
A Triplex-layer Based P2P Service Exposure Model in
Convergent Environment

Cuiting HUANG*, Xiao HAN*, Xiaodi HUANG**, Noël CRESPI*
*Institut Mines-Telecom – Telecom Sudparis
9, Rue Charles Fourier, 91000, Evry, France

** Charles Sturt University, Albury, NSW 2640, Australia

*{cuiting.huang, han.xiao, noel.crespi}@it-sudparis.eu, **xhuang@csu.edu.au

ABSTRACT

Service exposure, including service publication and discovery,

plays an important role in next generation service delivery.

Various solutions to service exposure have been proposed in the

last decade, by both academia and industry. Most of these

solutions are targeting specific developer groups, and generally

use centralized solutions, such as UDDI. However, the reality is

that the number of services is increasing drastically with their

diverse users. How to facilitate service discovery and publication

processes, improve service discovery, selection efficiency and

quality, and enhance system scalability and interoperability are

some challenges faced by the centralized solutions. In this paper,

we propose an alternative model of scalable P2P-based service

publication and discovery. This model enables converged service

information sharing among disparate service platforms and

entities, while respecting their intrinsic heterogeneities. Moreover,

the efficiency and quality of service discovery are improved by

introducing a triplex-layer based architecture for the organizations

of nodes and resources, as well as for the message routing. The

performance of the model and architecture is evident by

theoretical analysis and simulation results.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distributed

Systems – distributed applications, distributed databases

H.3.3 [Information Storage and Retrieval]: Information Search

and Retrieval – retrieval models, search process, selection process

General Terms

Management, Performance, Design

Keywords

Service Exposure, Service Publication, Service Discovery, P2P,

Convergence, Service Composition

1. INTRODUCTION
Service composition, which enables the creation of innovative

services by integrating existing network resources and services,

has received considerable attention in these years. This is partly

because of its promising advantages such as cost-effective,

reducing time-to-market, and improving user experience. As a

prerequisite for service composition, service exposure, including

service publication and discovery, plays a critically important role

in this novel service ecosystem. That is because enabling a service

to be reusable implies that this service needs to be known and

accessible by users and/or developers. Various solutions to

service exposure have been proposed in the last decade. However,

these solutions suffer from several limitations, such as

convergence, user-centricity, scalability, controllability, and

cross-platform service information sharing. Taking these

challenges into account, in this article, we propose a distributed

and collaborative service exposure model that enables users to

reuse existing services and resources for creating new services

regardless of their underlying heterogeneities and complexities.

This new method could lead to a new paradigm of service

composition by providing the agile service discovery and

publication support.

The rest of this paper is organized as follows. Section 2 introduces

some backgrounds on service exposure, and the relevant

mechanisms of service publication and discovery. Section 3

provides an overview of the distributed service exposure model. A

mechanism of two-phases based service exposure, a triplex-layer

based P2P overlay for service information sharing, the generation

processes of different layers, and the process of service discovery

relying on this triplex-layer based architecture, are described in

Sections 4 to 7, respectively. The performance analysis is

provided in Section 8. Finally, Section 9 concludes this paper by

discussing the advantages of the proposed solution and

mentioning our future work.

2. BACKGROUND AND RELATED WORK
Service exposure plays a significant role in the evolution of

service composition, since enabling a service to be reusable means

that this particular service needs to be known and accessible by

users and/or developers. Various service exposure solutions have

been proposed. For instances, using Simple Object Access

Protocol (SOAP) or Representational State Transfer (REST)

technologies for facilitating the invocation of services, exposing

the services through open Application Programming Interfaces

(APIs), and adopting service description and publication

mechanisms such as Web Service Description Language (WSDL),

Universal Description, Discovery and Integration (UDDI) as well

as the more recent semantic annotation mechanisms [1][2][3],

Web services has gained an immense popularity in a short time.

Meanwhile, Telecom operators, menaced by IT competitors, are

being forced to open up to both professional and non-professional

users in order to retain or expand their service market sharing.

Parlay/OSA Gateway, OMA Service Environment (OSE), Next

Generation Service Interfaces (NGSI), and OneAPI are all

specified by standardization bodies to allow access to Telecom

services/capabilities by ‘outside’ applications through unified

interfaces. Industrial solutions, such as British Telecom’s Web

21c SDK, France Telecom’s Orange Partner Program, Deutsche

Telecom’s Developer Garden, and Telefonica’s Open

Movilforum, are proposed by different operators. These operators

aim to expose their network functionalities to 3rd party service

developers and users by using Web based technologies. In

addition to these solutions, some industry alliances, such as the

Wholesale Application Community (WAC), are formed by

operators, vendors, manufacturers, and integrators in order to

provide unified interfaces to access device functionalities,

network resources, and services.

Most of the above current solutions (both in the Telecom and

Web worlds) focus on using centralized systems for storing

service information and managing service access. Such centralized

systems are easy to implement and to monitor their resources.

