
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. 1

Semantic Context-aware Service Composition for
Building Automation System

Son N. Han, Gyu Myoung Lee, Senior Member, IEEE, and Noel Crespi, Senior Member, IEEE

Abstract—Service-Oriented Architecture (SOA) is realized by
independent, standardized, and self-describing units known as
services. It has been widely used and verified for automatic,
dynamic, and self-configuring distributed systems such as in
building automation. This paper presents a building automation
system adopting SOA paradigm with devices implemented by
Device Profile for Web Service (DPWS). In which, context
information is collected, processed and sent to a composition
engine to coordinate appropriate devices/services based on the
context, composition plan, and predefined policy rules. Six-
phased composition process is proposed to carry out the task.
In addition, two other components are designed to support
the composition process: Building Ontology as a schema for
representing semantic data and Composition Plan Description
Language to describe context-based composite services in form
of composition plans. A prototype consisting of a PDWSim
simulator and SamBAS is developed to illustrate and test the
proposed idea. Comparison analysis and experimental results
imply the feasibility and scalability of the system.

Index Terms—Building Automation, DPWS, Semantic Web,
Service Composition, SOA.

I. INTRODUCTION

The idea of smart house or smart building has been
around and well-known for years as highly-expected products.
Building Automation System (BAS) residing at the heart of
such smart environments interacts with all of its components
including hardware, software, and the communication among
them. It involves in several disciplines such as electronics,
informatics, automation, or control engineering. BAS, since its
debut, has been developed and promoted by a community of
developers, technologists, and scientists with plenty of impres-
sive prototypes and products. These products bring in comforts
and conveniences to daily life, freeing people from tedious
house-works or office-works. Use cases vary from very simple
ones e.g., automatically turn on/off the lights to complex
and critical situations e.g., security surveillance. Furthermore,
BAS also provides value-added services by offering intelligent
services such as customer tracking in shopping malls or
elderly people healthcare services. All of those make it a very
promising business attracting attention of the community to
target not only organization customers but also individual end-
users.

The authors are with the Department of Wireless Networks and Multimedia
Services, Telecom SudParis, Institut Mines-Telecom, Evry, 91011 France (e-
mail: {son.han, gm.lee, noel.crespi}@it-sudparis.eu).

Manuscript received November 3, 2012; accepted for publication February
21, 2013.

Copyright (c) 2009 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

With such analysis in mind, savvy people in the industry
and academia have been developing many new technologies
for building automation such as communication protocols, data
management, data bus systems, software components, and/or
new hardware devices which can be integrated in the new
systems. Thanks to all those efforts, building automation has
advanced over the last decades with several communication
protocols and a variety of BAS products from many different
vendors. A comprehensive overview of communication proto-
cols in building automation can be found in [1]. The article
also introduces different BAS products and other discussions
on building automation. Traditionally, equipments in BAS
products are interconnected by proprietary communication
protocols such as LonWorks [2], Building Automation and
Control Net-work (BACnet) [3], or KNX [4]. These protocols
have been used to cover all the features of building automation,
including Heating, Ventilating and Air Conditioning (HVAC),
lighting, and alarming.

The industry also has been making significant efforts to
standardize communication protocols. KNX, for example, is
one of the main communication standards used in building au-
tomation. It is device-independent and allows monitor/control
of lighting, blinds/shutters, security systems, energy manage-
ment, and HVAC systems. HomeConnex (Peracom Networks)
is a home entertainment network which unites PCs, TVs,
audio/video components and set-top devices into an integrated
system. X-10 (X10 Inc.) is another industry standard using
power line and radio for communication among electronic
devices used for home automation. Other proprietary standards
include Easy-Radio (Low Power Radio Solution Inc.), No New
Wires (Intellon Corp.), Sharewave (Sharewave Inc.), SoapBox
(VTT Electronics), and Z-wave (Zensys).

So far, consumers are overwhelmed by a lot of appealing
BAS solutions offered by the industry and also well aware of
the value of such smart systems. However, it is not difficult
to recognize the reluctance among customers in adopting
available BAS products on the market. The main reasons are
identified as the cost and the scalability of these proprietary
systems. This normally leads to the suspension or partially de-
ployment of several on-the-table building renovation projects.

In recent years, there is a recognizable movement from
distributed systems controlled by users to a new style of
systems built over independent, autonomous, and standardized
components or services. This new style of systems called
Service-Oriented Architecture (SOA) enables organizations to
share logic and data among multiple applications and usage
modes. SOA is also an open concept supporting plug-and-
play capabilities of heterogeneous software and hardware



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. 2

components. W3C Web Services [5] using Simple Object
Access Protocol (SOAP) message [6] and Web Services De-
scription Language (WSDL) [7] is probably the most popular
implementation of SOA which is gaining increasing market
penetration.

As to be discussed afterward in the following section,
there have been many approaches as well as a great deal
of researches on adopting SOA paradigm into BAS. Several
technologies and standards also have been created to support
the trend. These works mainly focus on how to deal with
the heterogeneity of the devices as well as the scalability
of managing and adding devices from different third-party
providers in smart building environment. In terms of the
functionality at the application layer, there have been only
simple prototypes rather than a full-scale system for SOA-
based building automation. Current solutions also appear static
or semi-dynamic as they only take into account simple use
cases and scenarios in context change, e.g., in temperature or
humidity. These efforts can be categorized under the name of
enabling technologies for integration of SOA into BAS. How-
ever, to successfully enable such integration, it requires more
than just connectivity and interoperability of heterogeneous
systems.

Therefore this paper aims to pave the way for the develop-
ment of full-scale SOA-based BASs by the support of open
Web technologies and Device Profile for Web Service (DPWS)
[8]. There are two problems challenging the development of
this kind of BASs. The first problem is to coordinate devices in
order to serve the diverse and complex requirements consisting
of several services from users. To solve it, the concept of
service composition is exploited to compose services based
on predefined policy rules with reference to Building Ontology
to choose, bind and execute appropriate services. The second
problem is to deal with the dynamic changes in context of
users and building environment. And the solution is to use
composite service plans to describe users’ requirements by
a proposed Composition Plan Description Language (CPDL).
User and environment context are modeled and processed
efficiently in the system through the Context Processor to
help the decision making process to carry out the service
composition.

