
DPWSim: A Simulation Toolkit for IoT Applications
using Devices Profile for Web Services

Son N. Han, Gyu Myoung Lee, Noel Crespi
Department of Wireless Networks and Multimedia Services

Institut Mines-Telecom, Telecom SudParis
91011 Evry, France

{son.han, gm.lee, noel.crespi}@it-sudparis.eu

Kyongwoo Heo
Electronics and Telecommunications Research Institute

University of Science and Technology
Daejeon 305-700, Korea

hkw06@etri.re.kr

Nguyen Van Luong
Department of Software-Networks

Institut Mines-Telecom, Telecom SudParis
91011 Evry, France

van.nguyen@it-sudparis.eu

Mihaela Brut, Patrick Gatellier
Smart Systems Laboratory

Theresis, Thales Services S.A.
91767 Palaiseau, France

{mihaela.brut, patrick.gatellier}@thalesgroup.com

Abstract—The OASIS standard Devices Profile for Web Ser-
vices (DPWS) enables the use of Web services on smart and
resource-constrained devices, which are the cornerstones of the
Internet of Things (IoT). DPWS sees a perspective of being able
to build service-oriented and event-driven IoT applications on
top of these devices with secure Web service capabilities and a
seamless integration into existing World Wide Web infrastruc-
ture. We introduce DPWSim, a simulation toolkit to support the
development of such applications. DPWSim allows developers to
prototype, develop, and test IoT applications using the DPWS
technology without the presence of physical devices. It also can
be used for the collaboration between manufacturers, developers,
and designers during the new product development process.

Keywords—Internet of Things, DPWS, Web Service, Simulation.

I. INTRODUCTION

The Internet of Things (IoT), after years of development,
has fostered the advancement of many technologies especially
in the fields of low-power wireless communication and com-
puting paradigms for resource-constrained environments. One
of the approaches is to bring Web service into smart devices to
seamlessly integrate their functionalities into the World Wide
Web (or Web), which is predominant on today’s Internet. This
envisages a booming chance of new IoT applications where
devices can be interconnected with a plethora of existing Web
resources and services. OASIS standard Devices Profile for
Web Services (DPWS) [1] is such a technology arriving to
realize this vision. DPWS enables secure Web service capa-
bilities on resource-constrained devices. It has an architectural
concept similar to Web Service Architecture [2] but different in
several ways to better fit in resource-constrained environments
and event-driven scenarios. DPWS is based on Web Service
Description Language (WSDL) [3] and Simple Object Access
Protocol (SOAP) [4] to describe and communicate device
services, but it does not require any central service registry
such as Universal Description, Discovery and Integration [5]
for service discovery. Instead, it relies on SOAP-over-UDP [6]
binding and UDP multicast to dynamically discover services.

DPWS offers a publish/subscribe eventing mechanism for
clients to subscribe for device events, e.g., a device switch
is on/off or sensing when temperature reaches a predefined
threshold. When an event occurs, notifications are delivered to
subscribers via separate TCP connections.

DPWS is the key technology of several European projects
supported by Information Technology for European Advance-
ment (ITEA) and Framework Programme (FP) initiatives such
as SIRENA, SODA, SOCRATES, and on-going IMC-AESOP
and WoO. These projects have solved many technical problems
and successfully released several implementations of DPWS
stacks for resource-constrained devices, which preliminarily
enables the adoption of the DPWS technology. However,
there are currently very few development tools for applica-
tions using DPWS. We therefore have developed DPWSim,
a simulation toolkit for DPWS devices to help developers
to prototype, develop, and test their applications during the
development process. DPWSim mimics all the software and
protocol features of DPWS under an intuitive graphical user
interface to provide an efficient way to simulate and manage
DPWS devices. Key features of DPWSim are: (1) Platform
Independence - DPWSim is written in Java programming
language and can run on any machine with Java Virtual
Machine installed; (2) Flexibility - There are several ways to
define a new DPWS device ranging from manually creating,
importing from a file to automatically generating from a
physical device; (3) Transparency - IoT applications working
with virtual devices provided by DPWSim can immediately
work properly on physical devices without any change in code.
(4) Physical Device Generation - This toolkit can generate
virtual devices from physical DPWS devices; (5) Graphical
User Interface - An elegant and intuitive graphical interface is
a key to accelerate the development process.

The remainder of the papers is organized as follows.
Section II summarizes DPWS technology. Section III presents
DPWSim core components and functionalities followed by
some use cases. Section IV is about the experiments of
DPWSim, and section V concludes the paper.