However, they are also the easy targets for malicious attacks,

introduce a single failure point, require a high maintenance cost,

and cannot be scalable and extensible enough to deal with a

dynamic service environment. Moreover, centralized systems limit

the interoperation among different platforms. This leads to many

isolated service islands, which inevitably incurs resource

redundancy.

Overcoming above-mentioned limitations of centralized solutions,

decentralized P2P appears to be an obvious choice to support

distributed service exposure on a large scale. Recently, some P2P-

based solutions have been proposed for enabling distributed

service discovery and publication on a large scale. For example,

one solution is to group peers into clusters according to their

similar interests. HyperCup [4] is an early example. According to

predefined concept ontology, peers with similar interests or

services are grouped as concept clusters. These concept clusters

are then organized into a hypercube topology in a way that

enables to route messages efficiently for service discovery.

METEOR-S [5] attempts to optimize registry organization by

using a classification system based on registry ontology. In this

approach, each registry maintains only the services that pertain to

certain domain(s). Acting as peers in an unstructured P2P

network, the different registries are further grouped into clusters,

according to mappings between registries and the domain

ontology. Similar solutions classify either registries or service

providers, which act as peers in an unstructured P2P network.

These peers further form a federation that represents similar

interests in a decentralized fashion [6 – 9]. As we can observe

from these examples, federation-based solutions are generally

related to unstructured P2P architectures. Unstructured P2P

networks still have some common issues such as high network

traffic, long delay, and a low hit rate, even if the available

solutions have addressed these issues to a certain extent. Other

alternative solutions based on a structured P2P system have also

been proposed. SPiDer [10] employs ontology in a Distributed

Hash Table (DHT) based P2P infrastructure. Service providers

with good (better) resources in SPiDer, selected as super nodes,

are organized into a Chord ring to take on the role of indexing and

query routing. Chord4S [11] tries to avoid the single failure point

in Chord-based P2P systems by distributing functionality-

equivalent services over several different successor nodes. As a

hybrid service discovery approach, PDUS [12] integrates the

Chord technology with the UDDI-based service publication and

discovery technology. Authors of [13] and [14] introduce

solutions based on alternative structured P2P topologies such as

Kautz Graph-based DHT or Skip Graph. These solutions

generally use peers to form a Chord ring that stores all the service

information about functionally similar services. As such, these

peers are required to have good resources, such as high

availability and high computing capacity.

From the literature, we find that most of P2P based solutions are

based on unstructured P2P architecture due to its simplicity,

robustness, and wide application in the current Internet domain.

This is also because unstructured P2P can easily support complex

requests, which is an essential requirement for service discovery.

Unstructured P2P architectures, however, face challenges such as

high network traffic, long delay, and a low hit rate. Because of

these limitations in unstructured P2P, structured P2P is naturally

selected to address certain issues. Nevertheless, one problem of

service discovery based on structured P2P architectures,

especially for the most widely used DHT-based solutions, is that

the search is deterministic. This implies users must provide at

least the exact name information about the resource they want.

Such a requirement conflicts with a real-life situation, in which

users often have only a partial or rough description of the service

they want.

Taking the limitations of both central solutions and the current

distributed solutions into account, we propose an enhanced model

of P2P based service publication and discovery to improve the

efficiency of service discovery on a large scale. This solution

reuses the concept of Semantic Overlay Network (SON), which

was originally proposed in [15] for the content sharing among

nodes. For improving the efficiency of service discovery further,

it is extended as a triplex-layer based architecture. This new

solution thus enables the service publication and discovery in a

purely distributed and collaborative environment.

3. AN UNSTRUCTURED P2P BASED

SERVICE EXPOSURE MODEL:

OVERVIEW
In our proposed solution, not only traditional Telecom and Web

services are exposed, but device-offered services, and user-

generated services are also accommodated. When different kinds

of services expose themselves to a network, they generally use

different technologies, or go through the different service

exposure gateways. In order to reuse these existing service

exposure technologies and limit the modifications to existing

service publication and discovery platforms, we propose an

unstructured P2P based architecture. The architecture uses a P2P

overlay to share diverse services information, while respecting

and maintaining the underlying heterogeneities, as shown in

Figure 1.

Figure 1. Overall architecture for the P2P based service

information sharing system

As shown in Figure 1, this system is composed of several global

servers and a number of nodes. The global servers include

Semantic Engine, Ontology Repository, and Reasoning Engine,

which are in charge of coordinating the representation forms of

the different descriptions of services during a service publication

process. The nodes are responsible for the service information

storage, service retrieval, service binding, service accessing, and

service discovery. Behind these nodes, there are various service

exposure gateways for catering to the different kinds of service

exposure requirements. Examples are Telecom Service Exposure

Gateway, Web Services Import/Export Gateway, Local Device

Exposure and Management Gateway, which we introduced in

[16], and even some service creation platforms which embed the

functionality of enabling personal service publication by end

users. These service exposure gateways can be the existing ones

that are used in traditional UDDI-based centralized solutions.

