
Business Process Personalization through Web Widgets

Nassim Laga, Emmanuel Bertin
Orange Labs

France Telecom R&D, 42, rue des Coutures,
14000 Caen France

{nassim.laga, emmanuel.bertin}@orange-ftgroup.com

Noel Crespi
Institut Telecom, Telecom SudParis,

9 rue Charles Fourier, 91011, Evry Cedex, France
noel.crespi@it-sudparis.eu

Abstract— Widget aggregators such as iGoogle and Netvibes
are broadly adopted by the mass market. They enable end-
users to personalize their environment with their preferred
services (Widgets). However, the usage in an enterprise context
is not yet investigated. In this paper, we firstly show that in
addition to personalization capability, the integration of
business processes should be considered. Secondly, we propose
a new Widget aggregator that enables the end-user to
personalize a business process by chaining Widgets according
to his/her needs and habits. Thirdly, we introduce a new
approach for specifying an end-user process; an approach
which enables even ordinary end-users, without computing
skills, to define their processes. Finally, we validate these
concepts by implementing and testing a prototype. As a
consequence, this work does not only impact Widget
aggregators, but it also innovates in end-user service creation
research by proposing an intuitive tool, understandable even
by ordinary end-users, for specifying their processes
(composite services).

Keywords-Personalization; Business processes; Web 2.0;
Mashups; SOA

I. INTRODUCTION

Widget aggregators like iGoolge [1] and Netvibes [2] are
popular mass market Web applications. They enable end-
users to create a single and personalized web page to access
several services. However, their usage within an enterprise
context is not yet investigated. In [3] we have described and
implemented a Widget aggregator. It has been experimented
among 184 participants within Orange Labs, and 63% of
end-users have reported the need for integrating their
enterprise applications and processes to the Widget
aggregator.

A business process is “the combination of a set of
activities within an enterprise with a structure describing
their logical order and dependence whose objective is to
produce a desired result” [4]. These business processes are
usually specified using graphical tools such as BPMN [5],
and implemented by developers using for example
BPEL4WS [6 and 7]. Thus, end-users are not involved
within the procedure of specifying and integrating a
business process.

However, business processes might also depend on end-
user personal needs [8 and 9]. Consider for instance a
vacation request business process. An end-user may want to

automatically update his/her agenda for each confirmed
vacation request, while another one may want to
automatically send an email to his/her collaborators to
notify them about his/her unavailability. To tackle this
heterogeneity of business processes, current approaches are
developer-centric; they aim to accelerate the application
creation process in order to respond quickly to the end-users
needs. Current Service-Oriented Architecture (SOA) [10]
for instance enables developers to implement quickly new
services using other ready-to-use services developed by
third party entities. We witness even the emergence of
composition languages, such as BPEL4WS [6] and
SPATEL [11], that enable graphical-based composition, and
thus facilitate and significantly speed up service creation
processes. However, though this is a successful approach for
implementing long-lived processes, it is not adapted for the
implementation and integration of dynamic and end-user-
dependent processes. Therefore, we propose in this paper to
enable directly end-users to personalize business processes
according to their needs. This is in line with current trends
[8 and 12] that consider knowledge workers as co-producers
of software features. As a consequence, the task of defining
and implementing a business process is scattered over the
developers and the end-users. Developers are in charge of
specifying and implementing the generic and long-lived part
of a business process (the part which is common to a
significant population of end-users), and the end-user is
responsible for the part of the business process which is
specific to him/her.

Our approach relies on the Widget aggregation paradigm.
The framework we define and implement is a Widget
aggregator that enables Widgets to communicate with each
other in order to allow the end-user to fulfill a process that
he/she previously designed. The specificity of our approach
is twofold: firstly, we introduce an innovative approach for
specifying end-user personal processes – an approach which
is intuitive and understandable even by ordinary end-users,
and secondly, we enable independent Widgets to exchange
information according to these processes. Furthermore, by
relying on Widget paradigm, we also promote human-to-
machine interaction, in addition to machine-to-machine
interaction facilities provided by SOA.