To put all together, a SOA-based BAS built over DPWS-
supported devices is proposed. DPWS devices cover a large
range of equipments from highly resource constrained sensors,
full TCP/IP stack devices to new-trend Android devices,
thanks to dedicated open source DPWS implementations.
The database of Resource Description Framework (RDF) [9]
graphs is represented semantically by one of the textual syntax
alternatives to RDF called Notation3 (N3) [10]. Building
Ontology containing the description of concepts and rela-
tionships in building environment is designed and used as a
reference schema for storing graph data in the database. Con-
text information is modeled, processed and passed to service
composition engine to coordinate appropriate devices/services
based on predefined policy rules and six-phased composition
process. The rest of the paper is organized as follows. Section
II provides background and related work on applying SOA
paradigm and open Web technologies to building automation.

Section III describes architecture of the system. Section IV in-
troduces the design of Building Ontology and Graph Database.
Semantic context-aware service composition is presented in
Section V. Section VI brings in comparison analysis with
state-of-the-art and a prototype of the system along with
experimental results. Section VII concludes the presentation
and discusses future works.

II. RELATED WORK

There have been several SOA models in the industry
targeting device-to-device communication with technologies
as old as Home Audio/Video Interoperability (HAVi) [11],
Java Intelligent Network Infrastructure (Jini) [12] to as new
and currently-developed as Open Service Gateway Initiative
(OSGi) [13], Device Profile for Web Service (DPWS) [8],
and/or Universal Plug and Play (UPnP) [14]. In which, DPWS
is getting popular among developers because of its reliance to
W3C Web Services. DPWS was debuted in 2004 by a consor-
tium led by Microsoft and natively integrated in Microsoft’s
Windows Vista platform. It defines a set of implementation
constraints to provide secure and effective mechanism for de-
scribing, discovering, messaging and eventing of services for
resource constrained devices. An open source implementation
of DPWS was also developed under several projects funded by
Information Technology for European Advancement (ITEA)
including SIRENA, SODA, and SOCRATES. Research results
of the SIRENA project [15] have been presented widely by
industry and academia. It is also available through an open
source software initiative Web Service for Devices (WS4D)
[16] which is currently being actively maintained. WS4D
has been demonstrated as feasible and powerful for several
domains including industrial automation. Up to date, several
DPWS stack implementations have been provided by WS4D
initiative in various platforms and languages.

TABLE I
DPWS IMPLEMENTATION

Version Language Target Operating System
DPWS-gSOAP C Embedded system Linux, Windows,

Embedded Linux
DPWS-uDPWS C Sensor/Actuator Contiki
DPWS-JMEDS Java Embedded system Embedded Linux
DPWS-Android Java Embedded system Embedded Linux
(JMEDS)

Four core implementations are summarized in the Table I.
DPWS-gSOAP provides C/C++ toolkits for deploying Web
services consumers and providers. It is multi-platform imple-
mentation supporting Linux i386, Windows-native, Windows-
cygwin and embedded Linux. DPWS-uDPWS is DPWS im-
plementation in C language designed for Linux systems and
especially for highly resource constrained devices such as
sensor nodes. It paves the way for DPWS protocols to be
implemented directly into wireless sensor network (WSN)
without any intermediary gateway or so. DPWS-JMEDS is
Java framework for DPWS supporting different Java editions.
The latest release of DPWS-JMEDS hosts the feature of
Android OS which paves the way for implementing services
on Android devices.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. 3

In addition, academia has been also actively supporting the
SOA paradigm as well as DPWS in building automation with a
great deal of researches and prototypes. Many other solutions
for implementing the SOA on networked embedded devices
have been proposed to prove the feasibility of the paradigm
regardless of the variety of devices and the heterogeneity of the
network with different communication protocols like ZigBee,
Bluetooth or TCP/IP. Distributed Operating System (DOS)
[17] presents an operating system based on SOA to manage
all embedded devices in a home network. It sets to solve
four problems regarding the connectivity between devices and
central managing point: multiple simultaneous connections to
a device, request packet redundancy, inflexibility of direct
access to embedded devices, and compact-SOA message.
Leong et al. [18] try to solve the interoperability problem con-
cerning message exchange between two or more subsystems
and performing interoperation without the need of external
intervention. The solution involves not only the integration of
components in subsystems but also their behavior. It is a rule-
based framework with Event-Condition-Action (ECA) pattern
inherited from expert systems domain for representing, sharing
and managing data in smart home environment.

Kyusakov et al. [19] introduce an improved DPWS ar-
chitecture which considers particular requirements of WSN.
Furthermore, for the exchange of SOAP messages, the work
used the IETF Constrained Application Protocol (CoAP). The
work in [20] is about the problem of using Web services
over 6LoWPAN (i.e., IPv6 over Low power Wireless Personal
Area Networks) in WSN. Also in [21], a modified DPWS
protocol stack is proposed to be used in WSNs which comply
with 6LoWPAN. They all show that it is applicable for
implementing DPWS and SOAP for WSN without any change
of existing solution on conventional resource-rich devices.

In the meantime, researches on Web service and open future
Web technologies such as Semantic Web have been blooming
up in the last decade making them most supported and
promising technologies. Derived technologies such as service
discovery, service composition have been also extensively
exploited. Initially, service composition is used in the business
processes to manually, semi-automatically or automatically
mobilize component services to create composite services
which can satisfy various complex business requirements. The
idea of service composition then has been adopted widely into
the domain of ubiquitous computing or pervasive computing,
especially in the respect of context. In which, dynamic user
and environment context should be taken into account to
ensure the successful deployment of the system. [22] proposes
a framework for context-aware dynamic service composition
in ubiquitous environment. It argues that changes in ubiquitous
ambient environments occur frequently in different situations,
the system therefore needs to adapt dynamically. The work in
[23] presents a prototype with UPnP devices and OSGi gate-
way to apply the concept of service composition for building
automation. The concept has also penetrated in other field of
industrial automation such as the semantic composition model
presented in [24] aims to managing production processes in
factory automation. The model coordinates three Web services
to achieve production goals using the domain Web services.