Within our proposed architecture, however, they are more flexible

than what they are used alone in a centralized environment. The

reason for this is that the gateways expose their services in a local

domain to target a certain group of users or developers using their

own technologies; moreover, they also share their service

information with users or developers outside their domain by

adding some overlay functions into their platforms.

4. LOCAL SERVICE EXPOSURE AND

GLOBAL SERVICE EXPOSURE
In our solution, we divide the process of service exposure into two

phases: Local Service Exposure and Global Service Exposure.

4.1 Local Service Exposure
After creating a service, service providers or users should make it

to be accessible by other users through either the user-centric

interface or APIs. They need to generate a service description file

of this service in order to be discovered and understood by others.

The service description file can be published in a global UDDI

registry as a centralized solution does, or published in a local

registry residing in the service platform. The latter case is related

to Local Service Exposure.

Each service platform contains an internal service repository

which contains the service description files for the services held

on it. Once a new service is introduced, a service description file

is generated. This service description file is then stored in the

internal service repository. When a user wants to discover a

service or create a personal service through this service platform,

she/he can use the local facilities, and search in the local service

repository by using the specific mechanisms of service discovery

proposed by this service platform. In this context, a great number

of local repositories are distributed over the network. They are

managed by the respective service providers or service platform

providers using the different technologies they prefer. The real

situation is that these local registries are generally independent of

each other and designed for a specific group of developers and/or

a specific network. When a developer or a user wants to create a

converged service that involves Telecom, Web, or device-based

services, she/he has to search for services from several different

service platforms, understand the different service description

patterns, as well as their underlying heterogeneities. The need to

manipulate different platforms increases the complexity of

integrating the heterogeneous services into a unified composite

service.

To improve user experience and enhance the reuse of existing

services, a mechanism on efficient collaboration among the

independent service registries is considered as necessary.

Addressing this requirement, we add a complement process to

service exposure, which enables seamless collaborations among

different service registries. That is the Global Service Exposure.

4.2 Global Service Exposure
Global Service Exposure relies mainly on the Service Exposure

Gateway for reporting the internal service information to the large

scale P2P based network. That is to say, we assume that a Service

Exposure Gateway is added to each service platform. It is used to

connect the internal services with outer world application, expose

them to external users or applications, and enable sharing its

stored service information with other service platforms through

the P2P method. An example of such a Service Exposure Gateway

is shown in Figure 2.

Figure 2. An example of Service Exposure Gateway

When a new service is introduced to a service platform, its service

description file is added into the internal repository as we

mentioned in Section 4.1. If the provider of this service platform

wants to share it with other service platforms, the service

description file is sent to the local Service Exposure Gateway.

Service Exposure Gateway then contacts the Global Semantic

Engine for translating the service description file to a globally-

comprehensible format, and for adding the necessary semantic

annotations into the description file by consulting with the global

Ontology Repository. After that, this unified and semantic

enriched service description file is added into the Exposure

Repository. Meanwhile, some access control rules and protocol

adaptation rules associated with this particular service are also

added into the relevant components by the service provider.

For a service publication process, we further introduce two kinds

of publications: abstract service publication and concrete service

publication. An abstract service is a virtual service that only

contains the generalization information about one kind of services

(e.g., SMS service). One abstract service can be mapped into

several concrete services (e.g., Orange SMS service, Telefonica

SMS service and BT SMS service). The abstract service

publication is handled by the members of the system

administration group. They send a service description file that

contains only the generalization information of one type of

services to Semantic Engine. Semantic Engine then contacts

Ontology Repository for supplementing the necessary semantic

annotations. The transformed service description file is then sent

to a global Semantic Abstract Service Repository. The concrete

service information is published in the local Service Exposure

Gateway, as we introduced in the generation process of service

description file in the local Service Exposure Gateway.

In order to make concrete services discoverable by other service

platforms, each gateway needs to map its concrete services into

the corresponding abstract services, create a Local Abstract

Service Table, and store this table in the Service Exposure

Module. After this, the number of gateways are then

interconnected each other through an underlying P2P network in

which they act as peers. This process is considered as Global

Service Exposure.

5. A TRIPLEX-LAYER BASED SOLUTION

FOR SERVICE INFORMATION SHARING

IN P2P ENVIRONMENT
As introduced before, diverse service description files are

published in the respective registries residing in the Service

Exposure Gateways. The registries share their service information

through the P2P pattern for avoiding the single failure point,

improving the service discovery efficiency, and reducing the

maintenance cost.