In section (2) of this paper we illustrate the motivations
for enabling end-users to configure their Widget aggregator

2010 IEEE International Conference on Web Services

978-0-7695-4128-0/10 $26.00 © 2010 IEEE

DOI 10.1109/ICWS.2010.22

551

according to their business processes. Then, we summarize
the use cases of the framework we propose. In section (4)
we detail its design and implementation. We validate the
solution in section (5). We discuss the positioning of our
work regarding service creation technologies and Widget
aggregators in section (6). Finally, we conclude the paper in
section (7).

II. INCENTIVE EXAMPLE

In this section we figure out, through concrete use case,
the benefits that come from using Widgets and Widget
aggregators as the basis for implementing and integrating
business processes. More precisely, we firstly illustrate that
business processes contain two parts: a common part and an
end-user specific part. And secondly, we introduce our
approach which is characterized by enabling end-users to
manage themselves their specific part of the processes.

Let's consider an end-user who has personalized his/her
Widget aggregator by loading some services such as:
sending email, reading and updating the agenda, telephony,
and a vacation request management service. The vacation
request management service is a business process that
involves one or several business entities. Current
technologies such as BPMN, SOA, and BPEL4WS enable
modeling and implementing such business processes. But,
they do not enable the end-user to personalize it according to
his/her specific needs. Indeed, after receiving a response for
a vacation request, the end-user might need to launch other
activities which involve other services such as: updating
his/her agenda by entering his/her unavailability during the
leave period, setting up an automatic email response during
the leave period, setting up an incoming calls redirection to
the voice mail during the leave period and sending email to
his/her collaborators to notify them about his/her
unavailability. Such actions are end-user-dependent, which
makes them almost impossible to automate by developers.
Figure 1 for instance illustrates the actions that might be
undertaken by two different profiles of end-users: a team
manager and a purchasing and logistics responsible; actions
which are completely different.

Figure 1 clearly illustrates that business processes
actually comprise two parts: a part which is common to a
significant population of end-users, and a part which is
heterogeneous, dynamic, and specific to a limited number of
end-users. The end-user specific part may depend not only
on the role of the end-user but also on his/her personal
habits. While the automation of the common part of a
process is well addressed by current tools, the end-user
specific part can not be generalized, and thus almost
impossible to automate by the developers. As a consequence,
we obviously need a more flexible mechanism that enables
directly end-users to specify and automate the end-user
specific parts of business processes.

Though business processes could be implemented and
automated using a dedicated application, the current trends
rely on service composition. They are currently specified
using a dedicated environment such as Eclipse BPEL editor.
However, while these tools are suited for developers and

advanced end-users, we can not expect from ordinary end-
users to master and use them. Consequently, we propose in
this paper to enable the end-users to specify and execute their
processes directly within their Widget aggregator
environment, which is also their working environment. This
is an enhancement to current Widget aggregators such as
iGoogle [1] and Netvibes [2] which do not enable services to
communicate with each other in order to perform an end-user
specific process. Even if some frameworks such as [12, 13,
and 14] include inter-widget communication tool, they are
either not based on end-users processes [13 and 14], or the
process specification tool is too complex to be used directly
by ordinary end-users [12].

From the technical perspectives, our approach is
characterized by firstly wrapping functionalities of services
and applications within Widgets. Secondly, we enable the
end-user to load only the functionalities (Widgets) he/she
needs. Finally, we enable him/her to configure the working
environment (the Widget aggregator) so that Widgets
collaborate with each other in order to support him/her when
performing his/her business goals; this configuration is
essentially the specification of the end-user specific part of
his/her business processes. The specificity of our approach is
the definition and implementation of a new process
definition method which is intuitive and understandable even
by ordinary end-users. This tackles the heterogeneity as well
as the dynamicity of the end-user specific part of business
processes.

Our contribution might be considered as a second level of
personalization of Widget aggregators. The first level is
personalizing the working environment by accessing only the
services that an end-user needs, and the second one is
personalizing the communications between services
according to end-user specific processes. Figure 2, illustrates
the end-user view of a personalized working environment. It
illustrates a vacation request business process personalized
by a “Purchasing and logistic” responsible (see Figure 1).
The displayed Widgets, and links between them, are those
that are involved in the personalized process. The common
part of the business process is performed using the “Vacation
request” Widget.

