) ∗ 2000, b ∗ 2000] with b ranging from 1 to 9. The

last bin (b = 10) includes all the communities with a weight larger

than 18000. With equal frequency binning, we sort all the com-

munities ascendingly by their community weights and then group

them into 10 bins, each of which includes approximately 10% of all

the communities.

It is worth noting that, in the definition of CSD, community

weight (W(c)) plays a different role from the number of users

(Nu(c)) and the number of interests (Nr(c)). Recall that CSD is

defined as: W (c)/Nr (c)−1
Nu(c)−1

. Thus, by definition, W(c) is positively

correlated with CSD, while both Nu(c) and Nr(c) are negatively

correlated with CSD. This means that the increase of W(c) may

indicate the increase of CSD, instead of the drop. Now let us see

whether this trend can happen in real-life communities.

Actually, against the above intuition, from both Fig. 5(a) and

(b), we can hardly find the increasing trend of CSD as the com-

munity weight increases. However, we notice that Fig. 5(a) and (b)

are quite similar to Fig. 4(a) and (b), respectively. The possible ex-

planation for the high similarity between these figures is that com-

munity weight W(c) and the number of interests Nr(c) are highly

correlated in real-life communities. To verify whether such high

correlation exists, we calculate the Pearson correlation coefficient

between W(c) and Nr(c). Based on the 865 Friend-based commu-

nities, the result coefficient is 0.938, which verifies the high corre-

lation of W(c) and Nr(c) actually exists in real-life communities.

To conclude, the number of users in a community is the most

sensitive factor related to the change of CSD. To some extent, it
4 In the definition of CSD, community weight W(c) is in the numerator part; thus

the increase of W(c) makes CSD become larger, assume the other two factors (num-

ber of users Nu(c) and number of interests Nr(c)) keep unchanged.

b

T

s

eets the intuition that the users easily share interests if the com-

unity size is small and the users are tight-knit; while it is hard

o find a large number of users with the same preferences. The

ther two factors, the number of interests Nr(c) and the commu-

ity weight W(c), are highly correlated in real-life communities but

ave opposite effects on CSD. Therefore, in reality, the change of

SD with the increase of Nr(c) is similar to that with the increase

f W(c); however, the change does not follow a steady trend.

.2. CSD by different types of communities

Fig. 6 plots the CDF of the CSD across the 865 communities

ithin each community type. It shows that the CSD values5 of

eal-life communities are rather small, compared to the maximum

ossible value 1 in its definition. In addition, the observation

emonstrates that Interest-based communities present the largest

SD among all the four types of communities. Particularly, the me-

ian value of CSD for Interest-based communities is 3×, 2.5× and

× larger than Random-based, Friend-based and Location-based

ommunities, respectively. In a word, the results indicate that the

bsolute degree of interest sharing among real-life community

embers is generally low, whereas the comparative differences of

SD between different communities are still relatively obvious. In

ddition, it is worth noting that in order to make a fair compar-

son, when computing the CSD for an Interest-based community,

e have excluded the common interest, which was used to build

p the community, from the distinct interest set Rc.

In addition, we study CSD of four types of communities by

he community size, shown in Fig. 7. We group the communi-

ies of similar sizes using the following bins: [2,100], [101,200],

201,300], …, [>900]. We observe that the Interest-based commu-

ities can achieve 1.45× to 4.5× CSD compared to Friend/Location-

ased communities, while 2.5× to 7× CSD compared to Random-

ased communities, with respect to different community sizes.

In summary, these observations suggest that users with one

ommon interest (Interest-based communities) are likely to share

ore other interests than friends or people from the same city

Friend/Location-based communities). Recall that our objective of

roposing CSD is to select appropriate communities for recom-

endation, thus we expect that Interest-based communities (with
5 Note that respectively 100%, 100%, 100% and 92% of the Friend-based, Random-

ased, Location-based and Interest-based communities have the CSD less than 0.03.

he highest CSD we have found among all the analyzed communities is 0.3. For the

ake of clarity, Fig. 6 shows the CDF for CSD values only up to 0.03.
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igher CSD) would achieve better recommendation performance

han the other types of communities. Note that this expectation

ill be evaluated later in Section 6.2.2.