In order to improve the query performance and maintain a high

degree of node autonomy, a set of Semantic Overlay Networks

(SONs) are created over distributed gateways. Essentially, each

gateway is connected to a global network as a peer in a P2P

system. These gateways share the service information stored in

their Exposure Repository through Service Exposure Module. As

the description files of services are semantically enriched, the

peers that hold these semantic description files can be regarded as

semantic-enriched as well. Nodes with semantically similar

service description files are then “clustered” together.

Consequently, the system can select the SON(s) that is (are) in the

better position to respond when a user wants to discover a service.

The query is then sent to one of the nodes in the selected SON(s),

being further forwarded to the other members of the SON(s). In

this way, the query performance is greatly improved, since queries

are only routed in the appropriate, selected SONs. This would

increase the chance of matching the files quickly with a limited

cost.

To implement the above-mentioned SON based semantic service

discovery, we propose a triplex-overlay based P2P system as

shown in Figure 3.

Figure 3. Triplex overlay for P2P based service discovery

In Figure 3, the diverse network repositories, service discovery

and publication platforms, service creation environments, and

device gateways join the P2P based distributed network. Acting as

nodes in an Unstructured P2P Network layer, they interact with

each other using blind search solutions (e.g., Flooding based

solutions or RandomWalk based solution).

In the above unstructured P2P network, the nodes providing

similar resources are clustered together. We call this kind of

clusters as SON (Semantic Overlay Network). The benefits of this

strategy are as follows. On the one hand, a request is sent to the

nodes with a high probability of offering target services, so that

the request can be answered quickly. On the other hand, the nodes

with a low probability will not receive the request. A waste of

resources can therefore be avoided in transferring the request, so

that other relevant requests are allowed to be processed in a quick

way.

For further improving the efficiency of service discovery, an

additional Dependency Overlay is introduced upon the SON layer.

This is because different kinds of services may be able to

interoperate with each other. For example, the output of one

service can be the input of another. Such cooperation among

services allows service providers/developers to provide some

more meaningful services to end-users. Thus we can infer that the

services stored in the same gateway have a very high probability

of having certain interdependency amongst each other. The

service dependency relationship can also be specified according to

some social network information, such as service usage

frequencies, users’ service usage habits, or some network statistic

data. Consequently, defining the dependency among the abstract

services, then providing recommendations for the message routing

during a service discovery process, will improve the success rate.

This definition of service dependency is not limited to one kind of

services, but rather includes the dependency among the different

kinds of service, such as the devices offered services, Telecom

services, and Web services, e.g., the dependency of “camera ->

MMS”. As the publication of abstract services is performed by the

members of the system administration group, the dependency

relationship is created simultaneously, once a new abstract device

or abstract service is published.

6. SON LAYER GENERATION
We assume that a set of bootstrap nodes can guarantee the

minimal running requirements for the proposed system. These

bootstrap nodes form a small scale SON overlay before running

the system. That is to say, when an abstract service is introduced

to a network by a system administration member, this new abstract

service is assigned to a bootstrap node randomly.

Each gateway contains a table called Local Abstract Service

Table. This table is created by mapping concrete service

description files stored in a local exposure repository, into abstract

service profiles stored in the global Abstract Service Profile

Repository. In this table, each abstract service entry contains the

basic information about the relevant concrete services (e.g.

concrete service’s name), as well as the links (e.g., a URL) to the

corresponding concrete service description files. Based on Local

Abstract Service Table, a local gateway can join the relevant

SONs automatically. Since several abstract services are contained

in one registry, one gateway can join several SONs according to

the different abstract services.

To clarify the SON generation process and the update process, we

consider two cases in the following: (1) a new gateway is added

into the network with a list of abstract services to be exposed; and

(2) an existing gateway updates its list of abstract services, which

means a new type of service has been introduced to its local

network.

When a gateway is introduced to the system, it first joins in the

global network through some bootstrap nodes as the ordinary P2P

networks do. That is, once receiving the Join message from a

gateway, the selected bootstrap node broadcasts the Join message

to the global network. According to certain neighborhood

selection rules (e.g., the solutions introduced in [17] and [18]),

some nodes are selected as the logic neighbors for this newly

introduced registry and added into the Ordinary Neighbor Node

Table (ONNT) as shown in Figure 4. In this example, we assume

that each node contains information about 5 neighbor nodes (e.g.

IP and UDP port). This process provides another possible way to

search a service: if both the SON Overlay based search and the

Service Dependency Overlay based search have not found out the

relevant services, the system can use the basic Random Walk or

Flooding solution according to the information of neighbor nodes

stored in the Ordinary Neighbor Node Table.

Figure 4. An example of Ordinary Neighbor Node Table

We assume that each gateway contains another table called SON

Linkage Table (SLT) as shown in the Figure 5, which is used to

form the SONs. When a gateway joins the network for the first

time, this SLT is empty as shown on the left side of Figure 5. This

means the gateway has not joined any SON yet. After joining the

unstructured P2P network, this new gateway extracts the names of

the abstract devices from its Local Abstract Service Table, and

encapsulates them as an Update message. This Update message is

injected to the network by the blind search method according to

the neighbor nodes’ information stored in the Ordinary Neighbor

Node Table. In particular, we use the Random Walk as the basic

message routing approach, in which only one neighbor node is

selected from the Ordinary Neighbor Node Table for routing the

Update message. The names of the extracted abstract services in

the Update message are put into a list, with each entry assigned a

time-to-live (TTL) called Time-to-Live for Node (TTL_node).

