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Abstract— When building decision-making models from 

disparate observations, there are no set rules to guide the 

designer on how to organize available information, how to 

classify vital aspects, how to emphasize important ones in the 

aggregation process, and how to deal with conflict and 

uncertainty in the aggregation procedures. This paper draws on 

the experience of structuring a business and risk model that 

evaluates service requests, which requires not only dynamic 

context-based decisions, but also situational and behavioral 

perspectives, with high uncertainty and wide variations of 

attribute styles. This study focuses on design issues that affect 

classification and aggregation options, such as corroboration, 

primacy and discord, and provides examples of classified key-

factors that demonstrate the design issues. The paper suggests 

procedures and algorithms to fit the design, but shows that there 

is no universal method - there is no ‘one-size-fits-all’.  
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I. INTRODUCTION 

The ability to infer context for service requests in real-time 
is highly desirable for increasing number of mobile business 
applications. Such requests can be for person-to-person 
communications or for access to corporate services or Internet 
browsing. Business context enables organizations to decide 
how to prioritize delivery of services, protect their resources, 
and enhance the security of sensitive applications and data. If 
enterprises could determine business-only status to distinguish 
from personal use, they would change the priority for requests, 
cut short non-essential long-duration media, or opt for 
changing access modes.  

Where the context is complex, there is a need for guidance 
in selecting attributes and sources and choosing their 
classification and procedures. The key factors include 
commonplace context characteristics that are ascertained from 
the physical environment (location, time), and from the digital 
information (media type, network type, destination), but the 
situational aspects (Associated-Activity, Urgency, Integrity) are 
less obvious and harder to establish, yet they may determine 
the outcome. Therefore, the choice of modelled aspects has to 
be guided by the designed suppositions and assertions. 

Model design must consider many aspects: atomization, 
classification, attribute association, credibility calibration, 
modes of corroboration and more. Models are often portrayed 
as if they have common procedures and uniform algorithms, 
but in reality, multiple methods are required. Design influences 
the selection of data sources too, so that assertions are 
adequately supported. Too many sources raise the cost of 

maintaining reliable input, but too few sources risks missing 
out on important observations. The classification choice also 
influences processing: too many classes produce complex 
output, but too few may gloss over important aspects. Element 
granularity should be balanced, where flat structures are 
simpler but lack accuracy, while deeply hierarchical ones are 
well defined but perplexing to manage.   

This paper explores how design issues affect modelling 
context and proposes classification modes and aggregation 
methods that deal with the main issues. In Section II, function-
based design is described. In Section III, granularity is 
considered. In IV, primacy and precedence issues are 
demonstrated. In V, corroboration and correlation, and in VI 
discordance and uncertainty are discussed. In VII, classification 
issues are summarized, in VIII related work is detailed, and in 
IX - the conclusions.  

II. FUNCTION-LED DESIGN 

A. Suppositions and Assertions  

Models are conceived with a particular function in mind, 
which results in specific decisions. For example, determining if 
the service request is for business or leisure in order to grade 
business priority; or to establish what level of resource usage 
should be granted; or to detect and grade a level of risk that 
merits a defensive action. Such functions must influence the 
model design at all levels. These functions have been described 
in the author’s earlier studies: selecting quality and priority 
levels [29]; protecting resources from excessive personal usage 
[19,18,29]; determining business status and level of funding 
[19]; and optimizing the choice of access network [18].  

To support the overall function, the classification structure 
of key-factors (classes) and attributes (atomic elements) must 
convey the logical function-based construct that defines 
‘suppositions’ and ‘assertions’. An attribute feature is 
‘asserted’ when an observation is matched with filtering tables 
or qualifying data. By linking corresponding suppositions, 
assertions and qualifiers, a function-specific logic is achieved.  

The choice of suppositions is closely related to the function, 
e.g. to determine business priority, positioning of the requesting 
devices are inferred as business locations or not. Choosing 
assertions depends on what should be tracked and prioritized 
by the function. While good coverage is important, excessive 
coverage leads to overlapping and dependencies, so the right 
balance has to be struck. Observations should provide 
sufficient coverage of any aspect that can support or conflict 
with the attribute. In Table I, examples of suppositions and 
assertions are shown. 