R
eader

RFID

SA

SA

SA

S

Window

Printer

Spk

TV

Building 
Application 

Server

Android devices

Context Collectors
DPWS devices

Sensors/Actuators

Building Bus

S

Gateway

Gateway

Fig. 1. System configuration. Typical four groups of devices which consist of
Sensors/Actuators, DPWS devices, Android devices, and Context Collectors
are deployed at the same time in a room of a building.

And Semantic Web as envisioned by Tim Berners-Lee
[25] is another promising technology for building automation.
Though, it has not yet been a full-fledged technology but it
does offer a new concept of presenting data in a meaningful
way which can improve the communication between human
and machine. That means a certain level of automation can
be achieved through Semantic Web. Consequently, Semantic
Web by which it offers is very promising for industrial
automation. Runde and Fay [26] in the point of view of
software engineering in building automation introduce only
a partial adoption of Semantic Web technologies but still hint
many open issues for future work. Another long-term effort
for the adoption of Semantic Web into building automation is
at ongoing SESAME-S project [27]. The solution concerns the
efficient energy consumption in the house which is equipped
with sensors, smart meters, and a semantic software module to
perform reasoning and control the house energy consumption.
Key achievements and technologies of SESAME-S project are
described in [28].

To summarize, with several standards, prototypes, as well
as products proposed by industry and academia, it has been
shown possible and promising to apply SOA and open Web
technologies to building automation. The above review also
provides an outlook over the readiness of the state-of-the-art
of enabling technologies for the development of real BAS
based on SOA and Web technologies. Even though several
systems have been developed in this way or another, there’s
still an absence of a full-scale SOA-based BAS products
offering some intelligence to cover all the aspects of real
and complicated scenarios. Next, the proposed system in such
manner is going to be presented and thoroughly explained.

III. SYSTEM ARCHITECTURE

In this section, the key functionalities of the system are
presented with its architecture in the background. Main expla-
nations include DPWS Service Discovery followed up in this
section, Building Ontology and Graph Database described in
the next Section, and Semantic Context-Aware Service Com-
position discussed in Section V. During discussion, devices and
theirs hosting services are going to be used interchangeable
and sometimes mentioned as devices/services.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. 4

System configuration shown in Fig. 1 depicts main com-
ponents and a typical setup of equipments inside a room
of a building. There are four groups of devices which are
all DPWS-supported consisting of a wide range of building
appliances including sensors/actuators, Radio Frequency Iden-
tification (RFID) readers, other appliances with TCP/IP stack
and low power wireless protocols, and Android devices. The
first group is Sensors/Actuators which are attached to devices
to provide networked functionalities. They are implemented
by uDPWS over the Contiki OS [29]. The second group
is about DPWS devices which consists of devices natively
support DPWS with full TCP/IP stack. These devices are
developed using DPWS-gSOAP and can be connected directly
to the IP network. Third group is new-born Android devices
which are attracting much attention recently. In the year 2011
some big electronics like Panasonic or Archos released home
appliances based on Android operating system. Google itself
introduced the Android@Home at the 2011 Google’s annual
I/O developer conference with the intention of turning home
into a network of Android accessories. Along with that event,
Google also announced that it had collaborated with a partner
to launch Android-enabled LED light bulbs. Though there has
been some delay in the launching of aforementioned Android
home appliances but with the constant development of Android
platform these days, Android-based home and building devices
and appliances are very promising products in the near future.
The fourth and last group is classified as Context Collectors
consisting of sensors to provide sensing capacities and RFID
readers to receive users’ identifiers. All hardware components
are connected to Building Application Server (BApS) directly
or indirectly via gateways to expose their services. BApS hosts
the core functionalities of the system with the details to be
discussed in the following sections.

System architecture shown in Fig. 2 consists of several
subsystems and modules. The first subsystem DATABASE is
composed by a Building Ontology, semantic Graph Database,
another database for Composition Plan and a caching com-
ponent of Service Cache to improve the operation of the
service execution process. Building Ontology provides the
description of concepts and their relationships in building
environment. The second subsystem is COMMUNICATION
which represents for functionalities over heterogeneous com-
munication methods including TCP/IP and several other low

D
A

T
A

B
A

S
E

COMMUNICATION

DISCOVERY

Semantic 
Reasoner

Context Processor

COMPOSITION

Service Selector Composition 
Broker

Bluetooth

Service 
Discoverer

Building
Ontology

Composition 
Plan

Graph 
Database

Service 
Cache

Service Binder

Service Executor

Service 
Cacher

IEEE 
802.15.4

6LoWPANZigbeeTCP/IP

Composition 
Plan Creator

Fig. 2. System architecture consists of four main subsystems DATABASE,
COMMUNICATION, DISCOVERY and COMPOSITION and four other
modules Composition Plan Creator, Semantic Reasoner, Composition Broker
and Context Processor.

power wireless protocols. There are different types of hardware
devices ranging from sensor nodes, sensor/actuator nodes,
DPWS devices, Android devices and RFID readers which are
connected to the network by different types of communication
protocols. Note that there are two types of sensors: one
attached to device to provide sensing functionality; the other
used for collecting context information such as temperature or
moisture level in building environment. The third subsystem
DISCOVERY consists of two modules Service Discoverer and
Service Cacher but they work closely to each other under
the DPWS WS-Discovery specification. Service Discoverer
plays the role as an interface between the core of BAS and
devices. It sends request to the network to discover connected
devices and accompanied services, then receives information
of available devices/services. Service Cacher runs frequently
to update the Service Cache and also carries out the update
process whenever Service Discoverer is in operation.

COMPOSITION, the fourth and the central subsystem re-
sides at the center of the architecture. Its six-phased composi-
tion process helps to realize and deliver appropriate composite
services to user based on the context of user and environment.
The subsystem can be functionally divided into selecting
services, binding services and executing services which are
reflected in three components of the COMPOSITION: Service
Selector, Service Binder, and Service Executor respectively.