TTL_node is a pre-assigned number n, which indicates how many

neighbors in the relevant SON have to search for. A global time-

to-live called Time-to-Live for Hop (TTL-hop) is also attached to

the Update message for setting the maximum number of the logic

hops for the message.

Figure 5. An example of SON Linkage Table in a device

gateway

The Update message is first forwarded to one of this gateway’s

neighbors, denoted by Ni, and the node that receives this message

checks its own SLT. If this table has no entries containing the

same name of the abstract service contained in the Update

message, this request is directly forwarded to another neighbor of

Ni. As such, only the TTL-hop decreases by 1. Otherwise, if one

or several entries in the table contain the same name(s) as the

abstract services listed in the Update message, both the TTL-

node(s) for the relevant abstract service(s) and the TTL-hop

decrease by 1. The node information (e.g. IP and Port number) is

sent back to the original node. The original node then stores the

node information in relevant entries of SLT as a neighbor, as

shown in the middle table of Figure 5. After this, the Update

message is forwarded to one ordinary neighbor of Ni node. The

above process repeats until either all the TTL-nodes or the

TTL_hop have reached 0. If all the entries in the SLT have been

populated with information of SON neighbors, the join process

for SON is regarded as a successful one; otherwise, the original

node selects one of its other neighbors to send the same Update

message. If all the neighbors of this original node have been

selected for forwarding this Update request, and some entries in

the SLT are still not completely filled, then the original node

sends the Update message to its bootstrap. This connected

bootstrap searches in the bootstrap nodes for finding out which

bootstrap node(s) is responsible for the corresponding abstract

service(s), and sends information of the relevant bootstrap node(s)

back to the original node. The original node adds the information

into the relevant entries in the SLT and marks it as bootstrap

node’s information. This process guarantees that if such an

abstract service has been predefined in the network, even the

relevant SON has not been created yet; the original node can

create a new SON, or join in an existing SON by connecting itself

to the bootstrap node directly. Once another neighbor in the same

SON is found, the information of the relevant bootstrap node is

replaced by the newly found neighbor. This process is repeated on

a regular basis to make sure that all the information stored in the

SLT is up-to-date. In other words, once either the information of a

neighbor node becomes obsolete, or a new abstract service is

added into a gateway, a new Update message with the names of

relevant abstract devices is sent out again to the network and a

new join SON process begins.

7. SERVICE DISCOVERY BASED ON

TRIPLEX-LAYER BASED P2P SYSTEM
Before introducing service discovery based on triplex overlay, we

classify the neighbor nodes of a node into two kinds: the ordinary

neighbor nodes and the SON neighbor nodes.

When a user wants to discover a service for the purpose of

executing it directly or integrating it into her/his own created

composite service, she/he can issue a service discovery request

through a user-friendly service discovery front-end or a user-

centric service creation environment. We assume that these

service discovery and creation frameworks have connected

themselves to the global network in advance.

Once a user issues a service discovery request either by entering

keywords or natural language based text, or even by selecting the

abstract service building blocks, the relevant frameworks

formalize a request that contains the target service information

(e.g., a get(target_service, TTL, auxiliary_info) message). By

contacting with the global Semantic Engine, the global Ontology

Repository, as well as the global Abstract Device Repository, this

newly created request is interpreted into a system recognizable

format. The request is injected into the unstructured P2P network

through the node that initiates this request. To facilitate the

request interpretation process, the relevant service discovery or

Figure 6. Flowchart for service discovery process in triplex-layer based service exposure model

service creation environment can install a local Semantic Engine

and Ontology Repository, and store the abstract service

description files in its local repository. In this case the request can

be formalized automatically inside its local framework before

being injected into the P2P network.

The get() request is injected into the network through the blind

search method. That is to say, the node, which initiates this

request, forward the request to either all its ordinary neighbor

nodes or one of its ordinary neighbor nodes, which mainly depend

on which blind search strategy (e.g., Flooding or Random Walk)

the system adopts. To improve the service discovery efficiency,

the system first needs to discover the corresponding SON for the

message routing. As shown in Figure 6, the first nodes that

receive the service search request will verify if the target abstract

service is contained, by comparing the entries’ name stored in

their Local Abstract Service Tables with the target service’s name

indicated in the incoming request. If matched, the entry with the

same abstract name in the SLT is selected. The received request is

then forwarded to the SON neighbor nodes whose IP and Port

information is stored in this selected entry. Meanwhile, this node

extracts the context information (e.g. user identifier, location,

preference, etc.) encapsulated in the received message, and

forwards this context information, together with the name of the

target abstract service, to its own local Service Exposure Module.