 

Several logical functions can be satisfied by one model if 
the construct of suppositions-assertions-qualifiers is overlaid. 
This is achieved by the combination of customizable filtering 
of the same data, selectable attribute assertions, and alternative 
policy-based prioritization. Observations that are gathered 
from pre-allocated sources are qualified to fit specific 
assertions. The asserted attributes ‘feed’ a layer of that support 
function-driven suppositions. The ‘key-factor’ aspects classify 
attributes that support particular suppositions. This provides a 
layered structure of sources, attributes and key-factors that is 
overlaid by function-specific qualifiers (inferences), assertions 
(claims) and suppositions (deductions), as in Figure 1.  

Figure 1.  Assertions and Suppositions Relating to attributes and factors 

B. Sources and Qualifiers 

Finding the right sources that can bring important insights 
is vital for precise and conclusive decisions. To minimize costs, 
only necessary sources should be used. On the other hand, 
adequate alternative backup must be made available for 
continuous operation. In addition to data sources that discover 
basic facts (the ‘instigators’), e.g. GPS or apps login, the 
qualifiers (e.g. tagged locations) are required to impute 
meanings. Function-specific qualifiers can infer different 
meaning for the same source data, e.g. interpreting the request 

timing as busy hour request (for optimal resourcing) compared 
with business hours (for business priority).  

C. Classification Groups 

Among the various generic classes that appear in studied 
communication modelling, the most often listed are spatial, 
temporal and destination-based characteristics. Aspects such as 
media and access network type are less common and situational 
or behavioral aspects are only chosen in relation to particular 
applications. When and where a service is requested are 
provided by Environmental factors, i.e. spatial and temporal 
aspects; What and how the session is to be delivered are 
derived from Digital key-factors, i.e. request details such as 
destination, network access type and media type; Why the 
service is requested is gleaned by Circumstance key-factors, 
which represent the user’s situation and behavior. They are 
inferred from associated activities, urgency indications and 
integrity risks, with information drawn obliquely from 
observations of current as well as recent history. Hence, 
circumstance key-factors are harder to establish and contain 
more design issues, such as discord and primacy, but they 
provide valuable insights for behavioral context models. 

D. Profiles and Policies  

Classification can be made by the type of source input (e.g. 
environment, circumstance and digital facets) and by the 
consequences of the output (e.g. ‘high impact’, ‘time-critical’ 
or ‘essential-activity’). While most models are structured by 
hierarchical design, a multi-dimensional classification can 
provide further insights, relating attributes across all key-
factors. This dimensional classification enables emphasizing 
attributes’ contribution from a different viewpoint, and is used 
for alternative policy-prioritization.  

Such cross-dimensioning is function-specific, and can also 
be used for ‘profiling’ scenarios or behavior patterns. Profiling 
involves analyzing the same data by alternative assertions and 
inferences, especially assisted by historical data analytics. For 
example, profiles for a Risk Model, such as ‘Suspicious’, 
‘Intrusive’, ‘Abusive’ and ‘Destructive’, can be ascertained 
from inferred risks that are linked to the same key-factors and 
attributes as the business-priority function. These profiles 
describe common risk scenarios that are associated with 
defensive actions. Each profile is customized by prioritization 
rates of the factors and attributes as well as risks. The model 
computes the best-fit profile for each service request, which 
determines what defensive actions should be taken. At the same 
time, the original model, which is aggregated by the normal 
business key-factors and attributes (without risks), provides the 
best-fit business context profile. The scores of these profiles are 
used to combine business status with risk context, and selecting 
a service delivery option is governed by both. 

III. GRANULARITY OF CLASSIFICATION  

A. Hierarchy 

Granularity level is a design issues for any model. A flat 
hierarchy with a handful of key-factors is easier to manage, but 
involves more complex elements. It is possible to increase 
granularity by creating an attribute for each level of ‘strength’, 
so that they are all binary (true/false). However, where there is 
high uncertainty, it will increase attribute numbers 

Table I: Examples of Context Suppositions/Assertions 

       Key-Factors Suppositions Examples Assertions Examples 
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Space 
Mostly on-site or on POI 
business location  

