IEEE INTERNET OF THINGS JOURNAL - HAN et al.: DPWSIM: A DPWS SIMULATOR 1

DPWSim: A Devices Profile for Web Services
(DPWS) Simulator

Son N. Han, Student Member, IEEE, Gyu Myoung Lee, Senior Member, IEEE, Noel Crespi, Senior Member, IEEE
Nguyen Van Luong, Student Member, IEEE, Kyoungwoo Heo, Mihaela Brut, and Patrick Gatellier

Abstract—The Devices Profile for Web Services (DPWS) stan-
dard enables the use of Web services for resource-constrained
devices, main components of the Internet of Things (IoT). DPWS
can power the next generation of IoT applications connecting
millions of networked devices and services on the Web. This
article presents a simulator, called DPWSim, to support the use
of this technology. DPWSim featuring secure messaging, dynamic
discovery, service description, service invocation, and publish-
subscribe eventing can be used to prototype, develop, and test
products in terms of DPWS communication protocols. It can also
support the collaboration between manufacturers, developers,
and designers during the new product development process.

Keywords—Internet of Things, DPWS, Web Service, Simulation.

I. INTRODUCTION

The Internet of Things (IoT) aims to connect millions of
physical objects to the Internet by which to power the next gen-
eration of Web applications over these networked devices. One
of the recent approaches is to use Web service to seamlessly
integrate device functionalities into the Web by using OASIS
standard Devices Profile for Web Services (DPWS) [1], [2].
DPWS enables secure Web service capabilities on resource-
constrained devices. It has an architectural concept similar
to the Web Service Architecture [3] but different in several
ways to better fit in resource-constrained environments and
event-driven scenarios. DPWS uses Web Service Description
Language (WSDL) [4] and Simple Object Access Protocol
(SOAP) [5] to describe and communicate device services;
but it does not require any central service registry such
as Universal Description, Discovery and Integration [6] for
service discovery. Instead, it relies on SOAP-over-UDP [7]
binding and UDP multicast to dynamically discover services.
DPWS has a publish/subscribe eventing mechanism for clients
to subscribe for device events, e.g., a device switch is on/off.
When an event occurs, notifications are delivered to subscribers
via separate TCP connections.

Son N. Han and Noel Crespi are with the Department of Wireless Networks
and Multimedia Services, Telecom SudParis, Institut Mines-Telecom, Evry,
France (e-mail: {son.han, noel.crespi} @it-sudparis.eu). Gyu Myoung Lee is
with the School of Computing and Mathematical Sciences, Liverpool John
Moores University, Liverpool, UK (e-mail: g.m.lee@ljmu.ac.uk). Nguyen Van
Luong is with Percevio, Paris, France (e-mail: luongnv89@gmail.com). Ky-
oungwoo Heo is with Electronics and Telecommunications Research Institute,
Daejeon, Korea (e-mail: hkw06 @etri.re.kr). Mihaela Brut and Patrick Gatellier
are with Theresis Innovation Center, Thales Services S.A., Palaiseau, France
(e-mail: {mihaela.brut, patrick.gatellier } @thalesgroup.com)

Copyright (c) 2012 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions @ieee.org.

DPWS is the key technology in several projects under
European research and development (R&D) initiatives of
Information Technology for European Advancement (ITEA)
and Framework Programme (FP) such as ITEA SIRENA,
ITEA SODA, FP7 SOCRATES, and FP7 IMC-AESOP. These
projects have contributed to the standard specification and
successfully released a number of DPWS implementations
to foster the adoption of the DPWS technology. However,
there are currently very few development tools supporting
the technology. We therefore have developed DPWSim, a
simulator for DPWS standard to help users to prototype,
develop, and test their applications during the development
process. DPWSim mimics all the protocol features of DPWS
to provide an efficient way to interact with DPWS compatible
devices. Key features of DPWSim are: (1) DPWS Protocols
Simulation - SOAP Envelop messages and mechanisms such
as discovery, service invocation, and eventing are all compliant
with DPWS specifications; (2) Graphical User Interface (GUI)
- An elegant and intuitive graphical interface is a key to
accelerate the development process; (3) Platform Independence
- DPWSim is written in Java programming language and can
run on any machine equipped with Java Virtual Machine;
and (4) Flexibility - There are several ways to define a new
DPWSim device ranging from manually creating, importing
from a file to automatically generating from a physical device.

The remainder of the article is organized as follows. Sec-
tion II summarizes DPWS technology. Section III presents
DPWSim core components and functionalities followed by
Section IV about use cases. Section V exhibits the experiment
results of DPWSim, and Section VI concludes the article.

II. DEVICES PROFILE FOR WEB SERVICES

DPWS was debuted in 2004 by a consortium led by Mi-
crosoft and became an integrated part of Microsoft’s Windows
Vista and Windows Rally (a group of technologies from
Microsoft intended to simplify the setup and maintenance
of wired and wireless networked devices). DPWS defines a
set of implementation constraints to provide a secure and
effective mechanism for describing, discovering, messaging
and eventing of services for resource-constrained devices.
Many technology giants such as ABB, SAP, Schneider Electric,
Siemens, and Thales have participated in several Enropean
R&D projects and standardization activities related to the
DPWS technology. Result of the ITEA SIRENA project is
now available in the Web Service for Devices initiative [8]
providing an open-source implementation of DPWS with four

IEEE INTERNET OF THINGS JOURNAL - HAN et al.: DPWSIM: A DPWS SIMULATOR 2

DPWS stacks having been implemented and verified: WS4D-
2SOAP, WS4D-uDPWS, WS4D-JMEDS, and WS4D-Android.