.3. CSD by different interest categories

So far, we have created Interest-based communities without

aying attention to the used interest category. In this subsection,

e study CSD of Interest-based communities according to different

ategories (i.e., television, books, music, movies, and games) of the

nterests that are used to create the communities. For this study,

e have created 1000 communities for each category following the

niform distribution of the community size ranging from 2 to 500

sers.
Fig. 8(a) shows the CDF of the CSD for different interest cat-

gories. The most important observation is that all the categories

ollow very similar CSD distributions. The only noticeable issue is

hat music shows a slightly higher CSD than the remaining cate-

ories for high CSD values (which likely belong to small communi-

ies).

Fig. 8(b) shows the average CSD of different interest cate-

ories by the following community size bins: [2,100], [101,200],

.., [401,500]. The figure demonstrates that, for small communities

ith fewer than 200 users, music is the interest category show-

ng the highest CSD in Facebook (and significantly higher than the

ther categories). The rest communities present very similar re-

ults for the first two bins. For the communities with more than

00 members, all the categories, including music, show similar

ehaviors.
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Fig. 8. CSD comparison among Interest-based communities by different interest categories.
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5.4. Discussion of observations

We observe that a majority of the emulated communities gain

a very small value of CSD6. The small value of CSD of a com-

munity indicates that the members often share few interests. We

also observe that the CSD of a community is perhaps smaller if it

contains more users and interests (Figs. 3 and 4). Communities in

OSNs usually present different characters with dozens, hundreds

or thousands of users who report various interests, thus CSD of

these communities may be either relatively small or large. As con-

ducting community recommendation to the communities in which

the members share fewer interests is unreasonable or costly, it is

necessary to select the communities where users have relatively

more common interests (i.e., with relatively larger CSD) to im-

prove recommendation performance, especially when a huge num-

ber of communities exist. To sum up, these observations reveal

the requirement of community selection approach for community

recommendation in OSNs and support our original intention of

proposing CSD.

6. Use case: CSD for community recommendation

In this section, we validate the effectiveness and efficiency of

the newly proposed CSD metric. Concerning the effectiveness, we

tend to evaluate that CSD can be used to select appropriate com-

munities which may achieve high precision in community recom-

mendation. Specifically, we emulate a community recommendation

system with our Facebook dataset and leverage an existing com-

munity recommendation approach (Baltrunas et al., 2010) to rec-

ommend items for each community; we then sort the communities

by their CSD values and expect that the communities with larger

CSD can achieve higher recommendation precision. For the effi-

ciency, we will evaluate the computation time of CSD for a com-

munity.

Next, we will first briefly introduce the exploited community

recommendation approach and the metric for evaluation; then, we

report the evaluation results.

6.1. Recommendation approach and metric

We implement a community recommendation system based on

the idea of rank aggregation and collaborative filtering (Baltrunas

et al., 2010). This approach contains two steps: first, it computes a
6 The CSD of 98% of the communities is smaller than 0.03 whereas the defined

maximum value is 1.

m

o

t

r

ecommendation ranking list for each individual user in the com-

unity; then, it aggregates all the users’ individual recommenda-

ion ranking lists via certain pre-defined heuristics and generates

n aggregated recommendation ranking list for the community.

To generate the individual recommendation ranking list for a

ser, we first apply the item-based top-n recommendation algorithm

Deshpande & Karypis, 2004) to determine the items that are

ecommended to each user. Specifically, we compute the relevance

etween any two items ri and rj following the intuition: if more

sers like both items ri and rj, the relevance of ri and rj is higher.

hen, for each user, we generate an individual recommendation

anking list based on the item relevance and Borda count aggrega-

ion method (Coppersmith, Fleischer, & Rurda, 2010). Briefly speak-

ng, the user’s individual list includes the items that have high

elevance with her interested items marked in her profile. After-

ards, we still use the Borda count aggregation method to merge

ll the users’ individual lists and get an aggregated recommenda-

ion ranking list for the community. Finally, we recommend the top

items from the aggregated list to all the community members.

