
A web based framework for rapid integration of Enterprise
applications

Nassim Laga
Orange Labs, Institut TELECOM

SudParis
42, rue des Coutures,
14000 Caen France

nassim.laga@orange-
ftgroup.com

Emmanuel Bertin
Orange Labs

42, rue des Coutures,
14000 Caen France

Emmanuel.bertin@orange-
ftgroup.com

 Noel Crespi
Institut TELECOM SudParis

9 rue Charles Fourier,
91011, Evry Cedex, France

noel.crespi@it-sudparis.eu

ABSTRACT
In pervasive environment, users access their enterprise
applications using heterogeneous devices. However accessing
complex applications is time consuming on devices with limited
capabilities. Moreover, the communication between these
applications is a frequent and valueless action which is currently
managed by the end-user himself, by getting data from an
application and putting it into another. In this paper we propose a
web based framework for application integration. This framework
first hides the heterogeneity of accessing devices from the service
providers and then facilitates the usage of enterprise applications,
by enabling simple communication (e.g. by drag&drop) between
independent and heterogeneous services. We rely within this
framework on the widget concept, where a widget gives access to
a single functionality of an enterprise application. This enables to
reuse the widget user interfaces in various contexts.

Categories and Subject Descriptors
D.2.13 [Reusable Software], H.5.2 [User Interfaces].

General Terms
Design.

Keywords
Inter-widget communication, inter-service communication,
drag&drop, enterprise applications.

1. INTRODUCTION
Today, users use many applications to accomplish their daily
tasks. They use Internet based services such as online purchase
and location. They use enterprise applications such as CRM
applications, professional email, and corporate directory. And
finally, they use also telecom services such as phoning, presence,
and SMS. In this paper, we refer to all these applications as
"enterprise applications". This covers any service used inside a
company to manage task automation, collaboration and

communication.

Today most users access to these applications with their personal
computers or their laptops, but with the technological advances,
we expect the use of other types of devices such as mobile
phones, and PDAs. Indeed, network technologies, from the end-
devices to the core network, have significantly improved in the
last years. Current user devices embed several functionalities such
as tactile and larger screens, camera, and GPS. In addition, the
emergence of the IMS architecture promises network convergence
and faster service creation. Finally, network technologies such as
802.11e (the approved amendment of IEEE 802.11), VPN (virtual
private network), and MPLS (multi-protocol label switching)
provide security and QoS guarantee to end users. These
technologies provide users with new means to access enterprise
applications (using mobile phones, laptops, PDA) with almost the
same QoS and security level as if they use them in their desktop
computer.

However, neither enterprise applications nor development
methods are tailored for such usage. Indeed, due to current
dynamicity and heterogeneity of working methods and business
processes, service providers (enterprise IT teams or third party
service providers) tend either to create complex and generic
applications in order to cover many functions, or accelerate the
development process with service composition technologies that
are based on the reuse of existing blocks.

The development of complex and generic applications results in
unusable services for devices with limited capabilities; service
providers should thus adapt all their applications for each
accessing device type.

Service composition technologies are essentially based on service
oriented architecture (SOA [1]) which has significantly gained
maturity in this area. It enables service providers to develop
quickly new applications based on existing blocks. However, it
remains focused on service-to-service collaboration and is not
tailored for human-to-service interactions [2]. This is essentially
due to the fact that service composition mechanisms in SOA are
developer centric, and thus do not take into account the user
interface; they are instead based on complex standards such as
Web Services Description Language (WSDL [3]), Simple Object
Access Protocol (SOAP [3]), Web Service Business Process
Execution Language (WS-BPEL [4]), or even REST [5], which
are only understandable by and intended for developers. This
SOA shortcoming leads to new approaches (like [6], Yahoo
PIPES [7], EZWEB [8], OPUCE SCE [9], and Microsoft
POPFLY [10]) that are more user centric. These approaches are

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

ICPS’09, July 13–17, 2009, London, United Kingdom.