Among the other modules, Semantic Reasoner is also an
important part playing as a link between Building Ontology,
Graph Database and the software component of COMPOSI-
TION. This module is described subsequently along with the
Building Ontology and graph database in Section IV. Composi-
tion Plan Creator has access to Composition Plan database and
provides functionalities for users to create, modify, and delete
composition plans. The wrapping interface over this module
can be a part of Web or smartphone applications providing typ-
ical graphical buttons or comboboxes for users to interact with
the system. Context Processor receives raw context data from
Context Collectors, removes headers and redundant packets
to extract important information, and then sends them to the
Composition Broker in form of structured data. Composition
Broker decides whether to call the COMPOSITION or not
with simple decision-making mechanism based on the received
context information.

DPWS service discovery as the main content of DISCOV-
ERY subsystem is going to be firstly introduced to explain
the communication between devices and the core of the
system. Then context-awareness in the context of BAS is also
explained later on in this section to give the details of context
data and how to process them for the composition process.

A. DPWS Service Discovery

Different types of hardware components built over DPWS
specification share the same dynamic mechanism of expos-
ing and discovering in the network which is called DPWS-
Discovery as part of DPWS specification. Therefore Service
Discoverer module can universally detect and communicate
with each service and all of their operators regardless of the
origin of the hosting device, hardware or operating system.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. 5

DISCOVERY

Building Network

COMPOSITION

P
robe

P
robe M

atch P
robe

P
robe M

atch

P
robe

P
robe M

atch

P
robe

P
robe M

atch

SA

SA

SA

S

Window

Printer

Spk

TV

S

R
eader

RFIDB
ye

H
ello

B
ye

H
ello

B
ye

H
ello

B
ye

H
ello

Service 
Cache

Fig. 3. Service discovery. Devices in different types send Hello/Bye messages
to the network to join/leave the network. A client sends Probe message to
request for the service of a specific device, a matching service returns Probe
Match message to confirm its existence.

Fig. 3 shows the process of discovering devices. DPWS
devices send “Hello” and “Bye” message to join and leave
the network. When a DPWS client wants a DPWS device,
e.g., with the identifier as a printer ns:ExamplePrinterDevice,
it sends a Probe:ExamplePrinterDevice message to know if
one is connected on the network. A DPWS printer receives
this probe and answers back information that it is a printer
(by sending a ProbeMatch). Other DPWS devices also receive
this probe but they don’t answer (as not ExamplePrinterDevice
printer). Listing 1 shows typical Java codes used to search for
the device with information described in SearchParameter.
The DPWS device asks directly to the printer its services
metadata and the printer sends its metadata back. In case of
discovering all the devices available in the network, the client
puts null in the device identifier parameter to get a set of
connected devices. A callback function or a handler is called
when there’s a matching service found.

Information about each service associated with each device
is collected through the service discovery process and is
frequently updated to a data structure called Service Cache.
Listing 2 shows an example of a light service in the room 803
stored in the Service Cache with three pieces of information
Service Type, Endpoint Reference Address and WSDL.

B. Context-Awareness

Context-awareness plays an important role in the pervasive
computing architectures to enable the automatic modification
of the system behavior according to the current situation
with minimal human intervention. Since appeared in [30],
context has become a powerful and longstanding concept in
human-machine interaction. As human beings, we can more
efficiently interact with each other by fully understanding the

SearchParameter search = new SearchParameter();
search.setDeviceTypes(new QNameSet(

new QName(‘‘ExamplePrinterDevice’’, namespace)));
SearchManager.searchDevice(null, client, null);

Listing 1. Service Search.

Service Type: {http://www.it−sudparis.eu}Light803Services
Endpoint Reference Address: http://127.0.0.1:5678/Light803Service/
WSDL: http://127.0.0.1:5678/Light803Service/ws4d/resources/description.

wsdl

Listing 2. Service Cache.

context in which the interactions take place. It is difficult
to enable a machine to understand and use the context of
human beings. Therefore the concept of context-awareness
becomes critical and is generally defined by those working in
ubiquitous/pervasive computing, where it is a key to the effort
of bringing computation into daily lives. One major task in
context-aware computing is to acquire and utilize information
about the context of participating entities of a system in order
to provide the most adequate services. The service should be
appropriate to the particular person, place, time, event, etc.
where it is required. In the scope of this building automation,
user, device and environment context are considered in order
to bring more efficient service composition.

Context information is collected by Sensors and RFID
Readers which are classified as Context Collectors. There are
two types of context including User (U) and Environment (E).
The raw data are sent to and processed by Context Broker
to yield the structured data in the format of {Type, Location,
Source}, here are two examples of context.

1) {U, Room803, Smith}
2) {E, Room803, TempSensor803}
The processed data then are sent to Composition Broker

which plays the role as a composition decision maker. It
decides whether to call the COMPOSITION or not. For
example, if the context information of room temperature is
over 10 degree Celsius, no composition will be carried out
otherwise Composition Broker checks the temperature with
current status of the system to launch the COMPOSITION in
case the situation is labeled as context change.

IV. BUILDING ONTOLOGY AND GRAPH DATABASE

Building Ontology defines concepts and relationships be-
tween entities within the building environment. It provides
a schema to build up semantic database in form of graph
data. This is a new concept of database for Semantic Web
which consumes RDF to present the domain knowledge. RDF
is a common acronym within the semantic web community
as it creates one of the basic building blocks for forming the
Web of semantic data. A graph consists of resources related to
other resources, with no single resource having any particular
intrinsic importance over another. RDF database includes of
RDF statements, or sometimes called an RDF triples. The term
triple is used to describe the components of a statement with
three constituent parts: the subject, predicate, and object of the
statement.

The primary purpose of this ontology is to classify things in
terms of semantics, or meaning and especially for describing
policies used in composition process. A class in Web Ontology
Language (OWL) [31] is a classification of individuals into
groups which share common characteristics. If an individual
is a member of a class, it tells a machine that it falls under the
semantic classification given by the OWL class. This provides



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. 6

Fig. 4. Building Ontology graph. The highlighted blocks in the graph show
the hierarchy among class Service and its subclasses. The dotted line with a
label presents a property called locatedIn which takes class Room as object
meaning a service is located in a room.

