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Abstract—Different kinds of networks at different levels of
system design have evolved in the last decade, mainly riding
on top of global Internet. Regardless of the type of the network,
these networks can be viewed as content sharing and distribution
network. Understanding the popularity dynamics of the contents,
termed here as Content Hotness, is useful in many ways including
the characterization of the workload as well as the system
design and evaluation. Despite the fact that popularity skewness
among contents has been well studied, the temporal dynamics of
popularity of a given content has not been studied extensively.
We attempt to propose a discrete time Markov chain (DTMC)
model to model such content level hotness dynamics. We focus
in two realistic scenario and see how such model can be used to
represent the temporal variation in the content popularity.

I. INTRODUCTION

Essentially, there are two aspects of content popularity
(which is termed as content hotness in this paper). The first
aspect deals with the characterization of the distribution of
popularity among different contents in a network on a momen-
tary basis. In other words, it deals with the fact that different
contents achieve a different overall popularity. Many models
including Zipf [8], stretched exponential [3] are suggested to
represent such popularity-skewness among different contents.
The other aspect of content popularity rather deals with the
dynamics of the popularity of a given content over time. It
is a well-observed phenomenon that even a content during its
lifetime enjoys different level of popularity in time resulting
in a phenomenon that we term here as “Content Hotness
Dynamics”. We see that this aspect of content popularity (the
hotness dynamics)has not been studied extensively as opposed
to the study of popularity distribution among contents. There
however are few work including [7] [6] and [2] which focus
in the content level hotness dynamics. Our work also deals
with the hotness dynamics of the contents, also often referred
to as the temporal dynamics of content popularity.

Before looking at what has already been done in this
context, we first point out briefly the importance of under-
standing content hotness dynamics in networks. Knowledge
of popularity skewness and its dynamics can be exploited for
understanding and evaluating different information networks
like the caching mechanism in Cache-systems, P2P networks
and even the IPTV systems. Such modeling of popularity can
be used in workload characterization and also in prediction
[7]. We also see that proper modeling of popularity dynamics
can help us in doing better caching decisions, better system
dimensioning as well as better system design. Like many other
important characteristics, hotness dynamics is an important

characteristics of any content network.
Now, we explain what has been done in the previous work

relating to temporal dynamics of hotness. [7] empirically
studies the change in popularity of some selected contents in
two different kinds of networks (Youtube and Digg ). They
find that the contents in Youtube appear to have a slower
decay so that the views are distributed over time where as
the contents in Digg (which essentially are news-like contents)
decay faster in popularity. On the other hand, [6] attempts to
model the popularity dynamics of an IPTV channel using a
stochastic model called mean reversion model. This however
is limited by the assumption that such stochastic model work
only when any intermediate changes are supposed to settle to
a long term equilibrium value like in financial system (e.g.
stock). However, for a given content with a finite life-time,
this assumption will not be valid in general. Thus, this model
can not be used to model the hotness dynamics of contents.
[2] attempts to come up with a closed-form expression for
the hotness dynamics of content parameterized in such a
way that the cumulative popularity can either be represented
as an exponential decay function or a power-law function.
It is however unknown how different network and content
properties relate to the model parameters. Because of this fact,
it is unclear how this model can be used to represent different
network structures, content advertisement mechanisms and
other factors that affect the hotness dynamics. We clearly see
that in order to be able to model the hotness dynamics, one
should also be able to understand and incorporate the network
and content properties that affect the hotness dynamics. Con-
sidering this more general philosophy in mind, in this work-
in-progress, we intend to put forward the model that we are
working on.

To be more precise on the quantitative descriptions to follow
in the following section, we define hotness of a content as
follows. Hotness of any content i at any time t is a physical
quantity proportional to the rate of request coming to that
content at a particular point in time.

II. GENERAL HOTNESS MODEL BASED ON DTMC

In a network of N nodes, a content c is originated at any
of these nodes. Each node, aware of the availability of the
content, and interested in it takes (downloads) the content.
In this context, the content, with time, gets propagated in the
network. The speed with which it propagates and other various
related attributes depend heavily on the true mechanism of the
content propagation in the network. There are many models



existent in the real and conceptual networks. In general, this
involved complex notions including advertisement mechanism,
content discoverabilty mechanism, topology of the underlying
network and the content sharing principles.

Our model attempts to summarize the content’s propagation
in the network as a Discrete Time Markov Chain where a
state x (1 ≤ x ≥ N )represents the number of nodes that have
”viewed” the content. A transition probability Pij from state i
to state j represents the probability that the content, currently
”viewed” by i nodes would be ”viewed” by total j nodes after
the DTMC time-step Tobs. In this work, we model the content
propagation mechanism in the network approximately by a
DTMC with the state space X(= 1 · · ·N) together with the
transition probabilities Pij(i, j ∈ X). Below, we will illustrate
more on the estimation of the transition probabilities.