Copyright 2009 ACM 978-1-60558-644-1/09/07...$5.00.

based on the reuse of the user interface and intend to push the
service creation environment to the end user.

These emerging approaches cover the need of application creation
in a web environment, but do not well cover the need of
communication between these applications. From a user point of
view, this communication between applications is for example the
drag&drop or the copy/paste between Microsoft Windows
programs. And we believe that the web paradigm enables to
conceive even more powerful communication means.

In this paper, we propose a new web based framework that
enables an easy integration of existing enterprise applications and
the communication between these applications. This framework
provides both end-users and companies with many advantages.

From end-user point of view, the framework is the single,
personalized, easy to use accessing environment to all his
applications.

• Personalized: because he can load any functionality
of any application to his personal environment

• Easy to use: because functionalities of different
applications are loaded on the same environment.
This enables the framework to link and communicate
independent applications in order to relieve the end
user from this task especially in devices with limited
capabilities

From companies' point of view, this framework is an application
integrator. It enables them

• to develop services independently from the accessing
device,

• and to communicate these services each with others
in order to provide the end-users with more
functionalities (e.g. location capability on a directory
application) with no integration effort from the
service developers

In this paper we also associate to the integration framework a
development methodology based on the reuse of widgets [11].
This facilitates their adaptation for each device. The proposed
framework is then an advanced widget container.

With this development methodology, companies do not only
reduce the time to market of new services but also enables the
end-user to personalize his working environment by loading only
the needed functionalities.

The outline of the paper is as follows: in section 2 we give an
overview of the used technologies that reduce the time to market
of the enterprise applications. We illustrate the need of new
service creation environment and its requirements in section 3.
More details on the proposed development methodology and the
widget concept are presented in section 4. Section 5 summarizes
the functionalities of the integration framework and section 6
gives the architectural design. We discuss the complementarities
between our work and existent service creation tools in section 7.
We conclude the paper in section 8.

2. RELATED WORK
From the sequential programming to the service composition tools
the main aim of changing the development methods is to reduce
the time to market of more complex applications. The philosophy
is simple: "reuse the reusable components". The term "reusable
component" has covered over the time different meanings
according to the used technology. Indeed, "reusable component"
can refer to a "function" in the sequential programming. A
function is a sequence of statements that can be reused in different
places of a program. However the scope of reusability resides
inside a single code. We saw then the appearance of the object
oriented programming OOP [12] in which a class (the definition
of an object) represents the reusable component. However, class
reusability still related to the programming languages and there
were no standards on how to define interfaces neither on inter-
object data exchange. Thereafter, Service oriented architecture
SOA [1] has emerged to avoid these limitations. A service in the
SOA architecture has higher granularity then a class in the object
oriented programming and is accessible remotely via a published
interface. Unlike a class which is something meaningful for the
developer, a service is more familiar to the user. Moreover, SOA
architecture is empowered with W3C standards for interfaces
description and inter-service data exchange format such as WSDL
and SOAP.

Over the last decade, much research work has been done on
service composition, and standards such as Business Process
Modeling Notation (BPMN [13]), Web Services Business Process
Execution Language (WS-BPEL [4]), and BPEL4WS [14] have
emerged. BPMN is a standardized graphical representation of
business processes which is understandable by diverse person
profiles (service developers and application experts). It fills the
gap between business experts and developers. WS-BPEL and
BPEL4WS are executable languages tailored for machines and are
less understandable by business experts. BPEL scripts are the
inputs of orchestrations engines (such as ActiveBPEL and Oracle
BPEL process manager) that execute the defined process. These
languages are more than service composition languages; they
define business processes with different roles, business entities,
and relationship between each others. Usually each business entity
publishes web services, and each web service realizes an activity
in the business process.