There are two types of services in DPWS: hosting service
and hosted service. The former is a special service representing
a device to participate in discovery, and to describe other
services hosted in it. These services present the functionalities
of each device and are called hosted services. DPWS uses
SOAP, WS-Addressing [9], and MTOM/XOP [10] for mes-
saging and supports SOAP-over-HTTP and SOAP-over-UDP
bindings. It uses WS-Discovery [11] for discovering a hosting
service (device), and WSDL to describe the hosted service
(device service). It uses Web Services Metadata Exchange
(WS-MetadataExchange) [12] to define metadata about the
device, Web Services Policy [13] to define a policy assertion
to indicate the compliance of the device with DPWS, and
WS-Transfer [14] to retrieve service description and metadata
information about the device.

In addition to the standardization effort of DPWS, many
studies have been carried out to deal with several DPWS
technical issues and scenarios. It has been shown that DPWS
is a promising technology to seamlessly integrate device
functionalities and events into existing resources, services, and
applications on the Web. DPWS thus far has been widely used
in automation industry, home entertainment, and automotive
systems [15] and also applicable for enterprise integration
[16]. Encoding and compression issues are discussed and
preliminarily put under a careful consideration to improve the
performance of SOAP messages in DPWS [17]. Experiments
on WS4D-uDPWS stack show that DPWS is able to be
implemented into (even) highly resource-constrained devices
such as sensor nodes with reasonable ROM footprints [18]. The
scalability of service deployment was first exploited in [19]
showing a prototype for a dynamic and scalable deployment
of DPWS devices. One of the important issues in IoT, the
integration of DPWS into IPv6 infrastructure and 6LoWPAN,
has been also well investigated in many studies such as [20]
and [21]. Han et al. propose an extension of DPWS standard
by using a REST proxy to provide RESTful Web APIs to
developers [22]. The latest version of WS4D-JMEDS offers
the use of private keys to encrypt SOAP messages. In addition,
real applications adopting DPWS technology have started to
gain attention such as the DPWS-based semantic building
automation system presented in [23].

III. DPWSiM: A DPWS SIMULATOR

DPWSim is a cross-platform simulator of the DPWS stan-
dard. It supports the development of IoT applications using
DPWS; DPWSim is based on WS4D-JMEDS [8], the Java
implementation of DPWS. The core function of DPWSim is to
simulate the DPWS protocols by generating DPWS messages
and its communication messaging patterns. It simulates DPWS
devices, called DPWSim devices, which can be discovered
on the network and can communicate with other devices
or clients via DPWS protocols. Besides, it also simulates
environments where DPWSim devices reside in. DPWSim
provides many simulation tools for users to create, manage,
store, and load simulations with high flexibility. DPWSim GUI

[E=Ey==)

€ DPWSim - Son's Home

File Device Help

—

i ! '] @ DPWSim - Terracelight [[

File Device Help

Fig. 1. A home space contains three devices: a generic DPWSim device
(blue button), a light bulb, and a coffee maker. A stand-alone device (space
with only one device) is a light bulb.

that is based on Java Swing [24] is quite intuitive and easy
to use. DPWSim helps developers to prototype, develop, and
test DPWS functionalities. The following sub-sections describe
the simulation model, core components, functionalities, usage
scenarios, and GUI of the simulator.

A. Simulation Model

DPWSim simulates the DPWS devices by modeling them
as services that operate according to the input of sensing
data (e.g., environmental temperature provided by users) and
communication data (e.g., service invocation commands sent
from clients). We use a number of hardware including IBM
PCs, Raspberry Pi, and Telos B sensor nodes to build real-
life devices such as thermostats, motion detectors, and TVs
to record how these devices work in several scenarios in
order to mimic their behaviors in the simulator. DPWSim
builds simulated devices regarding all layers of the TCP/IP
networking model [25]. At the network interface layer, the
reliable Ethernet link of the host machine is considered to
focus on the DPWS protocol messages and mechanisms rather
than physical issues (e.g., radio interference). At application
layer, each DPWSim device is modeled as a list of services
(events and operations) binding to an IP address (internet layer)
over UDP (transport layer). Events happen periodically after an
interval of time or manually via user interaction; operations are
software components receiving input, processing it, and pro-
ducing output (with its status updated and sent to the invoker).
On top of that, device status and outputs of events/operations
are modeled as graphical representations. When it comes to
modeling and simulating real DPWS systems, DPWSim can
support steps involving modeling, designing experiment, and
performing analysis of the discrete-event simulation [26].

B. DPWSim Components

DPWSim has four basic components namely Spaces, De-
vices, Operations, and Events. A space contains several de-
vices; each device has a list of operations and events.