Fig. 1. Business actions heterogeneity illustration.

552

III. FRAMEWORK USE CASES

As we illustrate in Figure 3, the framework we propose
has three use cases. The first use case, “Widget
Deployment”, enables service providers to publish new
Widgets into the platform. The second use case, “Business
Process Definition”, includes two sub-use cases: the
“Common Part Definition” use case and the “End-user
Specific Part Definition” use case. The former enables
business process management entities to specify the
common part of a business process, which is generic and
common to a significant population, and the latter enables
the end-users to specify themselves the parts of business
processes which are specific to them. Finally, the third use
case, “Widget Aggregator Usage”, enables end-users to
access and use their environment which is now enriched
with the preferred Widgets which communicate with each
other according to the specified business processes
(common and end-user specific parts).

Our contribution in this paper is mainly an end-user tool
for defining and executing the end-user specific part of
business processes. Consequently, in the following sections,
we do not detail how the “Common Part Definition” use
case is performed. We assume that current service

composition tools such as BPEL4WS [6] and SPATEL [11]
are tailored for this task, as we discuss in Section 6.

IV. FRAMEWORK DESIGN AND IMPLEMENTATION

In this section we detail the architecture and the
implementation details of the framework we propose.
Firstly, we define a Widget in an enterprise context.
Secondly, we summarize the architecture and the
implementation of the Widget aggregator. Thirdly, we detail
the definition of the end-user specific part of a business
process. Finally, we detail how processes are executed
within the Widget aggregator.

A. Widget in Enterprise Context
Experimentations we made within Orange Labs have

shown clearly the need for integrating corporate applications
into the Widget aggregator we have implemented [3].
However, W3C definition of Widgets [15] is limited to a
user interface (UI) that displays data. Therefore, we propose
in this paper to enhance it and define a Widget as “a small
client-side web application for offering atomic
functionalities of a service, packaged in a way to allow a
single download and installation on a client machine, mobile
phone, or mobile Internet device”.

This new definition of a Widget enables software
developers to expose functionalities of enterprise
applications to the end-users. Thus, instead of exposing a
single application that packages all functionalities,
developers split their application into independent
functionalities, and expose them as independent Widgets;
each functionality is wrapped within a Widget. This is
analogous to service oriented computing (SOC) [16] where
applications are exposed as Web Services, except that in our
proposal we expose Widgets (UI + functionality). Figure 4
shows some Widgets that have been implemented within
Orange Labs.

Our proposal in this paper is to use Widget aggregation
(detailed in Subsection 4.2) paradigm not only to

Fig. 3. Use case diagram.

Fig. 4. Widgets paradigm.

Fig. 2. Example of purchasing and logistic responsible
environment.

553

personalize the end-user environment according to the
Widgets he/she needs, but also to enable these Widgets to
communicate with each other according to end-user specific
processes (detailed in Subsection 4.3 and 4.4).

Technically, Widgets are defined using an XML file
(provided when deploying a new Widget into the
framework). It contains mainly the URL of the Widget, its
inputs semantic tags, and its outputs semantic tags. The
inputs and outputs semantics are defined using
Microformats 1 [17 and 18] vocabulary; a lightweight
semantic approach. We use for instance hCard2 to represent
contact information, and hCalendar3 to represent calendar
events. We rely on Microformats to semantically annotate,
at the UI level, the outputs of each Widget. This enables us
to chain the Widgets at the UI level.

B. Widget Aggregator
The Widget aggregator we propose is implemented as a

Web application. It is mainly based on AJAX technologies
(Asynchronous JavaScript And XML) [19]. We have used
Dojo JavaScript library4 to facilitate the integration of the
Widgets into the Web page, and also to avoid cross-browser
issues.

Figure 5 illustrates the different components that
constitute the Widget aggregator. Some of them perform the
aggregation of Widgets, while others are required for the
process definition and execution use case, which are
detailed in the next subsections.

Firstly, the Widget aggregator manages a database of
users, Widgets, and processes. Using this database, the
framework associates processes to end-users; processes
which also define the useful Widgets to display within the
end-user environment. This database is queried through
“Persistence Management Component” which is
implemented using PHP language.