Normal place of work  
Home working 
Partner premises 

Time 
During work-time, including 
recognized after-hours 

Normal hours 
Busy-hour /congestion 
Not sick, not on holiday 

C
ir

c
u

m
st

a
n

ti
a

l Activity 
Concurrent/recent business-
like activities 

Corp. apps  
Scheduled duty activity 
Browse approved sites 

Urgency 
Indications of urgency or 
emergency, critical jobs 

On-duty officer 
Emergency event/alarms 
To critical system 

Integrity 
 

No risky behavior,  no 
confidentiality or data rights 
infringements 

Undesirable Destination 
Implausible Location 
Sensitive Data/Apps 

D
ig

it
a

l 

Destination 
Known, appropriate or 
approved destinations 

Internal/External P2P  
Corp. apps 
Cloud, corporate websites 

Network 
Suitable access mode,  
appropriate network usage 

WLAN or Home BB 
3G/4G/mobile, Roaming 
Hotspot 

Media 
Appropriate media type for 
the request, not unduly 
demanding   

Special needs 
Interactive Voice/Video 
Browsing 

4)  Aggregation of Factors Per Profile

Supposition 2 Supposition 3

2)  Aggregation of Observations per Attribute

1)  Aggregation of Source Data per Observation

3)  Aggregation of Attributes per Factor

Qualifiers QualifiersQualifiers

Context Function

Observations A Observations B Observations C

Context Profile

Assertion A Assertion B Assertion C

Attribute A Attribute CAttribute B

Supposition 1

Policy 

Priorities

Aggregation 

Rules

Credibility

Estimates

Data SourcesData Sources Data Sources

Key-Factor1 Key-Factor2 Key-Factor3



dramatically. Although it is desirable to build independent 
elements, designed as CART [2] structures, excessive splitting 
of members makes it “impossible to see the wood for the 
trees”. The bottom-up approach in [26] is preferable, relating 
attribute granulation to their data sources. This approach is 
preferable, not only for avoiding excessively fragmented 
structures, but also because it forges strong links between the 
source data and the analyzed assertions.  

The same granularity arguments also govern the selection 
of classes. Management of deep hierarchies is complex, but 
incorporating too many different attributes in one class hides 
some important features. Defining suppositions for each key-
factor helps to distinguish them and confirm that the contents 
should be in separate classes. The need for individual 
prioritization is a clear indication that a separate class is 
required. Therefore, in the case granularity of the main key-
factors, a top-down method is still required, in order to closely 
associate them with the model’s function and suppositions.  

B. Intensity and Credibility 

Observations may be designed as binary elements, with 
true/false states, or as elements with a range of possible values 
- i.e. Level of Intensity (LoI), which is observed or estimated for 
each service request. This concept is not the same as the 
strength of the belief that the attribute assertion is proven. 
Hence, it is important to distinguish between plausibility, as 
defined in the Dempster Shafer Theory [22], and attribute 
Intensity. Intensity is measured according to the observed 
source and is interpreted by indices, e.g. spatial proximity to 
tagged locations that strengthens the assertion of location, and 
temporal proximity to recent activities, when the impact of past 
activities fades with the passage of time. 

An observation (OBb) becomes active when the information 
from the data source is matched by a Qualifier (Qxy), with x 
lists and y items each. Binary attributes have LoIb =1 when 
active, and LoIb =0 when they are not. Depending on the type 
of observations and whether Intensity can be measured, the 
Level of Intensity (LoIb) is gauged for the observed assertion, 
not per source. The measurements are converted into a numeric 
scale, by fuzzification of both subjective estimates and 
instrumental measurements, to provide a uniform unit-less 
numeric index.  

An observation usually requires more than one data source, 
and the sources can have impact weights (Sws), to distinguish 
‘instigators’ from ‘qualifiers’. With the credibility approach, as 
in [28], the combined credibility of sources and qualifiers 
constitutes the observation’s inherent trustiness value. The final 
observation score is the product of the Level of Intensity and 
the aggregated Source Credibility Scredb, as in (1).   

The aggregation of source credibility is using SAW (Simple 
Weighted Aggregation) [11], which allows weighting of 
different sources. Qualifiers’ credibility is also added, but its 

impact is deemed lower than the credibility of instigating data 
sources that discover new facts. Credibility for a data source is 
calculated from estimated properties, such as reliability, 
precision, accuracy and data integrity, as explained in [28].  

C. Nested Sub-classes - the Urgency Class 

The granularity of classification sometimes dictates that a 
sub-class is inserted, despite the general aim to keep the 
hierarchy as flat as possible. Sub-classification is justified by 
the need to apply different aggregation method or different 
business policy weighting. The example of the Urgency Key-
Factor (UKF) in Figure 2 demonstrates a case where the class 
aggregation is cumulative, because the key-factor supposition 
is built by the corroboration of multiple signs of urgency (e.g. 
emergency events or alarms) that increase the overall state of 
urgency. One such sign is an urgent destination, when the 
request is destined to an emergency service, on-duty officer or 
a critical application. Only one destination can be valid per 
service request, so an operation that selects a single destination 
is performed in a separate sub-class, and the result of that is 
then aggregated as a cumulative member of the top set.   