IEEE INTERNET OF THINGS JOURNAL - HAN et al.: DPWSIM: A DPWS SIMULATOR 3

% Device Control Panel

Device Name | TerraceLight Manufacturer | Telecom SudParis

Namespace |http://telecom-sudparis.eu |IP Address 127.0.1.1
HTTP Port 4567 Type DPWSIim
Operations
Switch v +| - &
Request Value Response Message Status Image
on v ||It'son! +| (=€
Events
Notification Message Frequency
MotionDetection | v | Object detected! 0 +||-/| &
® Start | | Close
290 DiaLIIonguV)\ji(r?jow ® start
Iag Device Hel
“] New > Mac OS © Control Panel
=i Open ~O Menu Bar Bl Save
HSave s o Move
) Windows OS
O Quit Context Menu @ Delete
Fig. 2. DPWSim GUI components: a dialog window (Linux OS), a menu

bar (Mac OS), and a context menu (Windows OS).

Spaces: A space is a virtual environment representing a
real-life setting in which DPWSim devices reside in. It can be
a home, an office, a train station, a public space, or simply a
stand-alone device. Fig. 1 illustrates a home space containing
three devices and a stand-alone device.

Devices: A device refers to both DPWS hosting service and
hosted service. Since these two kinds of services, in reality,
share similar characteristics, they are used interchangeably
in DPWSim for simulation purpose. It contains two different
endpoint addresses used for each type of services. For example,
when taking part in the discovery, it uses the device endpoint
address; when invoking an operation, it uses the service
endpoint address.

Operations: Each device contains a list of operations car-
rying out device functionalities such as switching on and off
based on commands received from clients. These operations
are described in WSDL descriptions and can be retrieved via
service endpoint addresses. Each output of an operation is
represented by a graphical status, for example, the light bulb
in Fig. 1 will be changed to off status when the corresponding
operation is successfully invoked by a client.

Events: An event, similar to an operation, is used for a
device functionality related to changes in device state. When
the device state changes (or an event happens), it notifies
subscribed clients by sending notification messages. An event
can happen periodically (i.e., it happens frequently after an
interval of time such as sensing CO2 level every 15 minutes)
or manually (i.e., it is invoked by users). This property can be
set in the Device Control Panel as shown in Fig. 2.

C. DPWSim Core Functionalities

DPWSim provides simulation tools to help researchers and
developers to build IoT applications consuming DPWS ser-
vices. DPWSim can support users to create virtual environ-
ments from a simple to a complex one, even a graphically-
rich interface like in the Fig. 5 with the aid of external
computer graphics software and design skills. DPWSim acts as
a dynamic mediator to generate different types of simulation
meanwhile maintaining the DPWS functionalities.

New Space/Stand-alone Device: There are two options
for creating a virtual environment: stand-alone device and
space. These functions can be accessed through File menu or
keyboard shortcuts. A space is a composite environment to
host several devices. It is created by using a plan image such
as office, home, and airport. A stand-alone device is simply a
DPWSim device with a hosted service containing operations
and events. This kind of virtual environment can be stored in
file and re-used in other virtual environments.

New Device: Devices can be created by several ways, each
is associated with a submenu of the Device menu in DPWSim:
Add New (new user-customized devices), Add Predefined (pre-
configured devices by DPWSim), Add From File (importing
device from saved device description), and Genereate from
Physical Device (creating new device by mapping functional-
ities from a real device to a simulated one). Users can further
customize physical device properties to fit a new device. This
capability is especially useful when developers want to focus
on designing the business logic of an IoT application rather
than the physical performance of devices.

Device Management: Once a device has been created within
a virtual environment or as a stand-alone device, it can be
queried for DPWS information, re-located, deleted, or saved
for future uses. Similarly, a virtual environment including its
devices can be saved in the file system for being shared among
co-workers. Device services can be changed once created
through the Device Control Panel associated to each device
as shown in the Fig. 2. It provides an important approach
for developers to change device functionalities during the
development process without re-creating the device.

D. Usage Scenarios

DPWSim can be used in different phases in the development
process of DPWS products and systems. In general, it can be
used in three scenarios

Scenario one - Product Integrating: Device manufacturers
can pre-provide the DPWSim-compatible *.dpws file that
describes functionalities of upcoming devices to developers. It
enables them to test these devices in their real IoT applications
before the official release of these products.

Scenario two - Product Protyping: Developers can pro-
totype new devices and new functionalities based on their
application requirements without going through the complex
manufacturing process. The final design then can be transferred
to the manufacturer to work on it.

Scenario three - Resources Sharing: This scenario describes
the situation when several teams, at the same time, develop
different modules over the same devices. To solve the problem

IEEE INTERNET OF THINGS JOURNAL - HAN et al.: DPWSIM: A DPWS SIMULATOR

Service Manag: C ication Manag Diagnostics
Expand all Collapse all Clear Remove Quick Info | Parameter Tree
Devices Event Management
@ Terracelight - GenericDevice Get Status Unsubscribe | 60|
M
E£& GenericService
: Name Manage Value
\ events
= - & Output
%) MotionDetection [€] param Object detected!(0)

W operations

-
5 ,Jh— Switch

Fig. 3. DPWS Explorer discovers a DPWSim device TerraceLight containing
an event MotionDetection and an operation Switch. The green icon next to the
MotionDetection event indicates that DPWS Explorer is subscribing to the
event; once the event occurs, DPWS Explorer will receive the notification,
e.g., Object detected.

and speed up the development process, a new set of simulated
devices is generated by DPWSim to share among developers.
The simulation can also be used for demonstration purpose
without the loss of the accuracy.