Referring to the existing community recommendation work

Gorla et al., 2013; Hu et al., 2014), we exploit average precision

o evaluate the recommendation performance for each community

nd compare mean average precision over a set of selected com-

unities to evaluate the effectiveness of CSD. Specifically, given a

ommunity Uc and an aggregated recommendation ranking list, as-

ume that we recommend the top K items to a user u ∈ Uc, we

efine the precision at rank position K for u as:

@K(u) = relK(u)

K
(2)

here relK(u) is the number of items that u likes among the top K

ecommendations. Then, for each community, we can calculate the

verage precision by:

P@K(c) = 1

|Uc|
∑

u∈Uc

P@K(u) = 1

|Uc|
∑

u∈Uc

relK(u)

K
(3)

inally, we define the mean average precision for a given set C′ of

ommunities as:

AP@K = 1

|C′|
∑

c∈C′
AP@K(c) = 1

|C′|
∑

c∈C′

1

|Uc|
∑

u∈Uc

relK(u)

K
(4)

Note that we only use precision, but not recall, as the evaluation

etric due to the following reason. In community selection for rec-

mmendation, intuitively we do not want to select the communi-

ies whose members only have few interested items (e.g., in movie

ecommendation, a community where the users generally dislike
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Table 1

MAP@K by CSD.

Communities TC[1−100] TC[101−200] TC[201−400] All BC[201−400] BC[101−200] BC[1−100]

Average CSD 0.052 0.012 0.009 0.005 0.0013 0.0011 0.0007

MAP@3 0.112 0.089 0.083 0.047 0.022 0.018 0.014

MAP@5 0.110 0.086 0.079 0.045 0.02 0.019 0.014

MAP@10 0.100 0.086 0.078 0.048 0.023 0.021 0.017
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Fig. 9. MAP@K of the top N communities in the CSD ranking list.

Table 2

MAP@K by different types of communities.

Communities Interest Friend Location Random

Average CSD 0.0108 0.0036 0.0036 0.025

MAP@3 0.090 0.035 0.033 0.030

MAP@5 0.085 0.034 0.031 0.029

MAP@10 0.085 0.043 0.033 0.030
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atching movies is absolutely not a good recommendation target).

owever, in the definition of recall, the denominator is the number

f a user’s interested items; thus, if a community has many users

ho have few interests, to some extent, it would be an advantage

o get high recall, which contradicts the intuition. Therefore, recall

s not an appropriate metric to evaluate the performance of com-

unity selection for recommendation.

.2. Evaluation

We verify the effectiveness and efficiency of CSD in three ex-

eriments. (1) In the first experiment, we use CSD to select a

et of communities and evaluate if the communities with larger

SD can generally gain better recommendation performance. (2)

n Section 5.2, we have shown that Interest-based communities

ormally obtain larger CSD compared to the other types of com-

unities; thus, in the second experiment, we investigate whether

nterest-based communities can achieve higher recommendation

recision. The second experiment evaluates the effectiveness of

SD in community selection from a different perspective compared

o the first one. (3) In the last experiment, we study the computa-

ion time of CSD to reveal its efficiency for community selection.

.2.1. Community recommendation by CSD

Taking into account all the communities we introduced in

ection 4.2, we respectively recommend top 3, 5 and 10 items to

ach community and compute the corresponding AP@K. Addition-

lly, we generate a CSD ranking list by sorting all the communities

ased on their CSD in descending order. Then, we collect the suc-

essive communities in the CSD ranking list into various commu-

ity sets and compare MAP@K of these community sets to examine

hether recommending items to the communities with larger CSD

an achieve higher precision.

We use TC[n1−n2] to represent the community set where the

ommunities are in the top positions from n1 to n2 in the CSD

anking list; we use BC[n1−n2] to represent the n1 to n2 commu-

ities selected from the bottom of the CSD ranking list. Then, we

xpect that the community sets including the communities in the

ront of the CSD ranking list would achieve better recommenda-

ion performance (i.e., higher MAP@K) than the sets containing the

ommunities in the back. Table 1 compares MAP@K among differ-

nt sets of communities and verifies this expectation.