Secondly, we have implemented the “End-user Specific
Process Management Component” (ESPMC), which is in
charge of creating, saving, and executing end-user specific
part of processes. It interacts with the database to save and
retrieve process definitions, and with “Widget Management
Component” (WMC) to define and execute processes. A
detailed description of ESPMC is provided in the next
subsections.

Finally, we have implemented a “Widget Management
Component” (WMC), which is in charge of displaying a
Widget within the end-user environment. It is a Dojo object
which is created from a Widget definition. WMC uses
AJAX requests to load the UI of the Widget, and to interact
with its server side logic.

1 Microformats, http://microformats.org/, accessed Feb 27th, 2010
2 Microformats, http://microformats.org/wiki/hcard, accessed Feb 27th,
2010
3 Microformats, http://microformats.org/wiki/hcalendar, accessed Feb 27th,
2010
4 Dojo toolkit, http://www.dojotoolkit.org/, accessed Feb 27th, 2010

C. Definition of the End-user Specific Part of a Business
Process
In this section, we firstly detail the language we use for

defining processes, and then we describe the innovative
approach for enabling ordinary end-users to specify their
own business process.

1) Process definition: The end-user specific part of a
business process is defined as a set of Widgets and links
between them. Each link is defined by the source Widget,
the destination Widget, the type of the link (automatic or
semi-automatic), and the data and/or event which should be
transmitted from the source Widget to the destination
Widget.

There are two types of links: automatic links and semi-
automatic links. Automatic links are executed without any
initiative from the end-user. Each time the data and/or event
that should be transmitted from the source Widget to the
destination Widget are detected, the destination Widget is
automatically launched without any direct initiative from the
end-user. Semi-automatic links however are firstly
displayed within the UI of the source Widget using HTML
elements (typically an icon), and secondly the
corresponding data are transmitted (from the source Widget
to the destination Widget) only when the end-user clicks on
that HTML element.

From the technical perspective, end-user specific
processes are defined using a JSON format (RFC 4627
[20]). It facilitates and speeds up the creation and the
interpretation of processes in the Web Browser. Table I
details the definition of processes using JSON.

Fig. 5. Component view of the framework.

554

TABLE I JSON DEFINITION OF PROCESSES

 JSON format
Widgets [{

 widgetId: value,
 widgetName: value,
 widgetUrl: value,
 inputs: [{
 inputSemanticTag: value,
 }, …],
 outputs: [{
 outputSemanticTag: value,
 }, …],
}, …]

Links [{
 linkId: value,
 sourceWidgetId: value,
 destinationWidgetId: value,
 linkType: value,
 sourceOutput: value,
 destinationInput: value,
}, …]

2) Innovative approach for an end-user process
definition: As we have mentioned in the introduction, we
define and implement in this paper an innovative approach
for specifying end-user specific part of business processes.
It is innovative because it enables even ordinary end-users,
without programming skills, to specify processes. This
approach is characterized by firstly creating a “mesh”
process as the end-user loads Widgets into his/her
environment; a “mesh” process is a process that connects all
connectable Widgets. This is possible and scalable because
the “mesh” process is created only between Widgets that are
loaded by the end-user. Secondly, starting from this “mesh”
process, the end-user can delete undesired links or modify
their type (automatic or semi-automatic). Finally, the end-
user can save the process and optionally share it with other
end-users. Figure 6 shows the interactions between different
components of the aggregator to enable the end-user to
create and save a process.

From the technical perspective, each time the end-user
loads a new Widget into his/her environment, an event is
sent to “End-user Specific Process Management
Component” (ESPMC), which firstly detects semantic
matching between the new Widget and other Widgets that
are already loaded, and secondly creates automatically the
corresponding links (Step 1 and 2). The detection of
semantic matching between two Widgets is based on the
Microformats tags used to annotate the inputs and the
outputs of Widgets. For instance, if one Widget (e.g.
directory) generates an hCard, which contains contact
information (e.g. phone number), and another declares that
it can receive as input a phone numbers (annotated by “tel”),
a link will be automatically created between the two
Widgets. At the execution, ESPMC will automatically

extract the phone number from the hCard and launches the
destination Widget with the phone number as an input
parameter.