<rdf:RDF xmlns=‘‘http://www.it−sudparis.eu/bas ont#’’
xml:base=‘‘http://www.it−sudparis.eu/bas ont’’
xmlns:rdfs=‘‘http://www.w3.org/2000/01/rdf−schema#’’
xmlns:owl=‘‘http://www.w3.org/2002/07/owl#’’
xmlns:xsd=‘‘http://www.w3.org/2001/XMLSchema#’’
xmlns:rdf=‘‘http://www.w3.org/1999/02/22−rdf−syntax−ns#’’
xmlns:xml=‘‘http://www.w3.org/XML/1998/namespace’’>
<owl:Ontology rdf:about=‘‘http://www.it−sudparis.eu/bas’’/>

<!−− http://www.it−sudparis.eu/bas ont#Policy −−>
<owl:Class rdf:about=‘‘ http://www.it−sudparis.eu/bas Policy’’>

<rdfs:subClassOf>
<owl:Restriction>

<owl:onProperty rdf:resource=‘‘applyFor’’/>
<owl:someValuesFrom rdf:resource=‘‘Building’’/>

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource=‘‘applyFor’’/>
<owl:someValuesFrom rdf:resource=‘‘User’’/>

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource=‘‘hasCondition’’/>
<owl:someValuesFrom rdf:resource=‘‘Condition’’/>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>
...

Listing 3. Building Ontology Document.

the meaning of the data that helps reasoning engine to draw
inferred information from the database. Listing 3 shows a part
of Building Ontology document in OWL by Protégé-OWL
editor [32]. The listing consists of document header and the
declaration of the class Policy with two properties of applyFor
and hasCondition. These properties also reflex the relationship
of class Policy with other classes including Building, User and
Condition. Fig. 4 shows the classes of Building Ontology and
their hierarchical relationship. An example of the hierarchy
between classes of User and Director can be seen in the
figure with the arrow starting from User pointing to Director
which means Director is a subclass of User and inherits all
the properties of User.

@prefix : <http://www.it−sudparis.eu/bas data#> .
@prefix bdg: <http://www.it−sudparis.eu/bas ont#> .

UniversalHeatingPolicy
a bdg:OperationPolicy ;
bdg:applyFor bdg:User ;
bdg:hasCondition :HeatingCondition .

:HeatingCondition
a bdg:Condition ;
bdg:conditionType ‘‘Heating’’ ;
bdg:conditionValue 10 .

...

Listing 4. HeatingCondition Rule Data.

The above Building Ontology acts as a schema to define
the data among the domain of building automation semanti-
cally which is part of the inferring processes. The data are
presented in N3 format, a non-XML serialization of RDF.
A piece of data is shown in the Listing 4 containing a
policy called UniversalHeatingPolicy which is an instance of
OperationPolicy (Building Ontology class). It applies for all
users, instances of User (Building Ontology class) and has
condition HeatingCondition (data). HeatingCondition is later
on described as an instance of Condition (Building Ontology
class) with “Heating” type and taking the value 10. Previously,
two name spaces were defined at the header, one for the data
and the other for the ontology.

This kind of graph database built around the Building Ontol-
ogy enables Semantic Reasoner to infer additional information
from existed data and relationship. A simple example of the
reasoning from the data shown in the Listing 4 is explained as
follows. In this case, a fact is stated as UniversalHeatingPolicy
rule applies for instances of User class. A reasoner with
basic capacity can be used to demonstrate the use case, e.g.,
Jena [33] natively-supported reasoner. An inference model is
created which takes the reasoner, Building Ontology and the
Graph Database as input parameters. Data in form of resources
and properties are then created from database. A simple code
line can be used to generate an entailed relationship. Specif-
ically, user Smith who is an instance of Director (Building
Ontology class, subclass of class User) would be applied by
the UniversalHeatingPolicy rule as well. This reasoning model
helps to reduce the database size and quickly collect all related
data of an event or user which are all necessary for the service
composition process.

V. SEMANTIC CONTEXT-AWARE SERVICE COMPOSITION

Residing at the heart of the proposed BAS, the COMPO-
SITION subsystem is in charge of answering composition
requests from Composition Broker with regard to collected
context information. It then gets access to all related resources
to coordinate appropriate devices/services to serve the request.
Previously, Building Ontology and Graph Database have been
discussed to provide the semantic database. Also, context
information processed by the Context Processor is passed to
the composition process as the input data. In addition to that, a
description language is designed to describe the composition
plans and a six-phased composition process is proposed to
efficiently and accurately carry out service composition.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. 7

<?xml version=‘‘1.0’’ encoding=‘‘UTF−8’’ ?>
<CSDL xmlns:xsi=http://it−sudparis.eu/bas>

<context type=U location=Room803 source=Smith>
<service>Window</service>
<service>Light</service>
<service>CoffeMaker</service>

</context>
</CSDL>
<xml>

Listing 5. Composition Plan Description Language (CPDL).

A. Composition Plan Description Language (CPDL)

A language called Composition Plan Description Language
(CPDL) has been designed to describe composition plans asso-
ciating with each context. An example of a CPDL document is
shown in the Listing 5. This document describes a composition
plan with the type of U or User and for user Smith with the
context of his presence in the room 803. It also describes
the composite service consisting of three component services
Window, Light and CoffeeMaker.

B. Service Composition

Six-phased service composition process is shown in Fig.
5 which visually depicts six phases of the composition as
follows:

• Phase 1: Collect and process context information
• Phase 2: Make decision to call COMPOSITION
• Phase 3: Query semantic data
• Phase 4: Select services
• Phase 5: Bind services to their operations
• Phase 6: Execute operations of services
The process starts with signals from Context Collectors

when they detect changes in context and send context informa-
tion in the building environment to Context Processor. Con-
text Processor processes this information to meaningful and
machine readable data. These processed and well-structured
contextual data are sent to the Composition Broker to decide
whether to move on by calling the COMPOSITION or not.
In case no action needs to be carried out, the system switch
to the sleep mode, otherwise the COMPOSITION is called.
Then, resources are collected in the database to support the
composition process. Service Selector uses provided context
information, CPDL data of the user at that context and inferred

Service Executor

Context 
Processor

Composition Broker
Call COMPOSITION?