E. Graphical User Interface

DPWSim GUI is built on lightweight Java Swing with a high
level of flexibility and the inherent ability to override native
host operating system (OS) Ul controls. Swing components do
not have corresponding native OS GUI components, and every
component is free to render itself in any way possible within
the underlying graphics GUIs. DPWSim GUI is intuitive
to users with the dialog/menu/context menu system. Fig. 2
shows some snapshots of DPWSim GUI in different platforms:
Windows OS, Linux OS, and Mac OS.

IV. DPWSIM USE CASES

DPWSim has been used in several environments such as
DPWS Explorer [8], a Web application, a testbed, and in a
number of DPWS studies. The following parts explain each
of these experiments on DPWSim and information about the
development process.

DPWS Explorer: DPWS Explorer is an analyzing tool for
DPWS compliant services. It visualizes various aspects of both
hosting and hosted services like metadata or message exchange
and provides capabilities to call or subscribe to device services
and events. It is used to preview DPWS services during the
development process. DPWSim devices can be discovered,
their operations can be invoked, and their events can be
subscribed from DPWS Explorer. Fig. 3 shows how DPWS
Explorer retrieves data and interacts with a DPWSim device.

DPWSim Web: DPWSim Web is a small Web application
included in the release of DPWSim to illustrate an use case
when a Web application interacts with DPWSim devices.
It is a Java Web application running on Apache Tomcat
application. It can discover available DPWS devices on the
network and retrieve their metadata. Following these data,
users can invoke device operations to carry out their tasks.
Fig. 4 shows DPWSim Web via its smartphone interface to
invoke an operation of a light bulb device KitchenLight. Users

o~

192.168.1.27:8080/dpwsir

192.168.1.27:8080/dpwsir &=

Devices List
KitchenLight
KitchenLight

CoffeeMaker Manufacturer: Telecom SudParis

Endpoint Address: urn:uuid:f92b20a0
2cdb-11e3-80af-8fe4735baab5
- XAddress: http://127.0.0.1:4567/
o KitchenLightDevice
Operations

192.168.1.27:8080/dpwsir

SwitchOff param

SwitchOn param
Events:

The operation invoked successfully! PresenceDetect

© 2013 Telecom SudParis | All right reserved

© 2013 Telecom SudParis | All right reserved

Fig. 4. A user can turn on the light bulb KitchenLight by invoking its
SwitchOn operation via the smartphone Web interface of DPWSim Web.

[orwsim - Teecom
[hlc Add Device_Help.

Fig. 5. A virtual home hosting several DPWS devices is designed using
DPWSim with the help of a 3D artist (Sa Hoang from Ecole Nationale
Supérieure d’Architecture de Paris La Villette - ENSAPLV).

can switch the light bulb on or off from the Web interface by
clicking on the buttons.

Research Projects: DPWSim has been used within
ITEA Web of Objects (WoO) project (http://www.web-of-
objects.com) to support the development of an incident man-
agement scenario for testing the contextual object collabora-
tion. DPWSim has been used throughout the development to
describe the common interface for the cooperation between
devices upon the assigned rights and specific rules imposed
in the whole system. An example of the home environment
created for the project is shown in Fig. 5. The home consists
of several DPWS devices such as a TV, lamps, and a coffee
maker. With the help of a 3D artist, it provides an elegant
simulation using DPWS protocols.

Besides, DPWSim has been thus far used in several
IoT studies such as the semantic building automation sys-
tem [23], social device networking [27], and REST proxy
for DPWS [22]. DPWSim is hosted by WoO project and
its source code is maintained on a GitHub repository
(http://github.com/sonhan/dpwsim.)

1

2

14

IEEE INTERNET OF THINGS JOURNAL - HAN et al.: DPWSIM: A DPWS SIMULATOR

V. DPWSIM EXPERIMENTS

We carry out experiments to evaluate the performance and
the compliance of DPWSim to the standard specification
by exploring the messaging patterns and exchange messages
between DPWSim and clients (e.g., DPWS Explorer) Specif-
ically, the experiments cover following protocols: messaging,
dynamic discovery, service description, service invocation, and
publish-subscribe eventing. We also evaluate CPU and RAM
usages of DPWSim on its host machine.

A. Experiment Setup

A local network is set up with two hosts: a Linux machine
with DPWSim and a Windows machine with DPWS Explorer
(DPWS client or consumer). DPWSim hosts 10 simulated light
devices; each consists of a light bulb, a switch, and a motion
sensor (e.g., Passive Infrared) and provides a lighting service
that has an operation Switch and an event MotionDetection.
The former is to switch the light bulb on or off; the latter is to
notify the subscribed clients about the presence of an object. A
packet analyzer Wireshark ! is deployed on the same machine
with DPWS Explorer to track DPWS messages.

B. Messaging

DPWS promotes both interoperability between resource-
constrained Web service implementations and interoperability
with more flexible client implementations where messages
exchanged over the network are SOAP compliant. Exchange
messages for DPWS protocols always include SOAP Envelop
and transport framing information such as HTTP headers, TCP
headers, and IP headers. Listing 1 is a typical SOAP Envelop
header of a DPWS message (Hello message) generated by
DPWSim, which is compliant with DPWS specifications. It
complies DPWS, SOAP Envelop, and WS-Addressing names-
paces and has a Universally Unique Identifier (RFC 4122) as
urn:uuid:eb6ae010-d47c-11e3-8050-d01059022ad8.