Figure 2.  Urgency factor cumulative +XOR 

The destination (UDd) is selected in the sub-class as the 
maximum value and is considered as another contributory 
Urgency Attributes (UAi). The cumulative operation needs an 
aggregation procedure that corroborates the key-factor’s 
supposition that the request is urgent. Such corroboration needs 
to identify the main attributes (largest inherent value), and 
augment it with the supporting members’ values, as in (2). 

This procedure utilizes the author’s new algorithm (Cedar) 
that is subject to a further study. Cedar (Corroborative 
Evidential Diminishing Aggregation Rating) is a corroborative 
aggregation that increments the largest member in the set (the 
‘prime’) by lesser values, in proportion to their inherent values. 
The proportionality is achieved through a coefficient - the 
‘residual interval’, i.e. the remaining interval to the top limit of 
the scale, after taking out all previous contributions.  The 
residual is = (1-previous), but since ‘previous’ also contains its 
previous, this function is recursive. The residual is reduced 
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with each step in the proportions of the increments, so the 
impact of lower members is gradually diminishing. 

D.  Source-based Sub-classes - the Destination Class  

It is useful to define a sub-class of attributes according to 
the type of sources, in order to streamline processing and 
minimize the number of sources that need to be accessed. This 
is demonstrated by the Destination Key-Factor (DKF), in 
Figure 3. There is no sense in splitting the key-factor into two, 
because there can only be one destination per service request. 
Instead, separate sub-classes are used to process one destination 
type only, P2P (Person to Person) or web URL. For example, if 
P2P is detected, it is qualified by the corporate telephone 
directory with no need to access Deep Packet Inspection, and 
the process of qualifying web assertions is skipped.  

Figure 3.  Destination sub-classification by source 

The DKF is also an example of a class with attributes that 
are mutually exclusive (xor) as well as mandatory - i.e. at least 
one, and only one valid attribute must always exist, so DKF 
can never be zero (see summary in Table III). This example 
also shows that the same information (the destination) can be 
interpreted in two different classes, with different inferences, 
e.g. ‘Internal P2P’ in the Destination class may also be inferred 
as ‘Duty Officer’ in the Urgency class. 

IV. PRIMACY AND PRECEDENCE PROCESSING 

A. Precedence and Ranking 

Key factors, such as Associated-Activities, Integrity or 
Urgency, which rely on cumulative effects, also need to be 
ranked where the higher rated members in the set have greater 
effect, and lesser members’ impact is minimized. Most 
common ranking methods are the family of OWA (Ordinal 
Weighted Averaging) techniques, as discussed in ([6], [16], 
[17]). OWA computes the score for a Key-Factor (KFk) from 
its ordered members attributes (Aa), as in (3).  

OWA ranking provide the desirable effect of gradually 
diminishing the impact of lesser contributors, but the ranking 
coefficients are the ranking numbers (1,2,3,4) which are not 
proportional to the contributions of each of the members. The 
OWA algorithms do not guarantee keeping to a range of 0-1, so 
further normalization is required. OWA is also inadequate in 
handling conflicting negative attributes. OWA results for just 

two members are erratic, due to the order-based coefficient.  In 
Table II, comparison of bi-aggregation is given, showing the 
results of using SAW, OWA and WPM (Weighted Product 
Model) methods [15], and comparing them with Cedar.  

In example 2, when aggregating a negative contributor 
Att2, OWA raises the score of Att1 instead of reducing it. In 
example 3, OWA doubles the score unreasonably with a very 
small contribution. In all the examples, WPM and Averaging 
do not augment the first attribute (the prime), but actually 
reduce it, even when there are no negative contributions. SAW 
aggregates scores linearly, causing the score to shrink almost to 
nothing in example 2. Hence, none of these methods 
demonstrate proportional corroboration, while Cedar produces 
the desired effects, incrementing and decrementing the scores 
reliably, according to the contributions. 