Service Selector

Composition 
Plan

Service 
Cache

Service Binder

YES

NO

R
eader

RFID

S S

BEGIN

END

END

Graph 
Database

1

2

3

4

5

6

Fig. 5. Composition process. Six phases of the composition process are
highlighted in the triangle signs.

Algorithm: Context Matching

Input: Composition Plan, User
Output: Execution Plan
Algorithm:
Execution Plan EP = ∅
For each service AS in Composition Plan

For each service S in Service Cache, 
If (S.Location = AS.Location)

EP = EP ∪ S
Return EP

Fig. 6. Context matching algorithm. For each abstract service in the
composition plan extracted from CPDL document associated with the User,
if the service matches one of the services in Service Cache by location, it is
added to the execution plan.

policies from the Semantic Reasoner to select appropriate
services and create a concrete description of the required
composite service. Service Binder follows up by binding
with operations of selected services and Service Executor
gets access to Service Cache to execute that operations. Fig.
6 explains one implemented algorithm for service matching
based on the location context of the user.

VI. COMPARISON ANALYSIS AND EXPERIMENTS

A. Comparison Analysis

To put the proposed system under the limelight with other
close approaches, say, in SOA-based building automation, it
offers to some extent intelligence with the use of Semantic
Web and context-aware dynamic service composition. The
intelligence inspired by Web technologies and the adoption of
such open standards in all aspects of the system are important
factors to differentiate the work with others. Table II high-
lights seven features of six systems and products in building
automation related to SOA and Web technologies including
the proposed. These features cover from what type of devices
each system supports, what type of communication protocols
among devices, to whether they apply following technologies:
service composition, context-awareness, dynamic composition,
Semantic Web, and reasoning. Rule-based framework in [18]
is stated to deal with heterogeneity of the devices but in
fact provide no detail on how it deals with particular types
of devices. The framework neither features composition nor
reasoning. Kaldeli et al. [23] design and develop a prototype
of SOA-based home automation system which uses Artificial
Intelligence (AI) planning service orchestration to response
to dynamic users’ contexts. This work spends much of its
space to deal with context-awareness by the presentation and
analysis of a comprehensive use case. However, there is no
consideration for intelligence or reasoning. Another work [26],
from the point of view of software engineering, improves
requirements engineering of BAS by means of knowledge-
based system and Semantic Web technologies. The prototype
based on LonWorks devices and protocols presents no trace
of intelligence or automatically controlling the building. In
order to improve existing domotic standards to achieve some
intelligence for new building automation system, Ruta et al.
in [34] introduced enhancements of KNX standard to support



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. 8

TABLE II
SOA-BASED BAS SOLUTIONS COMPARISON

Solution Device Type Communication Service Context- Dynamic Semantic Intelligence
Protocol Composition awareness Composition Web Reasoning

Leong et al. [18] Heterogeneous SOAP No No No No No
Kaldeli et al. [23] UPnP SOAP Yes Yes Yes No No
Runde et al. [26] LonWorks proprietary No No No Yes Yes
Ruta et al. [34] KNX proprietary Yes Yes Yes Yes No
SEASAME-S [28] Smart meters proprietary No Yes No Yes Yes
Proposed DPWS SOAP Yes Yes Yes Yes Yes

knowledge-based and context-aware functionalities in home
and building automation. The proposed framework though
addresses and solves some problems of service composition
and context-awareness but due to being based on propri-
etary protocol, only limited achievements has been reached.
SESAME-S project [28] focuses only on smart metering to
assist consumers in making decisions and controlling of energy
consumption. The communication protocol of smart meters is
a proprietary European standard. The work features Semantic
Web by using linked data and reasoning models.

To summarize, the proposed system in this paper not only
covers all the missing points of other works, but also uses open
Web standards in all the aspects of the system to offer some
intelligence to deal with the dynamic environment. Besides,
perspective of third-party companies to manufacture compati-
ble devices and the establishment of new service providers are
among important achievements of the proposed approach.

B. Prototype and Experiments

A system prototype was developed to illustrate the op-
eration of the proposed system and to test the feasibility
and scalability of the system. The prototype consists of
two separate parts: DPWSim and SamBAS. DPWSim is a
simulator of various DPWS devices with graphical anima-
tion to illustrate their operations. Since all the DPWS de-
vices share the same mechanism of exposing and discovering
over the network, without loss of generality, WS4D JMEDS
stack version 5 (ws4d-java-se-full-beta5.jar) is chosen for
installing functionalities of the simulated devices. A class
named BuildingDevice extending JMEDS DefaultDevice class
(org.ws4d.java.service.DefaultDevice) represents building de-
vices. Services and operations of each device are implemented
by inheriting DefaultService and Operation classes respec-
tively. DeviceAnimation class wraps up visuals and animations
of simulated devices. A Graphical User Interface on top of the
devices representing an office plan along with its actors: office
appliances in their places and a user who can move around
the office space to change his context as shown in Fig. 7(a).

The SamBAS consists all the system components discussed
previously. Building Ontology is developed using Protégé-
OWL editor, Graph Database is represented in N3 format,
and the COMPOSITION modules are developed in Java
programming language on an application server with Intel
processor 2.6 GHz, 6 GB RAM. It uses Jena library for
semantic data manipulation and Jena integrated reasoner for
inference functionalities.

Fig. 7(b) illustrates a simple use case when a user Smith
enters his office located in the room 803. When he arrives in
the office in the morning, he uses his RFID name tag as a
security badge to check on the RFID reader located on his
office door. This RFID reader, functioning as a Context Col-
lector, sends a context-change notification to the Composition
Broker to check with associated policies whether to call up
the COMPOSITION or not. In this scenario, it is YES. The
system uses the reasoner to collect all the policies constrained
to the user to create a concrete appropriate composite service
based on the user’s CPDL which in this case consists of
CoffeeMaker and Light. Then the two concrete context-based
services CoffeeMaker803 and Light803 are selected and bound
to their operations and finally executed by Service Executor
to serve the user.