However, these methods are hardly sufficient to face the
heterogeneity and the dynamicity of the user needs neither the
heterogeneity of accessing devices. Indeed, the dynamicity of
current working methods led to the need of new applications for a
limited number of users and a short period of usage time. This
type of requests remains a challenge for service providers as the
applications are not sufficiently cost effective because of the
limited number of users and the short period of usage time. In
addition, the heterogeneity of accessing devices forces the service
providers to adapt their applications to each device. Java Virtual
Machine and Content adaptation tools are certainly useful
technologies in such context but still not sufficient as the former
hides only the processor language and the later adapts only the
presentation layer of the application.

Following the SOA shortcomings, recent research work focus on
how to push the process implementation and service composition
to the end-user. Automatic service composition ([15], [16], and
[17]) and semi-automatic service composition (Yahoo PIPES [7],

EZWEB [8], and Microsoft POPFLY [10]) approaches have then
emerged. As we stated in [18], automatic service composition
tools are very simple to use as they are based on natural language
processing but they are subject to errors and heavy processing due
to semantic reasoning and natural language processing. Semi-
automatic service composition however involves the end-user in
the service creation process. Indeed, end-users can chain two or
many services to create more innovative functionalities. These
tools are usually based on the reusability of the user interfaces.

Yahoo PIPES is a web application that consists in a graphical tool
that provides end-users with the service composition capabilities
(mashup). Figure 1 shows an example of Yahoo PIPES graph
based graphical interface. Boxes represent services user interface
and wires represent input/output matching between these services.

Figure 1: Yahoo PIPES screenshot.

Figure 2: EZWEB screenshot.

EZWEB [8] is another framework which requires user
participation to make the composition. In this framework each
resource (service or data) is identified with an URI and has an

internal representation (XML) and eventually a graphical interface
representation (XHTML). EZWEB framework allows users to
make two subtype of composition: wiring composition and piping
composition. Wiring composition is a composition between (at
least two) graphical interfaces of services. Piping composition is
more complex for the end user since he has to invoke existing
resources and orchestrate them in order to build a new service
using for example BPEL4WS or WS-BPEL languages. Figure 2 is
the EZWEB framework screenshot.

3. APPLICATION INTEGRATOR
FRAMEWORK REQUIREMENTS
To illustrate the need for a new system lets consider daily actions
of a secretary in a company:

• she receives a call from Mr. Smith, a team manager,
who request a meeting with the director,

• she searches the caller in the directory application to
have more information about him,

• she checks out the availability of the director in his
agenda, and then, she proposes to Mr. Smith a slot,

• after being agree with Mr. Smith on a slot, she books
the meeting in the director agenda and sends a
notification email for both the director and Mr. Smith,

• and finally, books a room for the meeting.

These actions involve phone application, directory application,
agenda application, room booking application, and email
application. The secretary does not only load all these applications
but she also switches between each of them by moving data of an
application to another. For instance, she moves the caller phone
number from phone application to directory application in order
to find the caller information, she moves Mr. Smith email address
from the directory application to email application to send him an
email, and finally she moves the meeting slot from agenda to the
booking room application in order to book a room for that
meeting in that time.

Obviously, this is difficult to manage in current desktops
computers but it is even more difficult in devices with limited
capabilities such as mobile phones or a PDAs. Even a single
complex application – that embeds several functionalities – seems
to be too complex to be displayed on a phone handset. Therefore,
our first goal is to simplify the usage of the user working
environment independently of the used device. For that purpose,
we first need to hide the unused functionalities of complex
applications, and then to adapt the display of the whole working
environment to the used device, and finally, we need to chain
these functionalities with each others to perform an intuitive (and
automatic) switching between them. In the example above, the
secretary will have a unified working environment that embeds
only her personal (useful) functions such as call reception,
directory search, agenda of the director, send email, and room
booking. These functions are chained with each other to assist the
end user in achieving his task.