II. DEVICES PROFILE FOR WEB SERVICES

DPWS was debuted in 2004 by a consortium led by
Microsoft and became an integrated part of Microsoft’s Win-
dows Vista and Windows Rally (a set of technologies from
Microsoft intended to simplify the setup and maintenance of
wired and wireless networked devices). DPWS defines a set
of implementation constraints to provide a secure and effec-
tive mechanism for describing, discovering, messaging and
eventing of services for resource-constrained devices. Many
global technology companies such as ABB, SAP, Schneider
Electric, Siemens, and Thales have participated in Enropean
research and development projects (ITEA and FP initiatives)
and standardization activities (OASIS) related to the DPWS
technology. Research result of the SIRENA project [7] is
now available in Web Service for Devices (WS4D) website
[8] to provide an open-source implementation of different
DPWS stacks. Up to date, there are four DPWS stacks hav-
ing been implemented and verified including WS4D-gSOAP
(C), WS4D-uDPWS (C), WS4D-JMEDS (Java), and WS4D-
Android (Java).

There are two types of services in DPWS: hosting service
and hosted service. The former is a special service representing
a device to participate in discovery, and to describe other
services hosted in it. These services present the functionalities
of each device and are called hosted services. DPWS uses
SOAP, WS-Addressing [9], and MTOM/XOP [10] for mes-
saging and supports SOAP-over-HTTP and SOAP-over-UDP
bindings. It uses WS-Discovery [11] for discovering a hosting
service (device), and WSDL to describe the hosted service
(device service). It uses Web Services Metadata Exchange
[12] to define metadata about the device, Web Services Policy
[13] to define a policy assertion to indicate compliance of the
device with DPWS, and WS-Transfer [14] to retrieve service
description and metadata information about the device.

In addition to the fundamentals of DPWS, many researches
on DPWS have been carried out with the consideration of
several technical issues and different scenarios. It has been
shown that DPWS is a promising technology to seamlessly
integrate device functionalities and events into plenty of exist-
ing resources, services, and applications on the Web. DPWS
thus far has been widely used in automation industry, home
entertainment, and automotive systems [15] and also applicable
for enterprise integration [16]. Experiments on WS4D-uDPWS
stack show that DPWS is able to be implemented into (even)
highly resource-constrained devices such as sensor nodes with
reasonable ROM footprints [17]. Encoding and compression
issues are discussed and preliminarily put under a careful
consideration to improve the performance of SOAP messages
in DPWS [18]. One of the important issues in IoT, the inte-
gration of DPWS into IPv6 infrastructure and 6LoWPAN, also
well investigated in several works such as [19] and [20]. The
scalability of service deployment was first exploited in [21]
showing a prototype for a dynamic and scalable deployment
of DPWS devices. The latest version of WS4D-JMEDS offers
the security features by using private keys for encrypting
SOAP messages. In addition, real applications adopting DPWS
technology have started to gain attention such as the DPWS-
based building automation system that was introduced in [22].

Fig. 1. Core components of DPWSim: Space, Device, Operation, and Event.

III. DPWSIM: A SIMULATION TOOLKIT

DPWSim is a cross-platform simulation toolkit to support
the development of IoT applications using DPWS. The core
function of DPWSim is to create virtual DPWS devices,
which can be discovered on the network and can communicate
with other devices or clients via DPWS protocols. Besides,
it can simulate environments where DPWS devices reside in.
It also has a management tool to create, manage, store, and
load simulations with which, it offers a high flexibility for
users to render their simulations. A graphical user interface
designed in Java Swing provides an intuitive way for user
to interact with the their virtual devices and environments.
DPWSim plays a role as a supporting toolkit alongside the
main development environment of each IoT application to
help developers prototyping, developing, and testing DPWS
functionalities.

The following sections describe DWPSim core components
and functionalities, and use cases of DPWSim uses.

A. DPWSim Components

DPWSim has four basic components namely Spaces, De-
vices, Operations, and Events as shown in Fig.1.

Spaces: A space is a virtual environment representing a
real-life setting in which DPWS devices reside in. It can be
a home, an office, a train station, a public space, or simply a
stand-alone device.

Devices: A device refers to both DPWS hosting service
and hosted service. Since these two kinds of services, in reality,
share similar characteristics, they are used interchangeably in
DPWSim for simulation purpose. It contains two different
endpoint addresses used for each type of services. For example,
when taking part in the discovery, it uses the device endpoint
address; when invoking an operation, it uses the service
endpoint address.



Operations: A device (in this case, hosted service) includes
a set of operations which reflect device functionalities. These
operations are described in WSDL file and can be reached via
a service endpoint address.

Events: An event, similar to operations, is also the im-
plementation of a specific device functionality designated for
tasks happening proactively in devices.

B. DPWSim Core Functionalities

DPWSim provides intuitive simulation tools to help re-
searchers and developers to build IoT applications consum-
ing DPWS services. DPWSim can support users to create
virtual environments from a simple to a complex one, even
a graphically-rich interface like in the Fig.3 with the aid of
external computer graphics software and design skills. DP-
WSim acts as a dynamic mediator to generate different types of
simulation meanwhile maintaining the DPWS functionalities.