New links are by default semi-automatic. Then, the end-
user can modify the type of a link or delete it (Step 4). Each
time such action is performed, the ESPMC is informed, and
the process definition is updated (Step 5 and 6). Finally, the
end can save and share a created process (Step 7, 8, and 9).
A common database is used for this purpose (saving and
sharing a process definition).

This approach is intuitive because end-users do not have
to think about creating a new link. Instead, when end-users
realize that a link between two Widgets is not needed, they
can delete it or modify its type. Moreover, if a given
functionality is needed and not considered yet in the
process, the end-user has just to load it; links between this
functionality and others are automatically created.

D. Execution of the End-user Specific Part of a Business
Process
In this section we detail how we enable the execution of

an end-user specific business process within the Widget
aggregator. As end-user specific processes are defined as a
set of links, we detail more precisely the execution of a
single link. Figures 7 and 8 illustrate respectively the
execution of an automatic link, and a semi-automatic link.

Fig. 7. Automatic link execution.

Fig. 6. Process Creation.

555

An automatic link is executed when a Widget generates
the data (e.g. hCard) and/or event (e.g. incoming call) that
correspond to the link. Thus, for each data or event
generated within the Widget, the ESPMC is notified (Step 1
and 2 in Figure 7). Then, the ESPMC checks (Step 3) if the
data or the event corresponds to an automatic link within the
end-user specific process definition. If that is the case,
ESPMC retrieve from the source Widget the actual data
(Step 4) and invokes the destination Widget (Step 5).

Semi-automatic links execution is performed during two
phases: during the loading phase of the Widgets, and during
the execution phase. During the loading phase, the ESPMC
gets from the process definitions all semi-automatic links
(step 1 in Figure 8). Then, for each link, it informs the
corresponding source WMC to insert a UI element (e.g. an
icon, or an HTML link) to the Widget. This UI element
enables the end-user to launch the execution of the
corresponding link (e.g. by clicking on the icon) (step 2).
During this step, the WMC is also informed about the data
that are required by each link.

At the execution phase, when an end-user launches the
execution of the link (clicks on the icon), the WMC
retrieves from the Widget the values of the data that are
required by this link, and transmits them to the ESPMC,
with the corresponding link identifier (step 3 and 4).
Thereafter, the ESPMC gets the destination Widget and
invokes it (Step 5).

V. FRAMEWORK VALIDATION

The prototype we have detailed in the previous section
has been experimented within Orange Labs among
marketing and IT team. The feedback is unanimous: the
functionality of running business processes within the
Widget aggregator was appreciated, and the new approach
we introduce for specifying business processes has been
successfully tested by users without computing skills.

In this section, we illustrate the prototype through the
scenario we provided in Section 2 (vacation request
business process). Figure 9 shows the end-user environment
that enables him/her to create and execute a personalized
vacation request business process. To do that, three actions
are required: (1) loading Widgets, (2) specifying an end-user
process, and (3) executing the end-user process.

In this Figure, the end-user has already loaded the “Call
Transfer” Widget, the “Pending Orders” Widget, the
“Agenda” Widget, the “Telephony” Widget, and the
“Vacation Request” Widget. The “Vacation Request”
Widget implements the common part of the business
process that performs a vacation request. In this illustration
(Figure 9) all Widgets are visible to the end-user, but
actually the end-user can deactivate them; the deactivated
Widgets are executed only when the corresponding step in
the process is reached.

Fig. 9. Framework illustration.

Fig. 8. Semi-automatic link execution.

556

As the end-user loads the Widgets into his/her
environment, a “mesh” process has been automatically
created. This process creates links between all Widgets that
are loaded, according to semantic matching between their
inputs and outputs. If the user wants to create a link to a
Widget which is not loaded yet, he/she must at first load it.