On the other hand, the dynamicity and heterogeneity of the
working methods leads to frequent and spontaneous needs for new
services. To face these spontaneous requests, we need to enable
end users to create their own services. Unfortunately, current
service creation technologies are not designed to be used directly

by the end user neither to be used from devices with limited
capabilities. They are instead based on complex standards (SOAP,
WSDL, and BPEL) that are understandable only by professional
developers. Consequently, we think that an intuitive service
creation tool should be based on the reuse of the user interface.
This gives to the user a good outlook of what he is achieving
while he creates his services. And, reusing directly the end user
graphical interface hides the device adaptation issues. For
instance, if the secretary didn't have the booking room
functionality in her working environment she should be able to
add it at the run time. The new working environment should
reconfigure itself automatically so that the new functionality will
be chained to the existing ones.

To conclude this section, the integrator framework should:

• hide the unused functionalities of complex applications,

• aggregate these functionalities into a single
environment,

• chain these functionalities automatically,

• provide the end user with a real time service creation
capabilities,

• hide the used device characteristics from the service
providers,

• and provide the end user with a real time customization
capabilities

To reach the listed goals we have adopted a new development
methodology based on the widget concept [6].

4. WIDGET BASED DEVELOPMENT OF
ENTERPRISE APPLICATIONS
W3C definition [6] of widgets is "Small client-side Web
applications for displaying and updating remote data that are
packaged in a way to allow a single download and installation on
a client machine, mobile phone, or mobile Internet device". This
definition limits a widget to data access technique. In this paper
however we extend it and propose the following definition:
"widgets are small client-side web applications for offering
atomic functionalities of an enterprise application, packaged in
a way to allow a single download and installation on a client
machine, mobile phone, or mobile Internet device".

Based on this definition, the new development methodology
consists at first in the creation of small and many widgets instead
of one complex user interface of the enterprise application. Each
widget embeds only a single atomic functionality of an enterprise
application as illustrated in Figure 3.

According to the preferences of the end-user and his business
activities, a set of these widgets (functions) is integrated into his
working environment as illustrated in Figure 4. This is very useful
especially concerning complex applications as the end-user loads
only the functionalities he needs; and these functionalities not
only behave as they were in the same application using inter-
widgets communication mechanisms but also interact with
functionalities of other applications; this eases considerably the
inter-application switching.

Figure 3: Partitioning the enterprise application into
widgets.

Figure 4: Display of the working environment on a laptop.

There are two challenges in this methodology. The first one is to
define the granularity of the widgets, and the second one is how to
perform inter-widget communication.

Regarding the granularity of the widgets, we consider the end-user
point view of application functionalities. Let's take a web email
application as an illustrative example. This application allows the
end-user to enter text messages, enter email destination address,
attach a file, send the email, view the inbox, read an email, view a
joined file, and respond to an email. But from the end-user point
of view, the main functionalities are sending an email, view the
inbox and read an email. Therefore, we will split this application
into three main widgets (reading email widget, inbox widget, and
sending email widget) linked each with others.

The second challenge is how to link these widgets each with
others. To tackle this problem, widget developers must define
each widget capabilities (inputs/outputs). The framework creates
then these links according to semantic matching between inputs
and outputs of the widgets. The semantic reasoning is out of the
scope of this paper.

As an illustrative example, consider the secretary scenario above.
She needs in her working environment a phone widget, an
enterprise directory widget, her manager's agenda widget, mailing
widget, and room booking widget. The phone widget must then
define that it receives as input a phone number and generates the
phone call object (caller phone number, called phone number, call
duration, call state…) as output. The enterprise directory receives
as input a phone number, make search and generates a contact
card (Name, phone number, postal address…) as an output. The
framework will then enable the end-user to link the caller phone
number of the incoming call to the directory widget so that he can
display a caller contact card automatically (or explicitly) at each
incoming call.

Figure 5: An overview of the automatic adaptation of the
user interface.

This new development method has many advantages:

• Ease the usage of the working environment: with the
customization capabilities and the widget paradigm, the
working environment embeds only the needed
functionalities (and not the needed applications), which
results in a working environment tailored for each end-
user.