New Space/Stand-alone Device: There are two options
for creating a virtual environment: stand-alone device and
space. These functions can be accessed through File menu
or keyboard shortcuts. A space is a composite environment to
host several devices. It is created by using a plan image (office
plan, home plan, etc.). A stand-alone device is simply a virtual
DPWS device with a hosted service containing operations and
events. This kind of virtual environment can be stored in file
and re-used in other virtual environments.

New Device: Devices can be created by several ways, each
is associated with a submenu of the Device menu in DPWSim:
Add New (new user-customized devices), Add Predefined (pre-
configured devices by DPWSim), Add From File (importing
device from saved device description), and Genereate from
Physical Device (creating new device by mapping function-
alities of a real device to a virtual one). Fig.2 illustrates
a New Device dialog window, which is automatically filled
with information captured from a physical DPWS device (on
Raspberry Pi). User also can further customize these values to
create a new device. This capability is especially useful when
developers want to focus on designing the business logic of
an IoT application rather than the physical performance of
devices.

Fig. 2. A virtual device is being generated from a physical DPWS device
implemented on a Raspberry Pi board.

Fig. 3. A virtual home hosting several DPWS devices is designed by
DPWSim with the help of a 3D artist (Sa Hoang from École Nationale
Supérieure d’Architecture de Paris La Villette - ENSAPLV).

Device Management: Once a device has been created
within a virtual environment or as a stand-alone device, it can
be queried for DPWS information, re-located, deleted, or saved
for future uses. Similarly, a virtual environment including its
devices can be saved in the file system for being shared among
co-workers.

To put everything all together, a home space with several
devices can be created by DPWSim as shown in Fig.3. It
provides an elegant simulation of devices, which are able to
communicate through DPWS protocols.

C. DPWSim Use Cases

This section provides some typical scenarios in which
DPWSim can be used.

Scenario one - Product Integrating: Device manufactur-
ers can pre-provide the DPWSim-compatible *.dpws file that
describes functionalities of upcoming devices to developers. It
enables them to test these devices in their real IoT applications
before the official release of these products.

Scenario two - Product Protyping: Developers can also
prototype new devices and new functionalities based on their
application requirements without going through the complex
manufacturing process. The final design then can be transferred
to the manufacturer to work on it.

Scenario three - Resources Sharing: This scenario de-
scribes the situation when several teams, at the same time,
develop different modules over the same devices. To solve the
problem and speed up the development process, a new set
of virtual devices is generated by DPWSim to share among
developers. The simulation can also be used for demonstration
purpose without the loss of the accuracy.

IV. DPWSIM EXPERIMENTS

DPWSim has been used and tested in different environ-
ments such as DPWS Explorer [8] (the standard tool of
DPWS community), a Web application, and a research and
development project. The following parts explain each of these
experiments on DPWSim.

DPWS Explorer: DPWS Explorer is an analyzing tool for
DPWS compliant services. It visualizes various aspects of both
hosting and hosted service like metadata or message exchange
and provides capabilities to call or subscribe to service oper-
ations and events. It is a standard tool for previewing DPWS



Fig. 4. A user can turn on the light bulb KitchenLight by invoking its
SwitchOn operation via smartphone interface of DPWSim Web.

services during the development process. All DPWSim virtual
devices can be discovered, their operations can be invoked,
and their events can be subscribed from DPWS Explorer (see
Fig.1).

DPWSim Web: DPWSim Web is a small Web application
included in the release of DPWSim to illustrate how an
application interact with DPWSim virtual environments. It is
a Java Web application running on Apache Tomcat in form of
a WAR file (dpwsimweb.war). Fig.4 shows a demonstration of
DPWSim Web by using its smartphone interface to invoke an
operation of a light bulb device.

WoO Project Scenario: DPWSim has been used within
ITEA2 Web of Objects project to support the development
of an incident management scenario for testing the contextual
object collaboration. An intruder penetrates a restricted area
and damages electrical equipment. There are three workflows
from three different stakeholders. They share the common
resources and will be triggered in response to the alarm:
Video Analysis workflow is for intrusion detection; Fire Alert
workflow is for indoor guidance such as notifying the fire
agent’s smartphone while providing the rights for discovering
specific objects such as the closest water plug; Electrical
Equipment Recovery workflow is raised by the equipment
embedded sensors that will notify the smartphone of an autho-
rized repairman, facilitating him indoor-guidance and technical
record consulting. DPWSim has been used throughout the
development to describe the common interface for the coop-
eration between devices upon the assigned rights and specific
rules imposed in the whole system.

