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Abstract—The widespread application of medical information
systems has promoted the growth of personal electronic medical
records (EMRs), which are typically produced in different med-
ical institutions and stored in data centers. Consequently, data
owners no longer retain control over their medical data, nor can
they establish access control rules for their EMRSs. Therefore, this
study designs a patient-centered EMR access control system that
integrates decentralized smart contracts and role-based access
control (RBAC) to provide fine-grained data access control.
In this system, we integrate a role-based access control model
to achieve user-permission definition and adopt a personalized
data access policy definition mechanism to achieve patient-
centered data access control. The proposed system allows data
owners to define a series of data access policies through smart
contracts, achieving decentralized management of data access
control permissions. In addition, we analyze the security features
of this scheme and design a series of comparative experiments to
evaluate the performance. The experimental results show that
this system can efficiently achieve access control of personal
electronic medical records and has higher reliability compared
to traditional cloud-based EMR sharing systems.

Index Terms—Access Control, RBAC, Electronic Medical
Record (EMR), Smart Contract.

I. INTRODUCTION

LECTRONIC medical records (EMRs) are digital med-

ical diagnostic records that contain detailed records of
a patient’s personal information, medical history, diagnosis,
treatment plan, and medical events. EMRs have significant
advantages in improving medical service efficiency, promoting
medical information exchange, and optimizing the allocation
of medical resources [1]. Furthermore, the sharing of EMRs
can significantly encourage the exchange of healthcare re-
search and treatment information, including internal sharing
within medical institutions and cross-institutional sharing [2]-
[4]. Medical cloud has become the main storage solution for
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EMRs due to its high scalability and the convenience of data
sharing. However, this centralized storage model inherently
transfers the custody of sensitive health data from patients to
third-party cloud providers, effectively depriving patients of
direct control over their own medical information. Once the
medical cloud is compromised or the access permissions of
EMRs are out of control, it may lead to the leakage of patient
privacy and the loss of critical information [5], [6]. More-
over, without appropriate data access control mechanisms, the
above-mentioned EMRs sharing may bring unauthorized ac-
cess risks [7]. These risks fundamentally stem from the current
data governance paradigm. Once medical records reside in a
centralized cloud repository, patients lack the ability to define
access rules for their own EMRs autonomously. Therefore, it
is necessary to develop robust access control mechanisms that
can effectively mitigate these risks while accommodating the
dynamic nature of modern healthcare systems.

In contemporary research, public-key cryptography-based
mechanisms have been extensively employed for access con-
trol and secure data exchange applications [8]-[10]. Notably,
Elliptic Curve Cryptography (ECC) has been adopted to ensure
confidentiality preservation in data access control systems for
Vehicular Ad-hoc Networks (VANETS) [10]. Parallel devel-
opments have integrated asymmetric encryption with edge
computing architectures to facilitate cross-domain message
transmission [11], [12]. Nevertheless, the pairwise authen-
tication requirements inherent to conventional asymmetric
encryption limit its scalability for cloud-based data sharing
environments. To address this challenge, Proxy Re-Encryption
(PRE) has garnered substantial attention as an alternative
cryptographic primitive. PRE operates on the premise of a
semi-trusted proxy entity that mediates ciphertext transfor-
mations, thereby enabling directional data exchange while
minimizing communication costs [13], [14]. By decoupling
the data owner from direct involvement in decryption key
management, PRE offers a pragmatic solution for scalable and
secure cloud data sharing, particularly in multi-tenant environ-
ments where dynamic access control and privacy preservation
are paramount. Ciphertext-Policy Attribute-Based Encryption
(CP-ABE) [15] has emerged as a prominent cryptographic
mechanism for implementing data access control, primarily
due to its capacity to enable data owners to enforce policy-
driven access rules directly through ciphertext attributes. How-
ever, CP-ABE implementations exhibit inherent limitations,
notably their dependence on computationally intensive bilin-
ear pairing operations and substantial ciphertext expansion
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during encryption. These constraints hinder their practical
deployment in resource-constrained devices. As a comple-
mentary paradigm, lightweight attribute-based access control
methodologies have recently been proposed to achieve se-
cure data sharing in IoT-enabled systems [16]. These access
control-based approaches prioritize computational efficiency
and minimal resource utilization while maintaining stringent
security guarantees. Role-Based Access Control (RBAC) [17]
and Attribute-Based Access Control (ABAC) [18] remain pre-
dominant frameworks for managing system permissions; these
two models exhibit critical limitations in modern distributed
applications. First, the operational efficiency of RBAC-based
or ABAC-based schemes essentially depends on semi-trusted
third-party validators for authorization decisions, introducing
potential single points of failure. Second, these schemes lack
native mechanisms for immutable behavioral auditing, thereby
impeding real-time detection and forensic analysis of mali-
cious activities. Smart contracts [19] leverage the inherent
transparency and cryptographic immutability of decentralized
ledgers to autonomously execute access policies and provide
tamper-evident audit trails.