B. Primacy - the Spatial Class 

The Spatial Key Factor (SKF) is an example of a class that 
requires determining a prime attribute (the highest scoring 
attribute). It is essential to establish an unambiguous spatial 
prime for clear decisions, e.g. ‘Office’ for on-site working 
policies that are different from policies for ‘Home-working’ or 
‘Roaming’. Any spatial attributes can be prime, or it can be 
concordant or discordant. Hence, spatial attributes are said to 
be  ‘role-swapping’, and are not assigned as negative or 
positive by fixed design. Figure 4 shows the procedure that 
defines the prime, matching positioning readings with the 
qualifying tables (Qxy). According to the selection of a prime, 
concordant attributes become positive and discordant attributes 
become negative. Discordant values decrease the prime’s score, 
down to even near-zero, but one attribute must still be 
determined as the prime, to avoid indecision. 

Figure 4.  Spatial Key-Factor 

To aggregate Spatial Attributes (SA), a variant of Cedar that 
is a combination of Cedar bi-aggregation with averaging is 
chosen, although full Cedar is also effective. With this aCedar 
(averaging Cedar), all contributions (both positive and 

Table II: Bi-Aggregation Comparison of Algorithms 

Input: Attributes and Weights Aggregation Comparison 

 
Att1 W1 Att2 W2 SAW Ave OWA WPM Cedar 

1 
0.788  0.890    0.701  0.701  0.701  0.809  0.701  

0.788  0.890  0.776  0.580  1.151  0.576  1.853  0.698  0.797  

2 
0.634  0.850    0.539  0.539  0.539  0.679  0.539  

0.634  0.850  -0.634  0.840  0.006  0.003  0.545  0.463  0.344  

3 
0.820  0.750    0.615  0.615  0.615  0.862  0.615  

0.820  0.750  0.055  0.210  0.627  0.313  1.242  0.469  0.617  

4 
0.634  0.850    0.539  0.539  0.539  0.679  0.539  

0.634  0.850  0.634  0.840  1.071  0.536  1.610  0.463  0.734  
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negative) except the prime, are averaged in a single process, as 
in (4). The final value is always positive, because the prime is 
always greater than the average of lesser attributes. The 
advantage of aCedar is that it needs no ordering (only finding 
the prime as the maximum value) and no process iteration, 
while clearly securing the primacy of the prevailing attribute. 

C. Sequential Logic - the Temporal Class 

In rating-based aggregation, precedence determines the 
level of impact that is given to the prime and the succeeding 
members. Precedence order also determines which attributes 
are eliminated, where the logic tests attributes in a sequence of 
conditions. Temporal attribute processing involves a series of 
conditions, e.g. if the user is on ‘holiday’, all other options are 
irrelevant. Therefore, time interpretation options are eliminated 
sequentially, and the outcome depends on the order of 
precedence, as shown in Figure 5.  

Figure 5.  Temporal Precedence of Conditions  

Different processing sequences may be needed for different 
temporal suppositions. For example, the precedence order for 
the resource optimization function requires that ‘busy hour’ is 
eliminated before ‘normal working hours’. A unique Temporal 
Attribute (TAa) must be selected for the Temporal Key-Factor 
(TKF), i.e. there can only be one valid attribute, and there is no 
logical corroboration between attributes (see summary in Table 
III). The design of the key factor determines whether a zero-
value score is treated as neutral result (no policy attached), or it 
has an associated action by default, as in (5). 

D. Dealing with Exceptions - the Media Type Class 

The precedence order may be activated for one member, 
before aggregating the rest, where factor aggregation is 
uniform, except for one exception. This is demonstrated by the 
Media Key-Factor (MKF) in Figure 6. For example, corporate 
rules may impose restrictions on video while roaming or long 

sessions during busy-hour. However, a ‘Special Needs’ 
attribute (e.g. audio-visual interface for disabled users) can be 
treated as an overriding exception, while the rest of the 
attributes are a homogeneous group. Exceptions are regarded as 
precedence-based conditions.  A mandatory single media type 
is determined in a mutually exclusive process. 

Figure 6.  Media Type Key-Factor and Exceptions 

V. CORROBORATION AND CORRELATION 

A. Corroborative Attributes - Associated Activity 

Cumulative aggregation does not necessarily need to have a 
prime, but in models that attach particular significance to the 
prevailing attribute, the aggregation is corroborative. The 
Associated-Activity Key-Factor (AAKF) draws observations 
from application servers’ logins, and the evidence is 
cumulative, as shown in Figure 7, i.e. the supposition of 
business activity is strengthened by multiple logins to various 
corporate apps. If there are no current or recent activities within 
the temporal proximity limits, the AAKF value is zero, which is 
a neutral result, with no default. While digital classes 
(Destination, Network, and Media) mandate a non-zero result, 
the AAKF does not regard a zero factor score as an error.  