<sl12:Envelope xmlns:dpws="http://docs.oasis—open.org
/ws—dd/ns/dpws/2009/01”
xmlns:s12="http: //www.w3.0rg/2003/05/soap—envelope
” xmlns:wsa="http: //www.w3.0rg/2005/08/
addressing”
xmlns:wsd="http: //docs.oasis—open.org/ws—dd/ns/
discovery/2009/01 >
<sl2:Header>
<wsa:Action>http: //docs.oasis—open.org/ws—dd/ns/
discovery/2009/01/Hello
</wsa:Action>
<wsa:MessagelID>urn:uuid:eb6ae010—d47c—11e3 —8050—
d01059022ad8
</wsa:MessageID>
<wsa:To>urn:docs —oasis —open—org:ws—
dd:ns:discovery:2009:01</wsa:To>
<wsd:AppSequence Instanceld="1399311874"
MessageNumber="1" />
</sl2:Header>

</sl2:Envelope>

Listing 1. SOAP Envelop header

Uhttp://www.wireshark.org/

3500
M Response
i 3000 M Request
£ 2500
& 2000
w
[
8 1500
i
s 1000
500
0
N & e L & & S & &
) S XX N N N N N
RS UG QQT\ & & &
N SN O & &
Qﬂo 8;' 6’2‘7\' N (,)\‘)o %o
£ L & & &
FF &K
& & &

Fig. 6. Sizes of the main DPWS exchange messages in DPWSim with multi-
cast Hello, Bye, unicast Probe, ProbeMatch and others in the request/response.

There are several types of messages in DPWS including
Hello, Bye, Probe, ProbeMatch, Get Metadata Device (WS-
Transfer Get), Get Metadata Service (WS-MetadataExchange
GetMetadata), Event Subscription (HTTP POST), and Opera-
tion Invocation (HTTP POST), which are frequently exchanged
over the network for dynamic discovery, service description,
service invocation, and publish-subscribe eventing. DPWSim
strictly follows messaging specification for the communication
between clients and simulated devices. Fig. 6 shows the size
of DPWS messages captured by the Wireshark analyzer.

<dpws:Host>
<wsa:EndpointReference>
<wsa:Address>
urn:uuid:1c68cfe0—d475—-11e3 —803f—-d01059022ad8
</wsa:Address>
</wsa:EndpointReference>
<dpws:Types xmlns:wsdp="http://schemas.xmlsoap.org
/ws/2006/02/devprof” xmlns:il="http: //telecom—
sudparis .eu”>
dpws:Device wsdp:Device il:DPWSim
</dpws:Types>
</dpws:Host>

<dpws:Hosted>
<wsa:EndpointReference>
<wsa:Address>
http://192.168.1.17:4567/D1399308520385Service
</wsa:Address>
</wsa:EndpointReference>
<dpws:Types xmlns:i54="http: //telecom—sudparis.eu”
>
iS4:events
</dpws:Types>
<dpws:Serviceld>
GenericService
</dpws:Serviceld>
</dpws:Hosted>

i54:0perations

Listing 2. Endpoint address of a hosting service and its hosted service

According to OASIS DPWS specification, a service must at
least support WS-Addressing. If a device does not include a
transport specific address in Hello or Probe Match messages,

IEEE INTERNET OF THINGS JOURNAL - HAN et al.: DPWSIM: A DPWS SIMULATOR 6

3000
—4&—Discovery =
2500 —l—-Metadata Device / 1
Metadata Service .
2000 /v"b' |
g 1500
-
£ 1000 ;
F X
500
0
1 2 3 4 5 6 7 8 9 10
Fig. 7. Discovery time of one to ten DPWSim devices in three scenarios:

discovery only (Discovery), discovery and get device metadata (Metadata
Device), and discovery and get service metadata (Metadata Service).

the network independent address can be resolved by a UDP
multicast Resolve message. The response is a Resolve Match
send unicast through UDP. After finding the transport specific
address of a device, the hosted services on the device can be
queried. Listing 2 shows endpoint addresses of hosting and
hosted services from one DPWSim device.

C. Discovery

The dynamic discovery feature of DPWS is based on WS-
Discovery and SOAP-over-UDP specifications with several
messages exchanged in the network including Probe, Hello,
Resolve, Device Metadata, and Service Metadata. In the first
phase of discovery, multicast Probe and Resolve messages
are sent to the network to discover the target device. After
the device is discovered, messages are sent to retrieve device
metadata and service metadata before actual communication
happens. DPWSim devices also join/leave the network with
Hello/Bye messages and use the same mechanism for discov-
ering devices. Fig. 7 shows the discovery time of a number of
DPWSim devices (randomly created) between one and ten in
three cases: discovery only, discovery and get device metadata,
and discovery and get service metadata.

D. Description

Service description plays an important role in providing
access to a service. Service description in DPWS involves
device (hosting service) metadata, relationship with its hosted
services, each hosted service WSDL, and WS-Policy. A DPWS
client retrieves the device description in form of the XML
representation by sending a WS-Transfer Get to the device
(hosting service). The response metadata contains character-
istics of the device and topology information relating the
device to its hosted services. Similarly, the client may also
retrieve metadata for individual hosted services by sending
a WS-MetadataExchange GetMetadata. WSDL describes the
messages a hosted service is capable of receiving and sending.
Through WS-Policy, description conveys the capabilities and
requirements of a hosted service, particularly the transports
over which it may be reached and its security capabilities.