Contemporary research in Electronic Medical Record
(EMR) security primarily focuses on using cryptographic
access controls to protect patient privacy by minimizing per-
missions. While cloud-based architectures enhance operational
efficiency and offer some security through encrypted storage,
they suffer from two major shortcomings: (1) There are
insufficient mechanisms for end-to-end integrity verification of
distributed Electronic Health Records (EHRs), making shared
medical data vulnerable to undetected tampering; and (2)
There is an over-reliance on centralized trust models, which
are prone to single points of failure. Recent advancements
in decentralized cryptography tackle these issues by intro-
ducing innovative privacy-preserving access control architec-
tures. Blockchain-enhanced frameworks generally allow for
the simultaneous realization of three crucial security fea-
tures: (a) fine-grained attribute-based access governance, (b)
provably secure multi-layer encryption, and (c) automated
integrity auditing via Merkle-tree anchored cryptographic
proofs. Following this trend, we propose a novel hybrid
access control architecture that integrates the RBAC paradigm
and smart contracts to achieve dynamic policy enforcement.
To address the inherent trust vulnerabilities in conventional
healthcare data management systems, this study introduces a
smart contract-augmented access control framework that seam-
lessly integrates blockchain transparency, automated auditing,
and patient-centric policy enforcement to achieve collusion-
resistant, cryptographically verifiable data sharing. Unlike
prior approaches that rely on centralized third-party auditors
(TPAs) or opaque policy enforcement mechanisms, our scheme
leverages Ethereum-compatible smart contracts [20] to enforce
tamper-resistant access control and integrity verification, while
empowering patients with fine-grained and autonomous access
control over their own EMRs.

Specifically, we introduce the main contributions of this
study as follows.

1) We propose an EMR access control framework powered

by combining smart contracts and RBAC to enable fine-

grained data access control.

2) We design a dynamic accumulator without bilinear map-
pings to achieve efficient identity information manage-
ment.

3) We construct a novel proxy re-encryption algorithm to
ensure the confidentiality of EMRs during data sharing.

4) We analyze the security properties in terms of formal
and informal approaches and further evaluate the per-
formance (i.e., computational and communication over-
head) of this scheme by implementing a prototype.

The rest of this article is organized as follows. Section II is
the related work. Section III describes the system model and
design goals. Section IV presents the preliminary knowledge.
Section V depicts the proposed protocol in detail. Section VI
analyzes the security characteristics of this scheme. Section
VII shows the implementation and performance evaluation,
and Section VIII concludes this work.

II. RELATED WORK

A. Cryptographic Access Control

Cryptographic primitives like Ciphertext-Policy Attribute-
Based Encryption (CP-ABE) provide a theoretical foundation
for fine-grained access control. For instance, Saha et al. [23]
employed 0-1 coding and outsourced decryption to adapt CP-
ABE for IoT terminals. However, the core computational
burden of bilinear pairing operations remains a critical bottle-
neck [21], [22], hindering deployment in resource-constrained
IoMT environments. Similarly, while the fine-grained access
control and matchmaking encryption (PBAC-FG) proposed by
Sun et al. [24] enhances scalability, it introduces significant
complexity in policy management. In contrast to these cryp-
tographically heavy approaches, our scheme adopts a hybrid
architecture. We leverage a lightweight RBAC model for effi-
cient permission verification and delegate the computationally
intensive task of data re-encryption to the cloud server via
a novel PRE algorithm, thereby offloading the burden from
end-user devices.