In the case of the business priority function, non-business 
activities contradict the key-factor’s supposition. Therefore, 
these attributes are discordant by design, in contrast with 
spatial assertions that conflict with each other and can swap 
roles. Hence, the AAKF discordant assertions are deemed as 
‘designated’, i.e. they are fixed for the key-factor supposition.  

Figure 7.  Associated Activity Concordant and Discordant Attributes 

B. Correlation - the Network Access Key-Factor 

The digital classes (Network, Destination and Media type) 
are characterized by assertions that are strictly non-cumulative. 
Their assertions must support the suppositions - or they are not 
valid, i.e. discordance is not possible. There must always be 
one unique true-status attribute for these digital key-factors.   
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However, corroboration can come from inter-class 
correlation: an attribute in one class may confirm or conflict 
with another, in a different class. Cross-factor support is not a 
straightforward corroboration, because it involves support for 
different suppositions, but such correlation assists in achieving 
model resilience and anomalies detection. If a digital class 
assertion is disputed by a credible cross-factor attribute, this 
will cause the request to be rejected with a serious error 
condition.  Confirmation, on the other hand, should boost the 
key-factor score via corroborative aggregation. Figure 8 shows 
the Network Access Key-Factor (NAKF) with an example of 
cross-factor correlation by the Spatial Key-Factor.  

Figure 8.  Network Access confirmed by Spatial Factor Location 

Correlation boosting is not necessarily symmetrical, and 
often only one of the involved factors is incremented. For 
example, the spatial assertion ‘Abroad’ via GPS tagging is 
boosted by a ‘Roaming’ network attribute, but the correlation is 
not true in reverse. Similarly, correlation between ‘Home’ 
location and ‘Home-Broadband’ network is also asymmetric. In 
finding such correlations between key-factors, attributes 
dependencies are revealed.  A design policy should aim to limit 
dependencies, yet they can provide important ‘clues’. 

VI. DISCORDANCE AND UNCERTAINTY 

A. Uncertainty and Conflict 

Uncertainty is high on the agenda of papers dealing with 
context, especially behavioral models. Context semantics allow 
for an accuracy characteristic [12] to be recorded, but there are 
no indications of how to compute it or how to integrate it with 
the attribute scores. As mentioned above, the author has 
proposed in [28] a procedure to build up credibility rates from 
the properties of sources and integrate it in the observations’ 
‘inherent’ value. This way, uncertainty is integrated in the 
context members’ evaluation. 

The Dempster-Shafer Theory (DST) distinguishes 
plausibility (1-Belief) from probability, and allows for 
unassigned ‘mass’, which is neither discordant nor concordant, 
to be added to plausibility. However, it is debatable whether 
such ‘ignorance’ mass should be accrued to plausibility, and 
not to conflicting ‘disbelief’. DST’s ‘Belief Function’ tackles 
uncertainty of evidence conceptually, but their combination 
rule fails to account for conflict. It assigns discordant ‘beliefs’ 
to separate sets [25], but they are discarded instead of 
aggregated as negative amounts, so conflict is not incorporated 
in the score. In [31], uncertainty is managed via measuring 
sensors’ dissimilarity using DST, thus measuring only ‘pure’ 

discord, but still not addressing conflicting evidence. Hence, 
conflict is not well served by existing methods. 

B. Negativity 

Since behavioral context must handle conflict, aggregating 
attributes must cope with negativity. Negative assertions must 
actually decrement the scores, to reflect the raised doubt in the 
prime evidence. Methods that segregate negative from positive 
attributes, where the values are normalized by relating them to 
min/max in each group do not achieve such decremental effect. 
The algorithm in (6) cancels out the negative sign, and yields a 
positive number that is less than the absolute sum total, but 
more than a simple subtraction (see [22]). However, if the 
negative set {Aj} is empty, the amount without conflict is lower 
than that with conflict, which is counter-intuitive. A signed 
corroborative method must ensure that the prime is always 
augmented by concordant corroboration, and is only decreased 
with discordant contributions, as accomplished by Cedar. 