3ouser—agent:

DPWSim automatically includes these descriptions in each
simulated device, which can be retrieved through any client
using DPWS message exchange pattern. Listing 3 from a DP-
WSim device expresses device metadata that are typically fixed
across all devices of the same model from their manufacturer
based on dpws:ThisModel metadata.

<dpws:ThisModel>

<dpws:Manufacturer
SudParis

</dpws:Manufacturer>

<dpws:ManufacturerUrl>http: //telecom—sudparis.eu/

</dpws:ManufacturerUrl>

<dpws:ModelName xml:lang="en—EN">GenericDevice

</dpws:ModelName>

<dpws:ModelNumber>1</dpws:ModelNumber>

<dpws:ModelUrl>http: //telecom—sudparis.eu/</
dpws:ModelUrl>

<dpws:PresentationUrl>http: //telecom—sudparis.eu/

</dpws:PresentationUrl>

xml:lang="en—US”>Telecom

3 </dpws:ThisModel>

Listing 3. Device metadata described with dpws:ThisModel

E. Service Invocation

Service invocation is the frequent communication between
clients and DPWS devices. Listing 4 and 5 illustrate a HTTP
request and a response message to invoke an operation from
a DPWSim device. The message structure is compliant with
SOAP Envelope and WS-Addressing. The request is a HTTP
POST with header including endpoint address of the service
and content-type of application/soap+xml. The body of the
request is a SOAP Envelope containing the service informa-
tion. The response is a typical successful HTTP response of
code 200 including the return value from the operation. These
listings also play as guidelines for developers to handle DPWS
communication in any programming language and platform.
POST /D1399369777882Service HTTP/1.1
te: trailers

JMEDS HTTP Client

host: 192.168.1.17:4567

s content—length: 670

%

» content—type:

application/soap+xml

<?xml version="1.0" encoding="UTF—-8"7>
<sl2:Envelope xmlns:dpws="http://docs.oasis—open.org

/ws—dd/ns/dpws/2009/01”

xmlns:s12="http: //www.w3.0rg/2003/05/soap—envelope
” xmlns:wsa="http: //www.w3.0rg/2005/08/
addressing ">

<sl2:Header>
<wsa:Action>http: //telecom—sudparis .eu/
operations/switch</wsa:Action>
<wsa:MessageID>urn:uuid:46932240—-d504 —11e3—bf6a
—6eabe38b6788
</wsa:MessagelD>
<wsa:To>http://192.168.1.17:4567/
D1399369777882Service</wsa:To>

</sl2:Header>

<s12:Body>
<il49:param xsi:type="xs:string” xmlns:i149="
http: //telecom—sudparis.eu”

xmlns:xs="http: //www.w3.0rg/2001/XMLSchema”

xmlns:xsi="http: //www.w3.0rg/2001/XMLSchema—
instance ">on</il49:param>

20

IEEE INTERNET OF THINGS JOURNAL - HAN et al.: DPWSIM: A DPWS SIMULATOR 7

</s12:Body>
</sl2:Envelope>

Listing 4. Operation Invocation Request

HTTP/1.1 200 OK

Transfer—Encoding: chunked

: Date: Tue, 6 May 2014 11:53:30 GMTI+0100

PENNS

)

Content—Type: application/soap+xml
<?xml version="1.0" encoding="UTF-8"7>
<sl2:Envelope xmlns:dpws="http://docs.oasis—open.org
/ws—dd/ns/dpws/2009/01”
xmlns:s12="http: //www.w3.0rg/2003/05/soap—envelope
” xmlns:wsa="http: //www.w3.0rg/2005/08/
addressing”>
<sl2:Header>
<wsa:Action>http: //telecom—sudparis.eu/
operations/switchResponse
</wsa:Action>
<wsa:RelatesTo>urn:uuid:46932240—-d504 —11e3—bf6a
—6eabe38b6788
</wsa:RelatesTo>
</sl2:Header>
<sl12:Body>
<i53:reply xmlns:i53="http://telecom—sudparis.eu
">its on</i53:reply>
</s12:Body>
</sl2:Envelope>

Listing 5. Operation Invocation Response

FE Eventing

DPWS has a mechanism for clients to subscribe for device
events, e.g., alerts raised by the increasing of the temperature
below a specific value, or human presence detected by a
video camera. Events are state changes in the device and
can be delivered to clients based on the concepts of delivery
mode and eventing filter. The former defines how an event is
delivered and the latter defines which events are delivered to
a client. The PUSH delivery mode defined in DPWS uses for
event delivery separated TCP connections to each subscriber.
Table I shows details about three types of exchange messages
involving eventing mechanism in DPWSim: Subscription, Un-
subscription, and Notification.