In order to evaluate the feasibility and scalability of the
proposed system, two sets of experiments were carried out to
verify the service selection and service execution processes.
All experiments were run on the the SamBAS running on the
server with Intel processor 2.6 GHz, 6 GB RAM. The first
set of experiments aims to measure the time in milisecond
needed for selecting services as the number of devices increaes
from 500 to 5000. 10 sets of experiments consisting of 10
runs by each were performed with results of consuming time
recorded accordingly and put on a graph shown in Fig. 8.

Fig. 7. DPWSim. DPWSim demonstrates the service of user by the
context. The composite service consists of two component services Light and
CoffeeMaker is activated when the user is present in his office.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. 9

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

500

1000

1500

2000

Number of Devices

C
om

po
si

tio
n 

T
im

e 
(m

s)

Composition Time

Fig. 8. Service selection. Composition time of service selection process as
the number of devices increases from 500 to 5000.

1 2 3 4 5 6 7 8 9 10
0

500

1000

1500

2000

2500

3000

3500

Number of Services

E
xe

cu
tio

n 
T

im
e 

(m
s)

Without Service Cache

With Service Cache

Fig. 9. Service execution. Service execution time in millisecond recorded
in two situations, one with and one without Service Cache as the size of
Composition Plan increases from 1 to 10.

The figure shows the stability of the system with composition
time kept under 2.5 second even in a critical situation with the
participation of 5000 devices.

The second set of experiments aims to compare the execu-
tion time of the Service Executor in two conditions, by using
Service Cache and not using Service Cache. There is always
a bit of mismatch between real services and services available
in Service Cache due to the delay of the updating process.
However, with appropriate mechanism and the continuity of
service discovery, the reliability of Service Cache is much
improved to reach the state of real-time services. Fig. 9 shows
the execution time in two situations as number of services in
the Composition Plan increases from 1 to 10. Service Cache
helps the system to improve the service execution process
many times more than the system without it.

VII. CONCLUSION AND FUTURE WORK

The design of the SOA-based BAS has been presented as
a novel approach to bring Web technologies into building
automation. Specifically Web service, SOA and Semantic Web
have been integrated into BAS with Web service composition
in the background to dynamically coordinate devices/services
in accordance with the context. The results from experiments
show that it is feasible to deploy the system even in a large
scale.

There are still a lot of issues left to the system which is
needed attention in order to deal with further extension of the
system such as concurrent multiple requests to devices. This
happens when system grows bigger with complex use cases
whereas resource-constrained devices cannot by themselves
deal with such simultaneous multiple requests. In the system,

there exists a great deal of resource-constrained devices such
as sensors or actuators which are only equipped with limited
resources, e.g., about 15 kB ROM. This leads to the fact
that one device at one time cannot process several requests
from multiple users. It cannot be a problem in small systems
with less complex scenarios. However, when system expands,
the number of concurrent requests to devices also increases
accordingly. Resource-constrained devices without enough ca-
pacity of handling concurrent requests could end up locked
or dead, which subsequently results in the congestion of the
system. The technique of multithreading such as dispatcher
or scheduling algorithms can be adopted to develop a new
module in the system to receive, process, and relay requests
to appropriate devices at appropriate time.

Future work will be focused on the real deployment of the
system in a physical environment with improvement in three
issues. The first one is to reevaluate the system in the real
scenario and improve its drawbacks. The second one is for
system intelligence. Users’ behaviors will be recorded and
modeled to understand user’s habit which can help to make
the composition process smarter. The last issue is to integrate
energy saving services into the current BAS to take advantage
of the intelligence to even further improve the critical issue of
saving energy.

REFERENCES

[1] D. Dietrich, D. Bruckner, G. Zucker, and P. Palensky, “Communication
and computation in buildings: A short introduction and overview,” IEEE
Trans. Ind. Electron., vol. 57, no. 11, pp. 3577–3584, Nov. 2010.

[2] EN 14908-x (1-6), Open Data Communication in Building Automation,
Controls and Building Management - Control Network Protocol. Eu-
ropean Committee for Standardization, Brussels, Belgium, 2005-2010.

[3] ISO 16484-5, Building automation and control systems – Part 5: Data
communication protocol. International Organization for Standardiza-
tion, Geneva, Switzerland, Jul. 2012.

[4] ISO/IEC 14543-4-1, Information technology – Home electronic system
(HES) architecture – Part 4-1: Communication layers – Application
layer for network enhanced control devices of HES Class 1. Interna-
tional Organization for Standardization, Geneva, Switzerland, Jun. 2008.

[5] “Web services architecture,” W3C, W3C Working Group Note, Feb.
2004. [Online]. Available: http://www.w3.org/TR/ws-arch/

[6] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn,
H. F. Nielsen, S. Thatte, and D. Winer, “Simple object access protocol
(SOAP) 1.1,” W3C, W3C Note, May 2000. [Online]. Available:
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

[7] “Web services description language (WSDL) version 2.0 part 1:
Core language,” W3C, W3C Recommendation, Jun. 2007. [Online].
Available: http://www.w3.org/TR/wsdl20/

[8] “Devices profile for web services version 1.1,” OASIS, OASIS
Standard, Jul. 2009. [Online]. Available: http://docs.oasis-open.org/ws-
dd/ns/dpws/2009/01/

[9] “RDF primer,” W3C, W3C Recommendation, Feb. 2004. [Online].
Available: http://www.w3.org/TR/2004/REC-rdf-primer-20040210/

[10] T. Berners-Lee and D. Connolly, “Notation3 (N3): A readable rdf
syntax,” W3C, W3C Team Submission, Mar. 2011. [Online]. Available:
http://www.w3.org/TeamSubmission/n3/

[11] J. Teirikangas, “HAVi: Home audio video interoperability,” Helsinki
University of Technology, Technical Report, 2001.

[12] “Jini architecture specification version 1.2,” Sun Microsystems, Tech.
Rep., Dec. 2001.

[13] “OSGi core release 5 specification,” OSGi Alliance, Tech. Rep., 2012.
[14] ISO/IEC 29341-1-1, Information technology - UPnP Device Architecture

Version 1.1. International Organization for Standardization, Geneva,
Switzerland, 2011.