Handling negative assertions raises several design issues. In 
particular, the Cedar proportional coefficient (the residual) 
must continue to diminish, despite negative contributions.  In 
(7), mixed positive and negative attributes are aggregated with 
averagingCedar, allowing assertions to decrement or increment 
the total. The residual interval must be based on absolute 
values of the contributions, so that the diminishing effect 
remains consistent. In full Cedar, the prime, by definition, is 
positive, and is gradually decremented by negative assertions in 
proportion to their contributions. With an absolute residual, the 
negative contributions are decreasing, and even large negatives 
do not deplete the prime value entirely. 

C. Discordant Suppositions - the Integrity Class 

Managing discordance affects model design as well as 
algorithms. Signed scores require particular attention in 
aggregation and normalization, and in interpreting results, 
which must attach meaning to possible negative output. 
Particular issues arise in the Integrity Key-Factor (IKF), as in 
Figure 9, which contains bi-polar attributes that can swing from 
one extreme to another, e.g. ‘habitual’ becomes ‘unhabitual’, 
according to spatial proximity and historical records. Thus, the 
aggregation procedure cannot distinguish negative attributes. 

Discordant assertion is defined as (a) designated, if the 
assertion always disagrees with the class supposition, e.g. ‘non-
business activities’ in AAKF; (b) swapping roles, if it can be 
prime, concordant to discordant, as in SKF; (c) bi-polar, if the 
observation intensity indicates it, as in the Integrity Key-Factor 
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(IKF). Assertions turn negative at different processing points: 
(a) fixed negativity is ‘hard-wired’ for designated discordant 
attributes; (b) negativity is dynamically assigned to role-
swapping attributes that are conflicting with the prime, when it 
is ascertained; (c) bi-polar assertions become negative when 
the Intensity is assessed.  

Figure 9.  Integrity Key-Factor 

 When the whole set of assertions is discordant, the key-
factor itself is a negative component, e.g. the IKF is regarded as 
Integrity=(1-Risk). If the IKF is expressed as a series of bi-
polar attributes, i.e. mixed positive and negative attributes, it 
could produce an overall negative key-factor. Unlike SKF, the 
prime itself can be negative, if it contradicts the key-factor 
supposition. In this case, the negative prime should be the 
minimum value, rather than the customary maximum. This 
enables addressing the ‘worst’ attribute, and applying policies 
to the real concern - the integrity weakness, as shown in (8).  

If the concordant values do not offset the discordant values, 
a negative factor is returned, which will reduce the profile’s 
overall score. This is still a valid result, as long as the score 
decrements are proportional to other key-factors values. Hence, 
cross-class parity and consistency should be maintained.  

VII. SUMMARIZING CLASSIFICATION ISSUES  

Table III summarizes the described features per key-factor. 
It shows the required mode of processing (by rank, 
corroboration, sequential logic etc.). The intensity indexing can 
be spatial or temporal, for some or all members, but certain 
attributes have specific intensity scales, e.g. data confidentiality 
scale for Integrity risks. The table shows which classes must 
have a prime attribute selected, while others must have a 
unique attribute selection. It also shows the appropriate type of 
discordance (designated, role-swapping, or bi-polar), and the 
requirements for mandatory results or defaults. 

It is evident that some features are common within their 
class facets (environmental, circumstantial, digital), yet their 
procedures are still different. This shows that there is no one-

size-fits-all and that the model design has to accommodate 
individual requirements of different components. 

VIII. RELATED WORK 

Little is said in research about how to select sources and 
attributes and only few studies go beyond RBAC (Role Based 
Access Control) for enterprise admission control. The range of 
context aspects is mostly limited to environmental and digital 
factors, but rarely circumstantial or behavioral. In [10], 
transport methods are deduced from environmental context. An 
activity factor is not uncommon, as in [1], but it has a wide 
range of interpretations. In [3], roles and environmental aspects 
are blended. In [8], OSS/BSS context relies on ‘policy-
continuum’, i.e. retained memory of policy-based behavior. In 
[5], context is used for agent-based routing at the enterprise, 
but does not address service requests. These studies do not 
cover the full range of attributes and factors that is required for 
accurate context assessment. 