• End-user service creation: the working environment
enables the end user to create its own services using the
inter-widget communication capabilities. Unlike SOA in
which the composition mechanisms are based on
complex standards, in the defined development
methodology the service composition is based on the
user interface (the widgets) which is definitely more
intuitive for the end user as he has a good outlook of
what he is achieving while he creates his services.

• Automatic adaptation to the end-user device: service
developers do no longer need to adapt the applications
interfaces according to each user device as this task is
automatically performed by the integration framework
(the working environment) which is detailed in sections
5 and 6. Service providers develop a single widget for
all device types. Figure 5 illustrates the adaptation of
the widgets to the used device.

5. FUNCTIONALITIES OF THE CURRENT
INTEGRATION FRAMEWORK
The integration framework is an important component in the
described widget-based development methodology. In this section
we review its basic functionalities.

The first functionality of the integration framework is the
aggregation of enterprise application functionalities (now widgets)
into a single personalized environment named working
environment (illustrated in Figure 4). The integration framework
loads only the user needed widgets (defined either by the user
himself or an administrator).

The second functionality is the automatic adaptation of the
working environment according to the used device characteristics.
This functionality tackles the heterogeneity of the user devices.
For instance, if the used device is a laptop, which belongs to a
category of mobile devices with a large screen and high
computing capabilities, the integration framework displays all the
user widgets and organizes them into tabs on a large user
interface. However, if the accessing device is a small mobile
phone, which belongs to the category of devices with limited
screen and CPU, the integration framework displays the widgets
as reduced and small windows. Figure 4 and 6 illustrate the
differences between the graphical display of the working
environment on the laptop and on the mobile phone.

Figure 6: Graphics displays of the working environment on a
mobile phone.

The third and last functionality of the integration framework is the
inter-widgets communication mechanisms. This functionality aims
to provide the end-user with intuitive service composition
mechanisms. For instance, Figure 7 illustrates an example of such
mechanism named drag&drop. In the illustrative example the user
drag a contact card of an employee in the directory widget and
drop it on the location service, and then, the location widget
displays the position of the employee on a map. The end-user
does no longer need to enter the postal address on the location
widget as this information is available in the corporate directory
widget. The user can use the same mechanism to make a call
(drag&drop the contact card from the directory widget to the
phone widget) without entering the phone number of the contact.

The drag&drop mechanism combined with the widget concept
enables enterprise applications to collaborate easily, even if they
are developed independently each from others. This is indeed very
useful for service composition and rapid business processes
implementation. The drag&drop mechanism belongs to the semi-
automatic service composition category which is performed by the
end user actions [18].

Figure 7: Drag& drop illustration.

6. ARCHITECTURAL DESIGN AND
IMPLEMENTATION
We have implemented a prototype [6] of the service integrator
framework as a web application to make it accessible from many
devices. We describe in [6] how the integration framework
aggregates many services into a single web page and make them
independent each from others. In this section, we review the
aggregation step, and then, we describe one of the inter-widgets
communication mechanisms named drag&drop.

6.1 Widgets aggregation
The integrator framework is composed of a client side part and a
server side part.

The server side part is essentially a database which saves user
credentials, user preferences, services list, user preferred services,
and services parameters.

Almost all innovative functionalities are implemented at the client
side part of the framework. This part contains a web page and four
components: authentication component, user preferences manager
component, download component, and parser component.

The authentication component performs user authentication by
invoking the server side database in order to check the user
credentials.

The user preferences manager component loads all user related
parameters from the database such as: user preferred widgets, their
place in the web page, and their configuration parameters.

The user preferences manager component transmits the user
preferred widget list to the download component. This component
invokes the service logic deployed on a third party server. The
invocation of server side application logic is performed with
AJAX technologies [19]. AJAX stands for Asynchronous

JavaScript And XML, which is a set of client side technologies
that enable the invocation of servers from a web page without
reloading the whole document; an important characteristic to
ensure loose coupling between the widgets and to enable the end-
user to load any service he wants at the run-time.