[15] ITEA SIRENA Project. [Online]. Available: http://www.sirena-itea.org/
[16] Web Service for Devices Initiative. [Online]. Available:

http://www.ws4d.org/



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. 10

[17] A. Sleman and R. Moeller, “SOA distributed operating system for
managing embedded devices in home and building automation,” IEEE
Trans. Consum. Electron., vol. 57, no. 2, pp. 945–952, May 2011.

[18] C. Leong, A. Ramli, and T. Perumal, “A rule-based framework for
heterogeneous subsystems management in smart home environment,”
IEEE Trans. Consum. Electron., vol. 55, no. 3, pp. 1208–1213, Aug.
2009.

[19] R. Kyusakov, J. Eliasson, J. Delsing, J. van Deventer, and J. Gustafsson,
“Integration of wireless sensor and actuator nodes with it infrastructure
using service-oriented architecture,” IEEE Trans. Ind. Informat., vol. 9,
no. 1, pp. 43–51, Feb. 2013.

[20] G. Moritz, F. Golatowski, D. Timmermann, and C. Lerche, “Beyond
6LoWPAN: Web services in wireless sensor networks,” IEEE Trans.
Ind. Informat., 2013, Early Access Article.

[21] I. Samaras, G. Hassapis, and J. Gialelis, “A modified DPWS protocol
stack for 6LoWPAN-based wireless sensor networks,” IEEE Trans. Ind.
Informat., vol. 9, no. 1, pp. 209–217, Feb. 2013.

[22] K. Tari, Y. Amirat, A. Chibani, A. Yachir, and A. Mellouk, “Context-
aware dynamic service composition in ubiquitous environment,” in 2010
IEEE International Conference on Communications (ICC), Cap Town,
South Africa, May 2010, pp. 1–6.

[23] E. Kaldeli, E. Warriach, J. Bresser, A. Lazovik, and M. Aiello, “Inter-
operation, composition and simulation of services at home,” in Service-
Oriented Computing, ser. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2010, vol. 6470, pp. 167–181.

[24] J. Puttonen, A. Lobov, and J. Martinez Lastra, “Semantics-based com-
position of factory automation processes encapsulated by web services,”
IEEE Trans. Ind. Informat., 2013, Early Access Article.

[25] T. Berners-Lee, J. Hendler, and O. Lassila, “The semantic web,” Scien-
tific American, pp. 29–37, May 2001.

[26] S. Runde and A. Fay, “Software support for building automation
requirements engineering: An application of semantic web technologies
in automation,” IEEE Trans. Ind. Informat., vol. 7, no. 4, pp. 723–730,
Nov. 2011.

[27] SESAME-S Project. [Online]. Available: http://sesame-s.ftw.at/
[28] A. Fensel, S. Tomic, V. Kumar, M. Stefanovic, S. Aleshin, and

D. Novikov, “SESAME-S: Semantic smart home system for energy effi-
ciency,” in Proceedings of D-A-CH Energieinformatik 2012, Oldenburg,
Germany, Jul. 2012.

[29] Contiki OS. [Online]. Available: http://www.contiki-os.org/
[30] B. Schilit, N. Adams, and R. Want, “Context-aware computing applica-

tions,” in Proceedings of the 1994 First Workshop on Mobile Computing
Systems and Applications, ser. WMCSA ’94, Washington, DC, USA,
1994, pp. 85–90.

[31] “OWL 2 web ontology language document overview,”
W3C, W3C Recommendation, Oct. 2009. [Online]. Available:
http://www.w3.org/TR/2009/REC-owl2-overview-20091027/

[32] Protege-OWL Editor. [Online]. Available: http://protege.stanford.edu/
[33] Apache Jena Project. [Online]. Available: http://jena.apache.org/
[34] M. Ruta, F. Scioscia, E. Di Sciascio, and G. Loseto, “Semantic-based

enhancement of ISO/IEC 14543-3 EIB/KNX standard for building
automation,” IEEE Trans. Ind. Informat., vol. 7, no. 4, pp. 731–739,
Nov. 2011.

Son N. Han received M.S. degree in Computer
Science from The University of Seoul in 2009 and
B.E. degree in Applied Mathematics from Hanoi
University of Technology in 2006. He is currently
pursuing his Ph.D. at the Department of Wireless
Networks and Multimedia Services of Telecom Sud-
Paris, Institut Mines-Telecom. His research interests
include Web of Things, Web Services, Semantic
Web, DPWS and applications of Web Services on
resource constrained environment. Previously, he
worked as a research engineer for Korea Electronics

and Telecommunications Research Institute (ETRI) from 2009 to 2011.

Gyu Myoung Lee (SM’02, M’07, SM’12) received
M.S. and Ph.D. degrees in school of engineering
from the Korea Advanced Institute of Science and
Technology (KAIST), Daejeon, Korea, in 2000 and
2007 respectively. He is currently with the Institut
Mines-Telecom, Telecom SudParis and KAIST as
an adjunct associate professor. He was an invited
researching staff at the Electronics and Telecommu-
nications Research Institute (ETRI), Korea for inter-
national standardization and also worked as a guest
researcher at the National Institute of Standards and

Technology (NIST), USA. His research interests include Internet of Things,
Web of Things, cloud-based multimedia services and energy saving networks.
Prof. Lee has actively participated in standardization meetings including ITU-
T SG 13 (Future Networks) as a Rapporteur and IETF. He has contributed
more than 250 proposals for standards and published more than 80 papers in
academic journals and conferences. [Corresponding author]

Noel Crespi holds a Master’s from the Universities
of Orsay and Kent, a diplome d’ingénieur from
Telecom ParisTech, and a Ph.D. and a Habilitation
from Paris VI University. He worked from 1993
in CLIP, Bouygues Telecom, France Telecom R&D
in 1995, and Nortel Networks in 1999. He joined
Institut Mines-Telecom in 2002 and is currently
professor and program director, leading the Service
Architecture Laboratory. He is appointed as coordi-
nator for the standardization activities in ETSI and
3GPP. He is also a visiting professor at the Asian

Institute of Technology and is on the four-person Scientific Advisory Board
of FTW, Austria. His current research interests are in service architectures,
P2P service overlays, future Internet, and Web-NGN convergence. He is the
author/coauthor of more than 230 papers and contributions in standardization.