A. Definitions

The hotness of a content at a state x of the corresponding
DTMC, represented as h(x) is defined as a function of the
current state. It is given as follows:

h(x) =

N∑
j=x+1

Pi,j(j − x) (1)

This is proportional to the rate of requests coming for the
content when it is in state x of its DTMC. This is in accordance
to the conceptual meaning of hotness.

Now, we represent H(n) as the hotness of the content in
time nTobs. It is governed by the state of the DTMC after the
given time (represented as n transitions) and thus is a r.v.. Let
P

(n)
i,j represent the probability that the DTMC in state i will be

in state j after n transitions. Then, r.v. H(n) has a value h(x)

with a probability P
(n)
0,x for all 0 ≤ x ≤ N . P (n)

0,x can simply
be obtained using Chapman-Kolmogorov formula if Pi,j are
known.

P{H(n) = h(x)} = P
(n)
0,x (2)

Then, the expected hotness after a time nTobs, represented
as H(n) is given as follows.

H(n) =

N∑
i=0

P
(n)
0,i h(i) (3)

Now, an interesting parameter of content hotness, called the
lifetime of the content is defined as the time after the origin
of the content, when the content is distributed to every users
in the network. Consider it as Tspan. This is a r.v. with the
following P.M.F.

P{Tspan = n} = P
(n)
0,N (4)

Then, the expected value of Tspan represented as Tspan is
given as follows.

Tspan =

∞∑
x=0

xP
(x)
0,N (5)

This general DTMC model thus allows us to express the
expected hotness of a content as a funtion of time. Using
the expected hotness as a function of time (H(n)), we can
compare the hotness of two contents at a given point in time.
Moreover, using the comparision of the expected span of the
content, we can also compare how fast the content saturates
in the network. For two contents with the same N , the one
with smaller value of T span can be considered a hotter content
in average. Below, we will see two different scenario of the
application of the model.

III. SCENARIO 1: HUNGRY NODE MODEL (INFORMATION
SPREADING MECHANISM)

In this section, we try to model a common phenomenon
in social and other networks arising primarily because of the
incomplete network structures.

1) Idea: In a social network, a user (interchangeably called
as node) is connected to a subset of other users. Normally,
these networks rely on the concept of sharing. For example,
if I have a content, I share it among my friends (one hop
neighbors in the equivalent graph). Because of this sharing, a
subset of nodes become aware of the existence of the content
whereas the rest of the network are unaware of the availability
of the content. In this scenario, we introduce the concept of
“Hungry Nodes”. At any point in time, if the DTMC is in state
x (i.e. x nodes have already viewed it), a total of N(x) nodes
are aware of the availability of the content including those
who already “viewed” it. This means that there are n(x) =
N(x) − x number of nodes that are aware of the availability
of the content and have not viewed the content yet. These
nodes are considered to constitute of a Hungry Node Set. All
the other nodes in the network are unaware of the content
availability. The manner in which n(x) changes in average
depends largely upon the topological property of the network.

For a network of N = 100 nodes, we have calculated
statistically the average value of n(x) for a regular graph with
average degree =3 and another network with same number
of links but obtained to result in irregular structure (see our
algorithm [4] for converting this regular graph to the irregular
graph). The results show that between regular graphs and the
shuffled graph (which follows a preferential attachment), in
the regular graph the rises in n(x) is slower. In both cases,
however, n(x) rises to a peak and starts to fall until n(x) = 0
for x = N . See figure 1. This is intuitively clear to see that
topology affects the change in n(x) with x.

A. p: The probability of content viewing

At any state x, we set that there will be n(x) hungry nodes.
Now another parameter to introduce in this context is the
probability p that any node aware of the availability of the
content will “view” the content in the next time-step of DTMC.
Considering that this probability is independent and constant
for all, we can now express the state transition probabilities
in terms of p and n(x) as described below.

For any state i, the probability of going to a state j in next
transition for all j < i is zero. Also, the probability of going



Fig. 1. Mean Size of Hungry Nodes versus the State of DTMC

from state i to j in next transition for all j > N(i) is also
zero. The probability of this state transition from i to j for
i ≤ j ≤ N(i) is a binomial random variable parameterized at
n(i) and p. So we obtain the following transition probabilities
for a basic hungry node model.

Pij = 0 For j < i

Pij = 0 For j > N(i)

Pij =

(
n(i)

j − i

)
pj−i (1− p)

n(i)−j+i For i ≤ j ≤ N(i) (6)

N(i) = i+ n(i)

Thus together with the knowledge of n(i) and p, we can
use the expressions for Pij into the definitions of hotness
from equations 2 and 3 to obtain the expected hotness profile
of a network. We have used the n(i) values for the regular
graph and the shuffled version of the graph (shown in figure
1) and setting p = 0.05, we obtain the expected hotness versus
time for these two kinds of graph. See figure 2 The hotness
profile shows that under such model, hotness first rises to
a peak and then falls back until finally it disappears. This
nonlinear profile can be somehow mapped into three regions
of content life-cycle: Rise in popularity, peak popularity and
fall in popularity.