Download component receives as a response a web page. It
transmits this web page to the parser component. The parser
component parses this web page in order to modify all HTTP
requests to AJAX requests and to detect the useful generated data
inside the web page to perform inter-widgets communication (see
sub-section 6.2).

Figure 8 displays a high level overview of the different blocks of
the aggregator framework.

Figure 8: Service aggregator architecture.

6.2 Drag&drop
The inter-widget communication tools are definitely important
functionalities in our service architecture. Associated to the
widget concept, they enable the composition of applications that
were not designed to collaborate. Drag&drop is one example of
such mechanisms. Its realization starts in the development step of
the widget. The widget developer (who is not necessarily the
business application developer) should then: (1) define the widget
generated data, (2) define the widget capabilities, and (3) use the
data exchange protocol and the defined semantic language.

6.2.1 Widget generated data
The drag&drop mechanism is related to the displayed data on the
widget. The developer should thus define:

• what are the data that we can drag from a widget to
another,

• what are the type of these data (for semantic issues)

A usual method to define the generated data of a service and their
type is an XML file such as the web service description language
(WSDL [3]) and web application description language (WADL
[20]). However, as we perform the composition at the presentation
layer with the JAVASCRIPT1 language, it turns out that
manipulating XML documents is heavy. Moreover, the use of
separate description file forces the widget developers to bind the

1 JavaScript is a client side language interpretable by the web browsers

user interface components into the described parameters in the
description file.

To tackle these issues, we imbed the generated data description
directly into the graphical user interface. In the web page code,
developers tag the HTML components of the generated data as
"draggable" elements, and then, give the generated data type and
the URL where other widgets can download the data. We choose
to expose the generated data in a separated file (accessible
through the aforementioned URL) for security issues that are
detailed in the 6.2.3 section.

The parser component plays an important role in the inert-
communication mechanisms. For instance, in drag&drop
mechanism, it detects the draggable area and associates an
"onmousedownhandler" handler to the "onmousedown" event
which means the beginning of the drag&drop action. The
"onmousedownhandler" function updates the display of this area
so that the user knows he is dragging the data. It associates also an
" onmouseup handler" handler to the "onmouseup" event of each
widget. This second handler will call the "callback" function with
the necessary parameters as described in section 6.2.2.

6.2.2 Widget capabilities
To perform the drag&drop mechanism, the integration framework
needs to know the capabilities of each widget. For that purpose,
the widget developers may use a JavaScript API to define the
actions (callback functions) to perform for each received data
type. When the user invokes the drag&drop mechanism, precisely
when he drops data on a widget (onmouseup event), the
integration framework retrieves the type of the dragged data,
retrieves the appropriate action to execute for that type of data,
and invokes the callback function. The URL of the dragged data is
transmitted to the callback function. The callback function
downloads the data, interprets them and reacts accordingly (see
Figure 9).

6.2.3 Data exchange protocol
The data exchange protocol stems automatically from the two
previous subsections. To illustrate it, consider the secretary
example and let's implement a drag&drop between the phone
widget to the directory widget. We first need to expose the phone
number of the caller in the phone widget. To do this, we will just
add an HTML component tagged "draggable" with the type of the
generated data (in this case phone number) and the URL in which
the destination widget of the drag&drop can find the phone
widget generated data.

Meanwhile, the corporate directory defines its capabilities, for
instance it can receive phone number, or first and last name as
inputs and makes a search in the directory. It defines also the
callback URL which performs the search.

At the run time, when users perform drag&drop action (step 1 to 3
in Figure 9), the framework invokes the callback URL of the
directory widget (step 4). In this invocation, the framework
transmits also the URL of the dragged element.

The callback URL script is then responsible of downloading the
generated data (step 5) and react according the values of these
data (step 6). In our case, the directory widget receives a phone
number, makes search in its database, and displays the results to
the end-user.