Service Exposure Module contacts with Exposure Repository for

checking if any services stored in its local gateway can be used by

the user, who issues this service discovery request. It then makes a

primary filtering for the discovered result according to the

auxiliary context information. For example, if a service is set to be

public (e.g. a map service), a user can discover this service once

the request reaches this gateway. If a service is set to be private,

even it matches the functional requirement for the target device,

this gateway, however, still needs to verify if the user identifier in

the request is included in the identifiers that have been granted by

the owner of this gateway for the use of this service (e.g. the user

who has subscribed to this service platform). If the original user

identifier is matched, the relevant service description file is sent

back to the service discovery framework. Otherwise, no service

description file is sent back, and this node is marked as no

resource matched to user’s request.

When the SON neighbor nodes of this node receive the forwarded

request, as these nodes are already in the same SON, and this

SON is the target SON in which all the nodes contain the service

associated with the target abstract service, they thus invoke local

Service Exposure Module for local service discovery directly

without the need to verify if any SON they belong to match the

target abstract service. At the same time, they forward the request

to their SON neighbor nodes, which are extracted from the entry

in their SLT. This process continues until the TTL for this request

is reduced to 0, which means the service search is terminated.

If the first few nodes that receive the service search request do not

belong to the SON for the target service (e.g. Camera), this means

that no entry name in Local Abstract Service Table is the same as

the abstract name of the target service. In this case, this node

needs to discover which neighbor nodes are the most possible

ones that in turn find out the relevant SON to which the target

service belongs. It is assumed that each gateway contains a copy

of such an abstract service dependency relationship file. In order

to select the most possible neighbor to match the target SON, the

node that does not belong to the target SON extracts all names of

the abstract services from its Local Abstract Service Table and the

name of the target abstract service from the incoming message.

Relying on the dependency file of abstract services, the node then

analyzes services dependency relationships among these extracted

abstract services, and selects the abstract service whose

dependency intensity with the target abstract service is the highest

one.

According to the name of the selected abstract service, the node

selects the SON neighbor nodes from an entry in SLT whose

entry’s name is the same as the name of the selected abstract

service. The service search request is then forwarded to these

selected SON neighbor nodes. When these SON neighbor nodes

receive the service search message, they first check their Local

Abstract Service Table to see whether they contain the target

abstract service in their local gateways or not. If a node finds that

it contains the target abstract service, it searches its SLT, and

selects the SON neighbor nodes from the entry whose name is

identical to the target abstract service. The node then forwards the

service search request to the corresponding SON. Finally the

service search is limited to the SON that is responsible for the

target abstract service. If a node cannot find the target service, it

forwards the request to their neighbor nodes that are in the same

SON as the first contacted node selected.

If the first contacted node(s) does not belong to the target SON,

and it also has no dependency relationship with the target abstract

service, the request in the first contacted node(s) is forwarded to

its ordinary neighbor node(s) following the blind search method

adopted by the underlying unstructured P2P network. When its

ordinary neighbor node(s) receives this service discovery request,

it repeats the service discovery process we introduced above. This

process repeats until either the target SON or a dependent SON

has been found out, or the TTL is time out.

8. PERFORMANCE ANALYSIS
In order to evaluate the performance of the proposed service

exposure and information sharing model, the theoretical analysis

on the success rate and the network traffic impact have been

performed. We also compare it with the traditional blind search

strategy for the unstructured P2P solutions (which are based on

Flooding or Random Walk), as well as the pure SON based

solution.

In the following, we use the average messages required for

discovering a service as a metric for evaluating our proposed

system. This metric can be regarded as an indicator of the invoked

network traffic for a service discovery request. In ideal cases, in

which only one message exchanges between two neighbor nodes,

then the value of this metric is equal to the average number of

nodes that are involved in the search process.

To simplify the analysis, we denote the success rate as S(T), and

the average message as E(S). We assume that services are

distributed in the network evenly and their probabilities being

discovered p are the same if the blind search solution is used. The

SONs are also assumed to be evenly distributed in the network,

and the difference in their sizes is ignored. When a request arrives

at a node, the probability that the connected node belongs to the

target SON is R. If this node does not belong to the target SON,

Dependency Layer makes a recommendation that has the higher

probability of finding out the target SON in the next hop. This

increased probability is denoted as K. In general, we have K>R. If

the request arrives at the target SON, its probability of discovering

the target service (q) is much higher than that of searching in the

underlying unstructured layer by using the blind search strategy

(p). That is because, when a request arrives at a SON, the search

space is reduced. But the total number of the user accessible

services within this SON remains unchanged, thus the local

discovery probability is much higher. Moreover, it can guarantee

that all the target resources are clustered into this SON, thereby

the nodes outside this SON can be out of consideration.