Uncertainty and conflict are fundamental in context 
modelling. The Dempster Combination Rule, as in [24], 
separates and discards discordant attributes, so conflict is not 
taken into account. Resolving conflict in [20] uses ABAC 
(Attribute-Based Access Control) with rule reduction, but not 
in aggregation. In [22], negative and positive elements are 
segregated and correlated in a normalizing algorithm, but it 
fails when the conflict is zero. In [24] signed fuzzy measures 
are aggregated, using discrete Choquet Integral that exploits 
their interactions, but only for interval-based models.  

Context languages, such as OWL (Web Ontology 
Language) and the OASIS-defined XCML (eXtensible Context 
Markup Language) [11] enable documenting context structures, 
but do not assist in design decisions. They do not capture 
source credibility, but XCML in [12] is extended to 
accommodate ‘accuracy’. In [21], XACML (Extensible Access 
Control Markup Language) is used for policy based 
authorization. In [13], SAML (Security Assertion Markup 
Language) profile for XACML is specified, to relay 
authorization information for special security assertions. In [14] 
XACML extensions for RBAC authenticate user access 
requests, with spatial-temporal context. However, these 
semantic tools also require appropriate aggregation procedures. 

Decision Trees (DT) structures are described in many 
studies. In [7], OWA (Ordered Weighting Averaging) is used 
to create hierarchical Fuzzy Operator Trees (FOT). Lack of 
model uniformity is reflected in [4], which decomposes OWA 
attribute pattern trees, to allow mixed operations (max, min, 
average, ordinal) for multiple algorithms in one model, 
acknowledging the need for complex aggregation. Data mining 

Table III:  Summary of Class features  

Group:   Environmental Situational Digital 

Class:  Spatial Temporal Activity Urgency Integrity Destin. Network Media 

Processing 
Rank+ 
Corrob. 

Seq. 
xor 

Rank+ 
Corrob. 

Rank 
Corrob+ 

xor 

Rank+ 
Corrob. 

xor+ 
xor 

xor 
Seq.+ 
xor 

Intensity Spatial Temporal Temporal Temporal 
Temporal

+ 
no no no 

Discordant Swapping no Designated no Bi-polar no no no 

Prime  Prime Unique Prime Prime Prime Unique Unique Unique 
Mandatory Default Default no no no yes yes yes 
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methods are used for mobile context in [2], including CART 
(Classification and Regression Trees), which atomizes 
attributes down to binary components in deeply hierarchical 
structures. In [26], a bottom-up method (using Maximum 
Likelihood), is proposed for building decision trees up from 
data, avoiding numerous ‘branches’, but still allowing single 
source branches to exist. These methods deeply affect the 
design of suppositions and assertions. 

Several attribute aggregation methods that are regarded as 
MCDM (Multi-Criteria Decision Making) are listed in [9], 
including fuzzy algorithms. In [15], WPM (Weighted Product 
Model) with pairwise analysis is preferred over SAW (Simple 
Additive Weighting), although SAW is faster to compute. 
However, in [27], WPM is shown to produce extreme results, 
due to weights being used as exponents, while SAW is more 
intuitive. Aggregation by ranking is dominated by OWA, 
which was first proposed by Yager in 1988 [16]. In [6], 
‘Induced OWA’ extends the concept to pairs that allow ‘fusing’ 
different types of information, e.g. linking policies to attributes. 
In [17], an OWA extension ranks ordinal interval vectors of 
spatial sources.  

In this paper, the new Cedar algorithm is shown to produce 
appropriate aggregation results for key-factors that need 
corroborative methods, while the MCDM methods fail to cope 
with discordance, parity, proportionality and scale. 

IX. CONCLUSIONS 

In this study, design issues are shown to have considerable 
impact on context model methodology and aggregation 
techniques. The design affects the choice of algorithms and 
procedures, and significantly affects accuracy of decisions. 
Aspects such as atomization granularity, hierarchy, policy 
weighting techniques, parity between classes, aggregation 
modes, uncertainty and discordance, all have profound 
consequences in terms of the ability to produce unambiguous, 
conclusive decisions. A good model design strikes a balance 
between model simplifications to optimize real-time 
processing, and achieving definitive decisions, based on 
evidential nuances, despite conflict and uncertainty. 

Several aggregation methods were proposed in this paper, 
to suit particular designs, including the new corroboration 
algorithms, Cedar, which is a recursive algorithm that meets all 
the corroboration requirements for proportional aggregation, 
diminishing impact of lesser contributions and dealing with 
discordance. The utility of these methods extends to similar 
types of behavioral-digital context models, especially for 
diagnostic and analytic processes. 
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