Semantic issues are obviously raised with such a data exchange
protocol. Indeed, the directory widget and the phone widget must
use the same semantic to communicate with each other – both
widgets should define the exchanged data (phone number) in the
same way. For that purpose we rely on the microformat3 initiative.
Initially, microformats are designed to add semantic annotations
to web pages using only the usual HTML/XHTML tags. In our
framework however, we use the microformat as the schema of the
generated data of a widget on a separate file. We chose to separate
the exchanged data from the user interface XHTML file for
security issues. Indeed, as the integration framework allows the
end users to load third party services, these services can retrieve
programmatically other widgets generated data. With our
mechanism, the accessed widget may perform access control to its
data. Moreover, the accessed data might be different according to
the rights of the user.

Figure 9: Data exchange protocol.

7. DISCUSSION: INTER WIDGET
COMMUNICATION VERSUS SERVICE
CREATION
Our approach might complement service creation tools, like
business process management tools or mashup edition tools.
Business process management tools such as BPEL4WS and WS-
BPEL enable to build rich orchestration of services, allow cross-
companies process implementation, and include roles and many
operations, such as conditions, loops, and exceptions. Mashup
edition tools such as Yahoo PIPES and Microsoft POPFLY do
not integrate roles but remain rich in operations such as
conditions and loops. These tools are however more tailored for
developers, or at least to advanced users.

Our inter-widget communication approach is thus weaker than
existing service creation tools on theses points. It does not yet
define roles neither cross-companies business processes. Complex
operations such as conditions, loops, and exceptions do not exist.
This is more a composition tool than a business process
management. But this is more a choice than omission, for the sake
of simplicity.

However, both approaches might run complementarily, as
illustrated on Figure 10. Developers define and implement
enterprise business processes using languages like BPEL4WS and

WS-BPEL, they can also define composite services using Yahoo
PIPES or Microsoft POPFLY. The user interface of each process
and each composite service is then displayed as a single widget in
the user working environment. End-users can also load other
enterprise applications to their working environment. Inter-
widgets communication mechanisms enable end-users to link all
these widgets and thus implements seamlessly new capabilities, in
addition to those defined by developers.

Unlike EZWEB where the end-user creates links between widgets
himself by mapping inputs and outputs (an operation which is not
obvious for ordinary users), the proposed inter-widget
communication tools create dynamically links between compatible
widgets so that the end-user can activate them(using for example
drag&drop mechanism) or not.

Figure 10: Integration of inter-widget communication
mechanisms with service creation tools.

8. CONCLUSION
In this paper, we first exposed current challenges of the service
providers to provide end users with a single, easy to use working
environment on heterogeneous devices. We have identified three
main challenges:

• Adaptation of all enterprise applications to each
accessing device.

• Facilitate the usage of many enterprise applications
together especially on devices with limited capabilities.

• Face the heterogeneity and dynamicity of the end user
needs with fast service creation mechanisms.

To tackle these challenges, we have adopted at first the widget
paradigm in order to simplify the enterprise applications and to
offer a new way to access to enterprise business functionalities,
especially on devices with limited capabilities. This widget
paradigm is in line with the historical trend of development
methods that tend to "reuse the reusable component": not only the
software component is reused, but also the user interface. We

have then implemented a novel framework that aims to integrate
the user widgets into single and user specific environment.

We propose also inter-widgets communication mechanisms in
order to get not only a tight coupling between functions of the
same application, as they were originally, but also to couple these
functions with others of another application. For instance, we can
search an outlook contact location on googleMap in the same
environment.

Associated with the widget paradigm, this framework brings a
solution to the challenges listed above as:

• The service providers do no longer need to adapt their
applications to each accessing device

• The enterprise applications are easier to use: the end
users interface embeds only the needed functionalities
of the enterprise applications.

• The end user can create their own usage based on
existing widgets using inter-widget communication
mechanisms such as drag&drop. This functionality
tackles the third and fourth issue issue which is the
heterogeneity and dynamicity of the users' needs.