The links between Widgets are represented by an HTML
element that enables the end-user to modify the definition of
the “mesh” process. He/she can easily delete an undesired
link, or modify its type. For instance, as part of the “mesh”
process, a link has been created between the “Vacation
Request” Widget and the “Agenda” Widget, which enables
the end-user to check his/her availability on a date generated
by the “Vacation Request” Widget. However, in the end-
user business process defined in Section 2, this link is not
included as part of the end-user business process.
Consequently, the end-user may want to delete it. This is
performed through an intuitive interface element illustrated
in Figure 9 (zone 2).

Once the end-user has finished defining his/her business
process, he/she can use it by executing Widgets within
his/her environment. He/she can also publish it in order to
enable other end-users to load and use it.

When executing the business process, the end-user will
retrieve exactly the same interface illustrated in Figure 9;
except that the process edition is disabled. In other words,
the end-user can not delete, or modify the type of, a link. In
the example illustrated in Figure 9, the end-user will have in
his/her Widget aggregator the Widgets needed to efficiently
perform the vacation request process. This includes firstly
the common part of the business process, which is
implemented within the “Vacation Request” Widget, and
secondly the end-user specific part which is specified by the
end-user himself/herself and executed as linked Widgets. As
a consequence, when a response to a vacation request is
positive, the Widget generates the corresponding event, the
framework invokes automatically: the “Call Transfer”
Widget (to set up a call redirection during the leave period),
the “Agenda” Widget (to set up the end-user unavailability
during the leave period), and finally, the framework displays
the pending orders to the end-user (to enable him/her to
accelerate the process and finish it before leaving). The
“Pending Orders” Widget is also linked to the “Telephony”
Widget by inserting an icon that enables the end-user to call
a provider of a selected item.

VI. POSITIONING THE PROPOSED FRAMEWORK

As we illustrate in Figure 10, the framework we propose
in this paper does not intend to replace current service
orchestration tools, which facilitate significantly business
process implementation. It enables the end-users to
personalize a business process according to their needs. We
have shown in this paper that business processes comprise
two parts: a common part and an end-user specific part. The
former is usually long-lived and responds to a popular need
of end-users, whereas the latter is heterogeneous, dynamic,

and end-user dependent. Therefore, service orchestration
tools (such as BPEL4WS [6] and SPATEL [11]) and our
proposal might co-exist in the same environment. The
former automates the part of the process which is common
to all end-users, and the latter enables the automation of the
part of the process which is dynamic and specific to a
limited number of end-users. Thus, in Figure 10, the end-
user accesses to Business processes that are designed and
implemented by developers (Widget A and B). He/she
accesses other Widgets created from scratch (send email,
phone, and Agenda). Finally, he/she can combine these
Widgets according to processes which are specific to
him/her.

Figure 10 also illustrates that our contribution is an
enhancement made to current Widget aggregators in order
to succeed within an enterprise context. Indeed, platforms
like iGoogle [1] and Netvibes [2] do not support the end-
user in achieving his/her business goals. In [13 and 14], we
have proposed new mechanisms named Drag & Drop and
Communication Manager that enable the services wrapped
within Widgets to communicate with each other. Both
mechanisms are characterized by automatically creating
links between independent Widgets and thus enable
ordinary end-users, without any development skills, at the
run-time, to chain them. However, both mechanisms create
links according only to inputs/outputs semantic matching,
and unfortunately, they do not take into account the end-
user business activities. The framework we propose in this
paper however enables to personalize these links according
to end-user business activities, modeled as processes.

VII. CONCLUSION

The paper presents a novel technique for implementing
and easily integrating business processes using Widget
paradigm. The driving idea is characterized firstly by
wrapping each service within a Widget to promote human–
to-machine interaction, and secondly, by providing end-
users with a Widget aggregator framework that enables

Fig. 10. Contribution statement.

557

them not only to load the Widgets they need, but also to
chain these Widgets with each other according to processes
they have defined themselves. This work also proposes a
novel approach that enables even ordinary end-users,
without computing skills, to specify processes. This
provides a solution for tackling the heterogeneity and the
dynamicity of end-users processes and needs. Validated by
the implementation and experimentation of a prototype
within an enterprise context (Orange Labs), we hope by the
present paper to foster further research and experimentations
in other contexts (mass market or other organizations).

The present work makes significant advances in Widget
aggregators as well as in the business process management.
We enhance Widget aggregators by integrating natively a
business process management tool, and we define and
validate an intuitive approach for specifying the end-user
part of business processes.