V. CONCLUSIONS

DPWSim is a cross-platform software enabling the sim-
ulation of DPWS devices and protocols. The simulation is a
transparent, dynamic, and efficient channel between manufac-
turers and developers for speeding up the development of IoT
applications using DPWS technology. To boost the adoption
of DPWSim in industrial context, more experiments with
complex IoT applications requiring the dynamic generation of
virtual devices will be further accomplished.

ACKNOWLEDGEMENT

This work is supported by ITEA2 Web of Objects project.

REFERENCES

[1] “Devices Profile for Web Services Version 1.1,” OASIS, OASIS
Standard, Jul. 2009. [Online]. Available: http://docs.oasis-open.org/ws-
dd/ns/dpws/2009/01/

[2] “Web Services Architecture,” W3C, W3C Working Group Note, Feb.
2004. [Online]. Available: http://www.w3.org/TR/ws-arch/

[3] “Web Services Description Language (WSDL) Version 2.0 Part 1:
Core Language,” W3C, W3C Recommendation, Jun. 2007. [Online].
Available: http://www.w3.org/TR/wsdl20/

[4] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. F.
Nielsen, S. Thatte, and D. Winer, “Simple Object Access Protocol
(SOAP) 1.1,” W3C, W3C Note, May 2000. [Online]. Available:
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

[5] Universal Description, Discovery and Integration. [Online]. Available:
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm

[6] SOAP-over-UDP. [Online]. Available:
http://schemas.xmlsoap.org/ws/2004/09/soap-over-udp

[7] ITEA SIRENA Project. [Online]. Available: http://www.sirena-itea.org/
[8] Web Service for Devices Initiative. [Online]. Available:

http://www.ws4d.org/
[9] WS-Addressing. [Online]. Available:

http://www.w3.org/Submission/2004/SUBM-ws-addressing-20040810/
[10] Message Transmission Optimization Mechanism (MTOM). [Online].

Available: http://www.w3.org/TR/2005/REC-soap12-mtom-20050125/
[11] Web Services Dynamic Discovery. [Online]. Available:

http://schemas.xmlsoap.org/ws/2005/04/discovery/
[12] Web Services Metadata Exchange (WS-MetadataExchange). [Online].

Available: http://schemas.xmlsoap.org/ws/2004/09/mex/
[13] Web Services Policy Framework. [Online]. Available:

http://schemas.xmlsoap.org/ws/2004/09/policy/
[14] Web Services Transfer (WS-Transfer). [Online]. Available:

http://schemas.xmlsoap.org/ws/2004/09/transfer/
[15] T. Cucinotta, A. Mancina, G. Anastasi, G. Lipari, L. Mangeruca,

R. Checcozzo, and F. Rusina, “A Real-Time Service-Oriented Archi-
tecture for Industrial Automation,” IEEE Transactions on Industrial
Informatics, vol. 5, no. 3, pp. 267–277, 2009.

[16] P. Spiess, S. Karnouskos, D. Guinard, D. Savio, O. Baecker, L. Souza,
and V. Trifa, “SOA-based Integration of the Internet of Things in
Enterprise Services,” in IEEE International Conference on Web Services
(ICWS 2009). IEEE, 2009, pp. 968–975.

[17] C. Lerche, N. Laum, G. Moritz, E. Zeeb, F. Golatowski, and D. Tim-
mermann, “Implementing powerful Web Services for highly resource-
constrained devices,” in 2011 IEEE International Conference on Perva-
sive Computing and Communications Workshops, 2011, pp. 332–335.

[18] G. Moritz, D. Timmermann, R. Stoll, and F. Golatowski, “Encoding and
Compression for the Devices Profile for Web Services,” in 2010 IEEE
24th International Conference on Advanced Information Networking
and Applications Workshops (WAINA), 2010, pp. 514–519.

[19] G. Moritz, F. Golatowski, D. Timmermann, and C. Lerche, “Beyond
6LoWPAN: Web Services in Wireless Sensor Networks,” IEEE Trans-
actions on Industrial Informatics, 2013, Early Access Article.

[20] I. Samaras, G. Hassapis, and J. Gialelis, “A Modified DPWS Protocol
Stack for 6LoWPAN-Based Wireless Sensor Networks,” IEEE Transac-
tions on Industrial Informatics, vol. 9, no. 1, pp. 209–217, Feb. 2013.

[21] X. Yang and X. Zhi, “Dynamic Deployment of Embedded Services for
DPWS-enabled Devices,” in 2012 Int. Conf. on Computing, Measure-
ment, Control and Sensor Network (CMCSN), 2012, pp. 302–306.

[22] S. N. Han, G. M. Lee, and N. Crespi, “Semantic Context-aware Service
Composition for Building Automation System,” IEEE Transactions on
Industrial Informatics, 2013, forthcoming.