Our future work consists at first in enriching the integration
framework with more inter-widget communication mechanisms.
Then, we will work on the granularity of the widgets to help the
developers to make a decision whether a function is sufficiently
atomic to make a widget or the developer should split it into two
or more functions. This task is an important criterion for the
service composition issues and the intuitiveness of the working
environment usage.

9. REFERENCES
[1] E. Newcomer, "Understanding Web Services: XML, Wsdl,

Soap, and UDDI" Addison, Wesley, Boston, Mass., May
2002.

[2] Soriano, and all, "Enhancing User-Service Interaction
through a Global User-Centric Approach to SOA,"
Networking and Services, 2008. ICNS 2008. Fourth
International Conference on , vol., no., pp.194-203, 16-21
March 2008

[3] E. Newcomer, "Understanding Web Services: XML, Wsdl,
Soap, and UDDI" Addison, Wesley, Boston, Mass., May
2002.

[4] A. Alves, A. Arkin, S. Askary, C. Barreto, B. Bloch, F.
Curbera, M. Ford, Y. Goland, A. Guizar, N. Kartha, C. K.
Liu, R. Khalaf, D. Konig, M; Marin, V. Mehta, S. Thatte,
D.V.D. Rijin, P. Yendluri, and A. Yiu, editors. Web Services
Business Process Execution Language Version
2.0.committee specification. OASIS, January 2007.

[5] Roy Thomas Fielding, "Architectural Styles and the Design
of Network-based Software Architectures", thesis
dissertation, 2000

[6] N. Laga, E. Bertin, N. Crespi, "A unique interface for web
and telecom services: From feeds aggregator to services
aggregator," To appear in ICIN 2008, Bordeaux, France, 20-
23 October 2008.

[7] Yahoo PIPE, http://pipes.yahoo.com/pipes/

[8] J. Soriano, "Fostering Innovation in a Mashup-oriented
Enterprise 2.0 Collaboration Environment." UK, sai:
sisn.2007.07.024, Vol 1, No 1, Jul 2007, pp 62-68.

[9] J. Caetano et al, "Introducing the user to the service creation
world: concepts for user centric service creation,
personalization and notification" In: Proceedings of the User
centricity-state of the art Workshop, 16th IST Mobile and
Wireless Communications Summit, 1-5July 2007, Budapest,
Hungary

[10] Microsoft popfly, http://www.popfly.com

[11] W3C, http://www.w3.org/TR/2007/WD-widgets-reqs-
20070209/

[12] Brad J Cox, Object oriented programming: an evolutionary
approach, Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, 1986

[13] S. A. White. Business Process Modeling Notation (BPMN)
Version 1.0. Business Process Management Initiative,
BPMI.org, May 2004.

[14] Tony A, and all, Business Process Execution Language for
Web Services

[15] D. Wu, E. Sirin, J. Hendler, D. Nau, and B. Parsia,
"Automatic Web Services Composition Using SHOP2", 13th
International Conference on Automated Planning &
Scheduling, Workshop on Planning for Web services,
Trento, Italy, June 2003.

[16] R Zhang, I. B. Arpinar, B. Aleman-Meza, "Automatic
Composition of Semantic Web Services", WWW03,
Budapest, Hungary: 2003.

[17] J. Gekas, M. Fasli, "Automatic web service composition
based on graph network analysis metrics", OTM Conferences
(2) 2005: pp 1571-1587.

[18] N. Laga, E. Bertin, and N. Crespi, "User-centric services and
service composition, a survey", to appear in SEW 2008,
Kassandra, Greece, October 2008.

[19] Justin Gehtland, Dion Almaer, and Ben Galbraith.
"Pragmatic Ajax: A Web 2.0 Primer," Pragmatic Bookshelf,
2006

[20] Marc J. Hadley. "Web Application Description Language
(WADL)," Technical Report TR-2006-153, Sun
Microsystems Laboratories, 2006.