TABLE L DPWSIM EVENTING MESSAGES
Type Request ~ Response Total
[byte] [byte] [byte]
Subscription wse:Subscribe 1279 950 2229
Unsubscription wse:Unsubscribe 858 611 1469
Notification NA 940 86 1026

Namespace xmlns:wse="http://schemas.xmlsoap.org/ws/2004/08/eventing”

G. CPU and Memory Usage

The Linux machine hosting DPWSim for the experiment
has Intel (R) Core(TM) 2 Duo CPU U7700 1.33 GHz and
2M RAM. Fig. 8 shows the percentage of RAM and CPU
consumed by DPWSim with the number of devices between 0
to 10. The CPU usage is measured when the most frequent
communication between the client and DPWSim devices,

16
'3? 14 == RAM
B 12 —8—CPU
S 10
2
Q 8
= 6
<
< 4
2
0
o 1 2 3 4 5 6 7 8 9 10
Fig. 8. DPWSim RAM and CPU usage on a Linux Machine of Intel (R)

Core(TM) 2 Duo CPU U7700 1.33 GHz and 2M RAM.

invoking a service, takes place. The client sends 1-10 con-
current invocation requests to simulated devices. We observe
an approximate linear increase in the CPU usage when the
number of requests increases from 1 to 10, consuming up to
14 percent of the host machine CPU.

VI. CONCLUSION

DPWSim is a cross-platform software simulator provid-
ing the simulation of DPWS standard. The simulation au-
tomatically generates DPWS messages and follows message
exchanges pattern in DPWS communication. It can be a
transparent, dynamic, and efficient channel between manufac-
turers and developers for speeding up the development of IoT
applications using DPWS technology. To boost the adoption
of DPWSim in R&D and industrial context, more experiments
with complex scenario, such as dynamic generation of simu-
lated devices, will be further accomplished.

REFERENCES

[11 S. N. Han, G. M. Lee, N. Crespi, V. L. Nguyen, H. Kyoungwoo,
M. Brut, and P. Gatellier, “DPWSim: A Simulation Toolkit for IoT
Applications Using Devices Profile for Web Services,” in IEEE World
Forum on Internet of Things (WF-1oT), Mar. 2014, pp. 544-547.

[2] “Devices Profile for Web Services,” OASIS Standard, Jul. 2009.
[3] “Web Services Architecture,” W3C Working Group Note, Feb. 2004.

[4] “Web Services Description Language (WSDL) Version 2.0 Part 1: Core
Language,” W3C Recommendation, Jun. 2007.

[5] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. F.
Nielsen, S. Thatte, and D. Winer, “Simple Object Access Protocol
(SOAP) 1.1,” W3C Note, May 2000.

[6] http://uddi.org/pubs/uddi-v3.0.2-20041019.htm.

[7] http://schemas.xmlsoap.org/ws/2004/09/soap-over-udp/.

[8] http://www.ws4d.org/.

[9] http://www.w3.org/Submission/2004/SUBM-ws-addressing-20040810/.
[10] http://www.w3.0rg/TR/2005/REC-soap12-mtom-20050125/.
[11] http://schemas.xmlsoap.org/ws/2005/04/discovery/.
[12]
[13]
[14]
[15]

http://schemas.xmlsoap.org/ws/2004/09/mex/.
http://schemas.xmlsoap.org/ws/2004/09/policy/.
http://schemas.xmlsoap.org/ws/2004/09/transfer/.

T. Cucinotta, A. Mancina, G. Anastasi, G. Lipari, L. Mangeruca,
R. Checcozzo, and F. Rusina, “A Real-Time Service-Oriented Archi-
tecture for Industrial Automation,” IEEE Trans. Ind. Informat., vol. 5,
no. 3, pp. 267-277, 2009.

IEEE INTERNET OF THINGS JOURNAL - HAN et al.: DPWSIM: A DPWS SIMULATOR

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

P. Spiess, S. Karnouskos, D. Guinard, D. Savio, O. Baecker, L. Souza,
and V. Trifa, “SOA-based Integration of the Internet of Things in
Enterprise Services,” in IEEE Int. Conf. on Web Services (ICWS), 2009,
pp. 968-975.

G. Moritz, D. Timmermann, R. Stoll, and F. Golatowski, “Encoding
and Compression for the Devices Profile for Web Services,” in IEEE
Int. Conf. on Advanced Information Networking and Applications
Workshops (WAINA), 2010, pp. 514-519.

C. Lerche, N. Laum, G. Moritz, E. Zeeb, F. Golatowski, and D. Tim-
mermann, “Implementing powerful Web Services for highly resource-
constrained devices,” in IEEE Int. Conf. on Pervasive Computing and
Communications Workshops, 2011, pp. 332-335.

X. Yang and X. Zhi, “Dynamic Deployment of Embedded Services for
DPWS-enabled Devices,” in Int. Conf. on Computing, Measurement,
Control and Sensor Network (CMCSN), 2012, pp. 302-306.

G. Moritz, F. Golatowski, C. Lerche, and D. Timmermann, ‘“Beyond
6LoWPAN: Web Services in Wireless Sensor Networks,” IEEE Trans.
Ind. Informat., vol. 9, no. 4, pp. 1795-1805, Nov. 2013.

I. Samaras, G. Hassapis, and J. Gialelis, “A Modified DPWS Protocol
Stack for 6LoWPAN-Based Wireless Sensor Networks,” IEEE Trans.
Ind. Informat., vol. 9, no. 1, pp. 209-217, Feb. 2013.

S. N. Han, S. Park, G. M. Lee, and N. Crespi, “Extending the Device
Profile for Web Services (DPWS) Standard using a REST Proxy,” IEEE
Internet Comput., 2014, Forthcoming.