In the following, the relationships between the success rates and

the numbers of the visited nodes for the three solutions of Triplex,

SON, and Blind, and their comparisons are illustrated by

simulation results with varied values of p, R, q, and K.

Figure 7. Comparison for the success rates of three types of

P2P systems (p=0.1%, R=10%, q=10%, K=50%)

Figure 8. Comparison for the success rates of three types of

P2P systems (p=0.1%, R=5%, q=20%, K=50%)

Figure 9. Comparison for the success rates of three types of

P2P systems (p=1%, R=10%, q=10%, K=50%)

Figure 10. Comparison for the success rates of three types of

P2P systems (p=1%, R=5%, q=20%, K=50%)

The simulation (Figure 7 to Figure 10) results show that our

proposed solution can greatly improve the success rate with the

limited number of messages transferred among the nodes. This

improvement is more evident when the popularity of services is

low in a network.

Figure 11. Comparison of the success rates (S) by modifying

the dependency probability (K)

Figure 11 illustrates the degree of the influence of the dependency

probability K on the success rates. The red line with rectangles is

the success rate of ordinary SON based system without

dependency recommendation, while the blue one is for the SON

based system with dependency recommendation.

From the results shown in Figure 11, we can observe that as the

dependency probability increases, the success rate increases

accordingly. However, after K is more than 0.5, this increase rate

becomes very slow. Moreover, only when K is bigger than a

certain level (in our case, when R=10%, K needs to be bigger than

15.3%), our solution can improve the service discovery

performance of the system; otherwise it may weaken the

performance.

Figure 12. Average messages needed for achieving the success

rates of 70%, 80%, and 90%

Figure 12 illustrates the average number of messages needed for

finding out the first target service. It shows that our proposed

solution can reduce the average messages, with a high success

rate.

The above simulation results have demonstrated that the use of

SON layer and dependency layer for routing the service discovery

request are able to greatly increase the success rate and to reduce

network traffic at the same time. From the simulation results, we

also note that the classification of SONs should be appropriate. If

too many types of SONs are in a network, on the one hand, the

probability of locating the target SON will be reduced. On the

other hand, once a request reaches the target SON, the probability

of discovering a service within this SON will be higher than that

in the network with few types of SONs. The reason for this is that

more SONs in the network, the search space within each SON will

be smaller. Thus we need to find a solution that balances these

two parameters. The use of the dependency analysis for the SON

selection process is one of the possible solutions. It can keep the

high service discovery probability within a SON, meanwhile it

makes efficient recommendations for the SONs selection. This

aims at resolving the problems incurred by the large number of

SONs. How to define such dependency rules is challenging in our

proposed triplex layer based model. It is also one of our future

research topics.

9. CONCLUSION
This paper has presented a model of P2P based distributed service

exposure. In this model, the service exposure process is mainly

divided into two main phases: local service exposure, which

exposes local services to a gateway for local monitoring, and

global service exposure, which enable the services to be

discovered by external parties. Considering the factors of a great

number of disperse gateways in a network, the single failure point

for the centralized UDDI likes solution, and the possible

bottleneck for the certain level number of services, we use a P2P

based distributed method to enable the interoperation among the

gateways. For further improving the efficiency and accuracy of

service discovery, a triplex overlay based solution has been

proposed. This triplex overlay architecture includes an

unstructured P2P layer, a SON based overlay, and a service

dependency overlay. The performance analysis and simulation

results have shown that our proposed triplex overlay based

solution can greatly improve the system performance by

increasing the success rate of service discovery and reducing the

number of forwarded messages needed for achieving certain level

of success rate.

The proposed model improves a service exposure system in that it

respects the diversity, autonomy, and interoperability of service

exposure platforms. Each platform of service exposure can use its

preferred techniques for exposing its services to users. By

introducing a P2P based service information sharing system, the

model enables the service information to be shared among

different operators, service providers, and users regardless of their

underlying heterogeneities. Telecom or Web service exposure

platforms, Telecom or Web service discovery and publication

platforms, or even some service creation environment can join this

system as a peer, for example. And a user can discover a service

provided by her/his service discovery platform provider through

its specific technologies, or by other service discovery platform

through the P2P based service information sharing system. The

model also makes it possible to apply enhanced controls for

service exposure in accordance with the requirements of different

operators or service providers via gateways. The triplex-layer

based P2P architecture can enhance the system scalability, and

improve the service discovery and publication efficiency in the

unstructured P2P based system. These improvements for the

unstructured P2P based system also avoid the irrelevant nodes,

which are responsible for other services, to be disturbed during a

service discovery process. These nodes can thus reserve their

resource for other relevant tasks.

Further work will focus on defining a widely-usable service

description data model, and developing the more efficient

strategies for service selection. The use of semantic, ontology, and

social network information for providing service

recommendations is also left for further study.