This model can be interesting to see how network topology
affects the expected hotness of the content. Moreover, a
beforehand knowledge of p and n(i) can be used to predict
the hotness of a content after a given time. The prediction of
hotness has many interesting applications.

IV. SCENARIO 2: HOTNESS MODEL BASED ON INFLUENCE

In the Hungry Node Model, we assumed that p, the probabil-
ity that a node will “view” the content in a given time-step if it
is aware of the availability of the content, is constant. Keeping
this constant however means that there is no phenomenon of

Fig. 2. Expected Hotness versus time

Influence. However, an influence mechanism exists in many
real networks because of different factors. Since p represents
the promptness of a node to “view” the content, its value
is thus affected by the influence mechanism going on in the
network. Normally, influence can ba a very subjective notion
and hard to model. But there are attempts ( [1], [5]) to model
the influence mechanism. No matter what the actual underlying
influence mechanism is, it affects the value of p. In fact, the
more people “view” the content, those who have not viewed
it tend to be affected positively (though it can be a negative
effect also) so that their p value tends to increase. This overall
tendency or promptness to view a file, thus can be considered
as the function of current spreading of the content in the
network, i.e. x. Thus, in this section, we define p as state
dependent p(x). As an example, if there are more people
watching the content, in the due course of time, the content
becomes more valuable for the new ones who do not watch
it. Similar phenomenon is seen among Youtube videos also.
In literature, different models are proposed to model such
influence mechanism. We do not attempt to go into specifics
of such influence mechanism.

Also, in order to decouple the effect of information-
spreading (scenario 1) from the effect of influence mechanism
in the hotness dynamics of the content,we assume that all
nodes are aware from the beginning , the availability of the
content. In other words, N(i) = N for all i. This will help us
see solely the effect of influence on the hotness dynamics.

In this case, the state transition probabilities are represented
as function of p(i) as shown below. This makes the model an
easy to use homogeneous DTMC.

Pi,j =

(
N − i

j − i

)
p(i)j−i (1− p(i))

N−j−i for i ≤ j

=0 for i > j (7)

Using our model, we find out the expected hotness for



Fig. 3. Hotness for two different influence mechanisms, p1 = 1
1000

two cases: (a) p(x) is linearly increasing with x (b) p(x)
is increasing as x1.2. We can see in figure 3, how influence
mechanism affects the hotness profile: both the peak hotness as
well as the duration of the content. These preliminary results
are interesting. Even a slight difference in the underlying
influence mechanism results in a huge difference in the hotness
dynamics of the content. This model can be used to capture
such effects of influence mechanisms on the spread of contents
and their temporal popularity variations. To the best of our
knowledge, this work has not been dealt with in the past
literature.

The specifics on how p(x) changes with states depend upon
the underlying Influence Model and the Topological Structure
and also the advertisement network. Here in the entire work,
we set that there is no explicit advertisement mechanism. All
the content availability information is disseminated via the
network propagation. We believe that hotness modeling (and
thus prediction) should consider these structures and properties
of the network and the users.

A. Constant p case: what are the examples?

We consider a case in which the probability that the content
will be accessed by a user in the observation interval is
constant, regardless of the current state of the DTMC. i.e.
p(x) = p. This is a very basic model and is very specific.
The scenario of such a model would be the system where the
“interest of users on the content” does not increase with the
distribution of the content. This could typically be a system,
like:
• Systems with no influence or no “word-of-mouth”: Here,

the content is accessed (by a search in a P2P network
or a request to a content server in a C/S network)
independently to the spread of the content in the network
by other nodes. This does not concern the raise in content
discoverabilty as well as the social dimension resulting
in influences.

B. What about the finite life span of the content

In [7] and motivated by this work, in the other work,
authors have focused in establishing the fact that some contents
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Fig. 4. A useful model for Content Hotness

(semantically categorized as news contents) have a finite life
span because they loose relevance after a certain time. For such
contents, the previous experimental studies shows that their
popularity growth and decay are abrupt. Our model can also be
used to model such finite life-span content. In that case, p(x)
is not only state dependent, it is also time dependent. Then
p(x) is represented as p(x, t). This means that the resulting
DTMC is no more homogeneous. Such a non-homogeneous
DTMC, in our view, represents the general model for hotness
dynamics of contents in a network. The simplest limited life-
span model now introduces another parameter called Tlife and
p(x, t) is represented as p(x) × [U(t) − U(t − Tlife)] where
U(t) is an unit step function.

V. DISCUSSIONS AND FUTURE DIRECTION

This work is just a starting point for modeling the content
level hotness dynamics. We believe that being a simple and yet
a general model, this can be used and improved to perform
interesting studies relevant to content hotness. We can take
real network topologies and well known influence mechanisms
to map the experimental data of different content networks
and then tune the parameters to predict the popularity of the
content in such networks. We can also study the effect of
different network design options in the hotness profile and
then tune the system design practices. We believe that a model
as general as this can be improved and adapted for different
scenario.
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