B. Smart Contract Integration

Blockchain and smart contracts introduce decentralization
and transparency to access control. Guan et al. [25] and Peng et
al. [26] utilized smart contracts to automate workflows. A key
limitation of these architectures, however, is their continued
reliance on semi-trusted intermediary servers for critical data
processing or authorization decisions [26], which reintroduces
central points of failure. Potluri et al. [27] employed smart
contracts for dynamic policy enforcement, yet their cryp-
tographic core still depends on computationally expensive
bilinear pairings. Our work addresses this by designing a suite
of smart contracts IMC, RAC, EACC) that manage the entire
authorization chain—identity verification, role assignment, and
permission checking—in a fully decentralized manner, elim-
inating the need for semi-trusted third parties. Furthermore,
our cryptographic constructions avoid bilinear pairings.
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C. RBAC Model on Blockchain and Policy Privacy

Integrating the mature RBAC model with blockchain is
another promising direction, as explored by Bian et al. [32]. A
significant, often overlooked vulnerability in such transparent
systems is the privacy leakage of access control policies
themselves. Storing role-permission mappings directly on-
chain can expose sensitive information about medical insti-
tutional structures. To mitigate this, our scheme decouples
policy storage from the blockchain. Detailed access policies
are stored off-chain in IPFS, with only their integrity-assuring
hash fingerprints anchored on the blockchain. This approach
preserves the immutability and verifiability of policies without
disclosing their sensitive content.

D. Assurance of Data Confidentiality and Integrity

Ensuring both the confidentiality and integrity of EMRs
during sharing is paramount. While several schemes [26], [29],
[31] employ Proxy Re-Encryption (PRE) to safeguard confi-
dentiality, they often lack a robust, independently verifiable
mechanism for end-to-end data integrity. The cloud server,
acting as the PRE proxy, could potentially tamper with stored
ciphertexts without detection. A distinct contribution of our
work is the tight integration of confidentiality with provable
integrity. We anchor the hash of the encrypted EMRs directly
onto the blockchain during the data encryption phase. This
provides an immutable and independently verifiable proof,
allowing any data requester to detect tampering without relying
on the cloud server or the access control logic.

In summary, our proposed hybrid RBAC-Smart Contract
scheme is designed to address these limitations collectively.
We provide a balanced and practical solution for secure and ef-
ficient EMR access control in IoMT through the collaborative
use of bilinear unpaired dynamic accumulators for efficient
identity management, a fully decentralized smart contract
authorization suite, an off-chain policy storage mechanism
for privacy, and a blockchain-anchored integrity verification
mechanism.

ITII. SYSTEM MODEL
A. System Architecture

As shown in Fig. 1, the system architecture comprises three
critical components: EMR providers, a blockchain-enabled ac-
cess control module, and EMR requesters. Generally, patient-
oriented healthcare devices serve as primary data sources,
generating and transmitting personal medical records. These
key components are introduced as follows.

1) Patients: As the exclusive owners of Electronic Medical
Records (EMRs), patients have control over their health
data. They can exercise fine-grained permissions through
smart contracts to manage the access and sharing of their
data.

2) Healthcare Devices: The healthcare devices utilized are
typically wearable and portable smart devices designed
to monitor and collect patients’ physiological informa-
tion.
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Fig. 1. System Architecture.

3) Hospitals: Hospitals serve as the primary providers of
healthcare services, including both government-operated
and private medical institutions.

4) Cloud Server: Cloud servers are used to store and
manage encrypted Electronic Medical Records (EMRs)
from medical institutions. These can be divided into
private clouds maintained by medical institutions and
public clouds managed by government agencies.

5) Smart Contract: We construct an EMR access con-
trol framework based on Role-Based Access Control
(RBAC) using smart contracts. This framework imple-
ments a decentralized data access control mechanism.

In this study, the requesters of Electronic Medical Records
(EMRs) include patients and authorized medical institutions,
which primarily encompass the following roles:

1) Healthcare Institutions: These institutions often require
access to EMRs for the same patient from different
institutions. Consequently, they need to request EMRs
from other collaborating healthcare facilities.

2) Doctor & Pharmacists: Doctors and pharmacists typi-
cally need access to patients’ diagnosis and treatment
records to develop appropriate treatment solutions.

3) Researchers: Researchers from medical research institu-
tions need to acquire a substantial number of patient
diagnosis and treatment records (EMRs) to facilitate
the development of new drugs and conduct pathological
research.

To address these threats, the design goals are formulated
to ensure robust security and performance, as detailed in the
following subsection.