REFERENCES

[1] Google, http://www.google.com/ig
[2] Netvibes, http://www.netvibes.com
[3] N. Laga, E. Bertin, and N. Crespi, “A unique interface for web and

telecom services: From feeds aggregator to services aggregator,” In
ICIN 2008, Bordeaux, France, 20-23 October 2008.

[4] R.S. Aguilar-Savén, “Business process modelling: Review and
framework.,” International Journal of Production Economics, 2004.
Vol. 90 (2): p. 129--149.

[5] A. Stephen, “Introduction to BPMN”, White, IBM Corporation,
http://www.bpmn.org/Documents/Introduction%20to%20BPMN.pdf

[6] T. Andrews, et al., “Business Process Execution Language for Web
Services (BPEL4WS)”, http://www.oasis-
open.org/committees/download.php/2046/BPEL%20V1-
1%20May%205%202003%20Final.pdf

[7] R. Khalaf, N. Mukhi, S. Weerawarana, “Service-Oriented
Composition in BPEL4WS,” In Proceedings of the Twelfth
International World Wide Web Conference, Budapest, Hungery, May
2003.

[8] G.Little, T. A. Lau, A. Cypher , J. Lin, E. M. Haber, and E.
Kandogan, “Koala: capture, share, automate, personalize business
processes on the web,” In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (San Jose, California, USA,
April 28 - May 03, 2007). CHI '07. ACM, New York, NY, 943-946.

[9] R. S. Sadasivam, “An Architecture Framework for Composite
Services with Process-Personalization,” Doctoral Thesis. UMI Order
Number: AAI3301404., University of Alabama at Birmingham, 2007.

[10] E. Newcomer, “Understanding Web Services: XML, Wsdl, Soap, and
UDDI” Addison, Wesley, Boston, Mass., May 2002.

[11] M. Belaunde, and P. Falcarin, “Realizing an MDA and SOA Marriage
for the Development of Mobile Services,” In Proceedings of the 4th
European Conference on Model Driven Architecture: Foundations
and Applications (Berlin, Germany, June 09 - 13, 2008). I.
Schieferdecker and A. Hartman, Eds. Lecture Notes In Computer
Science, vol. 5095. Springer-Verlag, Berlin, Heidelberg, 393-405.

[12] J. Soriano, D. Lizcano, M. Cañas, M. Reyes, and J.J. Hierro,
“Fostering innovation in a mashup-oriented enterprise 2.0
collaboration environment,” System and Information Science Notes,
SIWN International Conference on Adaptive Business Systems,
Chengdu, China, July, Vol. 1, No. 1, pp.62-69.

[13] N. Laga, E. Bertin, N. Crespi, “A web based framework for rapid
integration of Enterprise applications,” In the ACM International
Conference on Pervasive Services, Imperial College, London, UK,
July 13-17, 2009.

[14] N. Laga, E. Bertin, N. Crespi, “Building a user friendly service
dashboard: Automatic and non-intrusive chaining between widgets,”
In the 2009 IEEE congress on Services, Los Angeles, California,
USA, July 6-10, 2009.3

[15] W3C, http://www.w3.org/TR/2007/WD-widgets-reqs-20070209/
[16] M. P. Papazoglou, P. Traverso, S. Dustdar, F. Leymann, and B. J.

Krämer, “Service-oriented computing research roadmap,” in Dagstuhl
Seminar Proceedings 05462, April 2006.

[17] R. Khare, “Microformats: the next (small) thing on the semantic
Web?,” Internet Computing, IEEE , vol.10, no.1, pp. 68- 75, Jan.-Feb.
2006

[18] K. Stolley, “Using Microformats: Gateway to the Semantic Web,”
IEEE Transactions on Professional Communication, vol.52, no.3,
pp.291-302, Sept. 2009.

[19] J. Gehtland, D. Almaer, and B. Galbraith, “Pragmatic Ajax: A Web
2.0 Primer,” Pragmatic Bookshelf, 2006

[20] IETF, RFC 4627, http://www.ietf.org/rfc/rfc4627.

558