Specifically, we observe that the community sets TC[1−100],

C[101−200], and TC[201−400] gain 7×, 3.5× and 3× larger MAP@K

han the community sets BC[1−100], BC[101−200], and BC[201−400].

In addition, Fig. 9 displays MAP@K of top N communities. The

esults show that the MAP@K declines with the increase of N. Note

hat, as N increases, more communities with smaller CSD are taken

nto account; thus, the average CSD of the top N communities de-

reases. In other words, Fig. 9 indicates that when the average CSD

f a community set decreases, the precision of recommendation for

he set of communities also reduces.

Fig. 10 plots CDF of AP@K of various community sets with dif-

erent CSD. If we take the median (i.e., 0.5 iny-axis ‘Percentage

f Communities’) AP@3 as an example, the results show that, se-

ecting communities from the top 200 communities (TC[1−200]) can

chieve 1.5× larger AP@3 than random selection, and 5.7× larger
P@3 than selecting communities from the bottom 200 communi-

ies (BC[1−200]).

In a nutshell, all the above experiment results demonstrate that

electing the communities with larger CSD can facilitate commu-

ity recommendation with better performance. In other words,

SD can be used to select the appropriate communities to achieve

igher precision in community recommendation.

.2.2. Recommendation by different types of communities

In this section, we evaluate the recommendation performance

or various types of communities (Friend-based, Interest-based,

ocation-based and Random-based). As we have shown that

nterest-based communities generally exhibit the largest CSD, we

xpect that the Interest-based communities can also achieve the

ighest MAP@K in community recommendation.

Table 2 and Fig. 11 validate our expectation. Table 2 indicates

hat Interest-based community can produce about 2× MAP@K

ompared to the other three types of communities. Fig. 11 plots

DF of AP@K for different types of communities. We observe the

imilar results that the median AP@K of Friend-based, Location-

ased and Random-based communities are all around 2× smaller

han Interest-based communities. In addition, we notice that, al-

hough friendships are widely used to improve recommendation

erformance in much existing work (Purushotham et al., 2012;

ang et al., 2012), Friend-based communities do not perform as

ell as Interest-based communities. It may be because a user

akes friends in various ways such as colleagues, families and

lassmates who do not necessarily share common interests with

he user.

In summary, when only considering the community type, the

esults demonstrate that Interest-based communities are normally

he best option for community recommendation. As the CSD of

nterest-based communities is the highest among all four types

Section 5.2), these results also verify the effectiveness of CSD, i.e.,

he communities of higher CSD can achieve better recommenda-

ion performance.

.2.3. Computation time of CSD

In order to evaluate the efficiency of CSD for community selec-

ion, we record the time of computing CSD for all the four types
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Fig. 10. CDF of AP@K by CSD.
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Fig. 11. CDF of AP@K by different types of communities.
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of communities in our study (totally 3460 communities). By using

an ordinary laptop (CPU: Intel Core i5-2540M 2.60 GHz; Memory:

6 GB; OS: Windows 7, 64-bit) and Python 2.7, the average compu-

tation time of CSD is 2.46 ms per community. According to this

average speed, we can compute CSD for 1 million of communities

within 41 min. In addition, Fig. 12 shows the computation time vs.

the community size and the number of interests in a community,

respectively. With regard to the linear regression models of com-
 a
utation time, it costs less than 10 ms on average to compute CSD

or a community with 1500 users or with 20,000 interests.

. Conclusions

Community is fundamental and ubiquitous in various net-

orks. For instance, biological functional communities build up

nd maintain metabolic networks; while social networks consist
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f groups of friends as well as various common location, inter-

sts and occupation based communities. So far, most network

ommunity studies have focused the effort on the techniques

f detecting communities so as to facilitate certain applications;

hereas, a huge number of self-organized communities have

een present in Internet and real-life networks nowadays. In such

ircumstances, rather than detecting communities, evaluating the

resent communities and selecting the ones that can meet the

pecific requirements of applications are preferable. Specifically,

his paper discusses the community selection for the application

f community recommendation. To the best of our knowledge, this

s the first work to discuss the research issue of quickly selecting

he appropriate communities among a vast number of candidates

n OSNs to improve community recommendation.