10. REFERENCES
[1] Semantic Annotations for WSDL and XML Schema,

DOI=http://www.w3.org/TR/sawsdl/

[2] Web Service Semantics - WSDL-S,

DOI=http://w3.org/2005/04/FSWS/Submissions/17/WSDL-

S.htm

[3] OWL-S: Semantic Markup for Web Services,

DOI=http://www.w3.org/Submission/OWL-S/

[4] Schlosser, M., Sintek, M., Decker, S., and Nejdl, W. 2002.

HyperCuP—Hypercubes, Ontologies and Efficient Search on

P2P Networks, In Proceedings of 1st International

Conference on Agents and Peer-to-Peer Computing (AP2PC

’02), pp. 112-124, Bologna, Italy, July 2002

[5] Verma, K., Sivashanmugam, K., Sheth, A., Patil, A.,

 Oundhakar, S., and Miller, J. 2005. METEOT-S WSDI: A

Scalable P2P Infrastructure of Registries for Semantic

Publication and Discovery of Web Services, Information

Technology And Management, Vol. 6, pp. 17-39, Jan. 2005

[6] Banaei, K.F., Chen, C.C., and Shahabi, C. 2004. Wspds:

Web services peer-to-peer discovery service. In Proceedings

of 5th International Conference on Internet Computing (IC

’04), pp. 733-743, Las Vegas, USA, Jun. 21-24, 2004.

[7] Modica, G., Tomarchio, O., and Vita, L. 2011. Resource and

Service Discovery in SOAs: A P2P Oriented Semantic

Approach, International Journal of Applied Mathematics

and Computer Science, Vol. 21, pp. 285-294, Jun. 2011

[8] Li, R., Zhang, Z., Wang, Z., Song, W., and Lu, Z. 2005.

WebPeer: A P2P-based System for Publishing and

Discovering Web Services, In Proceedings of IEEE

International Conference on Services Computing (SCC ’05),

pp. 149-156, Orlando, USA, Jul. 11-15, 2005

[9] Papazoglou, M.P., Kramer, B.J., and Yang, J. 2003

Leveraging Web Services and Peer-to-Peer Network, in

Proceedings of 15th International Conference on Advanced

Information Systems Engineering (CAiSE ’03), pp. 485-501,

Klagenfurt/Velden, Austria, Jun. 16-20, 2003

[10] Sahin, O.D., Gerede, C.E., Agrawal, D., Abbadi, A.E.,

Ibarra, O., and Su, J. 2005. SPiDeR: P2P-based Web Service

Discovery”, in Proceedings of 3rd International Conference

on Service Oriented Computing (ICSOC ’05), pp. 157-169,

Amsterdam, Holland, Dec. 12-15, 2005

[11] He, Q., Yan, J., Yang, Y., and Kowalczyk, R. 2008.

Chord4S: A P2P-based Decentralised Service Discovery

Approach, In Proceedings of IEEE International Conference

on Service Computing (SCC ’08), pp. 221-228, Honolulu,

USA, July 7-11, 2008

[12] Ni, Y., Si, H., Li, W., and Chen, Z. 2010. PDUS: P2P-base

Distributed UDDI Service Discovery Approach, In

Proceedings of International Conference on Service Sciences

(ICSS ’10), pp. 3-8, Hangzhou China, May 13-14. 2010

[13] Zhang, Y., Liu, L., Li, D., Liu, F., and Lu, X. 2009. DHT-

based Range Query Processing for Web Service Discovery”,

in Proceedings of IEEE International Conference on Web

Services (ICWS ’09), pp. 477-484, Los Angeles, USA, July

2009

[14] Zhou, G., Yu, J., Chen, R., and Zhang, H. 2007. Scalable

Web Service Discovery on P2P Overlay Network, in

Proceedings of IEEE International Conference on Services

Computing (SCC ’07), pp. 122-129, Salt Lake, USA, July

2007

[15] Crespo, A., and Garcia-Molina, H. 2005. Semantic Overlay

Networks for P2P Systems, Agents And Peer-to-Peer

Computing, Vol. 3601/2005, pp. 1-13, 2005

[16] Huang, C., Lee, G.M., and Crespi, N. 2012. A Semantic

Enhanced Service Exposure Model for Converged Service

Environment, IEEE Communications Magazine, pp. 32-40,

vol. 50, Mar., 2012

[17] Beverly, R., and Afergan, M. 2007. Machine Learning for

Efficient Neighbor Selection in Unstructured P2P Networks,

in Proceedings of Second Workshop on Tackling Computer

Systems Problems with Machine Learning Techniques

(SysML’07), Cambridge, MA, Apr. 10, 2007

[18] Liu, H., Abraham, A., and Badr, Y. 2010. Neighbor

Selection in Peer-to-Peer Overlay Network: A Swarm

Intelligence Approach, in Pervasive Computing, Computer

Communications and Networks, pp 405-431, 2010