S. N. Han, G. Lee, and N. Crespi, “Semantic Context-Aware Service
Composition for Building Automation System,” IEEE Trans. Ind. In-
format., vol. 10, no. 1, pp. 752-761, Feb. 2014.

J. Elliott, R. Eckstein, M. Loy, D. Wood, and B. Cole, Java Swing.
O’Reilly, 2002.

D. E. Comer, Internetworking with TCP/IP: Principles, Protocol, and
Architectures. Prentice Hall, 2000.

B. L. Nelson, J. S. Carson, and J. Banks, Discrete-Event System
Simulation. Prentice hall, 2001.

D. Hussein, S. N. Han, X. Han, G. M. Lee, and N. Crespi, “A
Framework for Social Device Networking,” in IEEE Int. Conf. on
Distributed Computing in Sensor Systems (DCOSS), May 2013, pp.
356-360.

Son N. Han (S’13) received the Dipl.Ing. degree
in applied mathematics from the Hanoi University
of Technology, Hanoi, Vietnam, in 2006, the M.S.
degree in computer science from the University
of Seoul, Seoul, Korea, in 2009, and is currently
working toward the Ph.D. degree in wireless net-
works and multimedia services at the Institut Mines-
Telecom, Telecom SudParis, Evry, France. From
2009 to 2011, he was a Researcher with the Elec-
tronics and Telecommunications Research Institute
(ETRI), Daejeon, Korea. His research focuses on

Web technologies for Internet of Things.

Gyu Myoung Lee (S°02, M’07, SM’12) received the
B.S. degree from Hong Ik University, Seoul, Korea,
in 1999 and the M.S. and Ph.D. degrees from the
Korea Advanced Institute of Science and Technology
(KAIST), Daejeon, Korea, in 2000 and 2007. He
is a Senior Lecturer in the Liverpool John Moores
University (LIMU), Liverpool, UK since 2014 and
an adjunct professor in KAIST since 2012. Prior to
joining the LIMU, he worked for Institut Mines-
Telecom, Telecom SudParis, France, from 2008 to
2014. Until 2012, he had been invited to work with

the Electronics and Telecommunications Research Institute (ETRI), Korea.
He was a research professor in KAIST, Korea and a guest researcher in
National Institute of Standards and Technology (NIST), USA, in 2007. He
has been actively working for standardization in ITU-T, IETF, and oneM2M
and currently serves as a Rapporteur and an Editor in ITU-T. His research
interests include Internet of Things, future networks, multimedia services, and
energy saving technologies.

Noel Crespi (M’07, SM’08) received the Masters
degrees from the University of Orsay, Orsay, France,
and the University of Canterbury, Christchurch, New
Zealand, the Dipl.Ing. degree from Telecom Paris-
Tech, Paris, France, and the Ph.D. and Habilitation
degrees from Paris VI University, Paris, France. In
1993, he was with CLIP; Bouygues Telecom, France
Telecom R&D, in 1995; and Nortel Networks, in
1999. He joined the Institut Mines-Telecom, Tele-
com SudParis, Evry, France, in 2002, and is cur-
rently a Professor and Program Director, leading the

Service Architecture Laboratory. He is a Coordinator for the standardization
activities in ETSI and 3GPP. He is also a Visiting Professor with the Asian
Institute of Technology and is on the four-person Scientific Advisory Board of
FTW,Austria. He has authored/coauthored more than 250 papers and contri-
butions in standardization. His research interests include service architectures,
P2P service overlays, future Internet, and Web-NGN convergence.

systems.

Nguyen Van Luong (S’13) received the Dipl.Ing.
degree in information and communication technol-
ogy from the Hanoi University of Science and Tech-
nology, Hanoi, Vietnam, in 2012, the M.S. degree
in software engineering for Ambient Intelligence
from the Institut Mines-Telecom, Telecom SudParis,
Evry, France, in 2014, and is currently a research
engineer in Percevio, Paris, France. His research
focuses on Web technologies for Internet of Things
and WebRTC.

Kyoungwoo Heo received the B.S. degree in
electrical communications engineering from Ko-
rea Advanced Institute of Science and Technology
(KAIST), Daejeon, Korea, in 2008. Currently, he
is an integrated M.S. and Ph.D. student at the
University of Science and Technology (UST) and
Electronics and Telecommunication Research Insti-
tute (ETRI), Daejeon, Korea. His research interests
are multimedia communication and network function
virtualization.

Mihaela But is a Project Manager in Theresis
Innovation Center, Thales Services S.A., Palaiseau,
France. She received Ph.D. degrees in Computer Sci-
ence in 2008, and in Humanities in 2000. Her works
are focused on the areas of knowledge management,
semantic web, web of things, ambient intelligence,
security infrastructures for public transport, informa-
tion indexing and retrieval, personalized recommen-
dations, business process automation and interoper-
ability. She has participated in 12 European projects
and published more than 40 scientific papers.

Patrick Gatellier is a Research Director at the
Theresis Innovation Center, Thales Services S.A.,
Palaiseau, France. After initial works in graphical
systems and compiler developments, he has spent
most of his career in Thales Group as a Project
Director for projects of French tax administration tar-
geting tens of millions users such as multi-purposes
tax authority portal, French National Land Register,
and the GAIA citizen global relationship system. His
research focuses on object context and representa-
tion, multi-modal dialogs and human factors in large