Taking users’ interests in community recommendation as an in-

tance, we have defined a metric of CSD to evaluate the interest

imilarity among users in a community. CSD indeed quantifies the

nner connection density of community members by their common

nterests. In order to quickly estimate the interest similarity, we

o not iteratively compute the similarities between all the user-

airs by using the conventional approaches (e.g., cosine similar-

ty, Jaccard similarity or Pearson correlation coefficient) and then

verage the value. Instead, inspired by Lin’s information-theoretic

efinition of similarity (Lin, 1998), we provide a formal definition

f interest similarity among multiple users within a community.

pecifically, the formulated metric CSD quickly divides the aver-

ge popularity of interests by the total number of the community

embers.

In practice, apart from being used to improve community rec-

mmendation, CSD can serve various applications. Considering a

ever deployment task in a content delivery network (CDN) which

ims at selecting the best locations to deploy some new servers,

e can first group the CDN users who live around a candidate

ocation into a location-based community; then, CSD can be em-

loyed to identify the best locations by selecting the best location-

ased communities in which the CDN users share the most similar

nterests.

According to different application requirements, the definition

f CSD can be easily modified and extended. First, although CSD is

riginally defined for interest similarity estimation based on the

ommunity consisting of a set of users (Uc) and a set of inter-

sts (Rc), the interests of users can be replaced by other attributes.

or instance, when it comes to a collaboration network, the set

f users and the set of interests are replaced by a group of sci-

ntists and a set of collaborated publications/projects, respectively.

hen CSD turns to assess the inner connection density of scien-

ists inside a community by their collaborations. Second, given a

ertain attribute (e.g., collaboration, interest), CSD could be easily

xtended to a weighted CSD where a weight for each attribute in-

tance needs to be considered in some specific applications. For

nstance, in a collaboration network, larger weights can be put to

ore recent collaborations if we are concerned about the scien-

ists’ current collaboration status. To define the weighted CSD, only

he popularity of each distinct attribute instance needs to be modi-

ed. In particular, for each distinct attribute instance, its popularity

quals the product of the number of its fans and its weight.

Furthermore, CSD can be applied as a feature to help make in-

elligent decision (e.g., a feature in a machine learning algorithm).

n a project examination and approval procedure, the quality of

roposal, the strength of partners and the cooperation success de-

ree of historical project may be all the determinants to select the

ualified consortiums. Substituting interests and users in a com-

unity with historical projects and partners in a consortium re-

pectively, CSD computes inner connection density of partners in

erms of the degree of successful project cooperation. CSD then

ould work as a feature to select the qualified project applications.
Despite the above-mentioned efficiency in computation and ef-

ectiveness for various applications, in order to enhance CSD for

ore real-life applications, some issues still need study in the fu-

ure.

First, the current definition of CSD has not considered the

elatedness between different interests. For instance, the users

ho like Harry Potter and the Philosopher’s Stone and the ones who

re interested in Harry Potter and the Chamber of Secrets must have

imilarity in their interests; while CSD regards the two interests

ompletely different and fails to consider their relatedness. Many

pproaches (e.g., cosine similarity, explicit semantic analysis, or

atent semantic analysis) may be taken to compute CSD with

onsideration of the relatedness of different interests, while using

hese approaches may increase the computation complexity of

SD in turn. This opens a research issue for our future work —

ow to balance the computation complexity and the precision of

nterest similarity in real-life scenarios.

Second, CSD has not taken into account the popularity distribu-

ion of the interests inside a community. Let us look at two com-

unities which both include 10 users and 2 interests. In the first

ommunity, 9 among the 10 users like the first interest and the

est user is a fan of the second interest; in the second one, half of

he users like the first interest while the other half like the second

nterest. CSD assesses the interest similarity of both communities

ith the same value, even though the two communities have dis-

inct interest popularity distributions that indicate different inner

onnection structures. At present, we believe it is a quite sophisti-

ated task to ravel which one of the two communities has higher

nterest similarity among its users. Probably this will depend on

he specific application that CSD is used to facilitate. We will start

xploring this issue with some specific applications in the future

ork.
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