B. Threat Model

In this study, we primarily address cyber-attack threats
originating from both internal and external adversaries. First,
cloud servers operate under an honest but curious (HBC) ad-
versarial model. While they adhere to service agreements, they
may attempt to infer private information. For data integrity
verification, these servers could intentionally provide false
proofs to hide instances of data corruption or loss. Second,
if the access control policy implemented in a smart contract
contains sensitive information, adversaries may exploit this
information to compromise user privacy, which poses a threat
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to system security. Finally, external cyber threats need to
be effectively addressed. Malicious adversaries may intercept
communications to reveal confidential information. Addition-
ally, data requesters could forge authentication credentials to
bypass access control mechanisms.

C. Design Goals

In this study, we propose a novel access control scheme
integrated with data integrity checking to facilitate secure and
reliable data sharing. The key design goals of this scheme are
outlined as follows.

1) This scheme should ensure that unauthorized requesters

cannot obtain any user privacy from the stored EMRs.

2) This scheme should allow authorized users to verify data

integrity without accessing EMR plaintext.

3) This scheme should ensure that access control policies

can resist unauthorized modifications from adversaries.

4) This scheme should ensure that all access activities are

recorded and audited immutably through blockchain.

5) The proposed scheme should maintain acceptable com-

putational and communication overhead.

IV. PRELIMINARIES
A. Role-Based Access Control (RBAC)

Role-Based Access Control (RBAC) is a commonly used
model for managing permissions that regulates access to
system resources by assigning users to specific roles. This
hierarchical approach allows for efficient and scalable man-
agement of access permissions. As illustrated in Table I, the
RBAC model consists of the following components.

TABLE I
DESCRIPTIONS OF RBAC
Element Description
User System users (e.g., employees, administrators).
Role Collection of permissions (e.g., administrator, finance).
Permission | Operations on resources (e.g., “read file”, "delete order”™).
Session Session determines the currently available role.

B. Bilinear Mapping

Assume q is a large prime, G, G5 are the two cyclic groups
of order g. The bilinear mapping about G; and G2 can be
defined as é: G; x G; — Go. € has the following properties:
1) Bilinear: Assume P,QQ € G; and a,b € Z¥, it has
e (P, Q% =é(P,Q)™.

2) Non-degeneracy: é can not map all P,QQ € G; to the
unit element in Go, i.e., there exists é(P, Q) # 1.

3) Computability: For any element P, () € G, there exists
a computable é(P, Q).

C. Proxy Re-encryption (PRE)

Proxy Re-Encryption (PRE) is a widely recognized public
key encryption algorithm designed for data sharing. PRE
enables third-party servers to transform ciphertext into another
ciphertext that is encrypted with the target public key, all

without accessing the plaintext. Typically, PRE involves the
following key steps.

1) The data owner Alice uses her secret key K to encrypt
the record M as CT(pp) and stores CT(pp) in proxy
servers.

2) The data requester Bob sends its public key to Alice, and
Alice utilizes its private key and the received public key
to generate the re-encryption key ReKey.

3) The proxy server encrypts CT(pr) as CT, (’ M) by using
ReKey and sends CT('M) to Bob.

4) The data requester Bob decrypts CT(’ M) using his private
key, allowing him to access the original record M.

D. BLS Signature

BLS (Boneh-Lynn-Shacham) is an efficient digital signature
algorithm commonly used in resource-constrained systems.
The signature process involves the following functions.

o KeyGen: Select s € Z; as the private key and generate
the corresponding public key as pk = g, where ¢; is a
generator of Gj.

o Sign: Compute the hash of message M as h = H(M)

. h-s H(M)-s
and generate the signature as o = g"° = g .
o Verify: Check the received signature o as é(o,g1) =

~ 1)-s 7 A
€ (g{{(ﬂj) 791) =€ (g{{(JW)apk)

E. Dynamic Accumulator

The RSA accumulator is a universal cryptographic tool that
generates commitments for dynamically changing sets through
modular exponentiation. The process for constructing an RSA
accumulator is as follows:

1) Parameter Initialization: Generate an RSA modulus N =
pq where p and ¢ are large primes. Then, select a random
generator g € G.

2) Set Accumulation: For a set L = {zy,...,z,} that
contains prime elements, compute the accumulator value
as ¢ = g2i=1% mod N.

3) Witness Generation: For any element x; € L, generate
a witness w; = gzi# %3 mod N. This witness allows
verification using the equation w;’ = ¢ mod N.

4) Adding an Element: When introducing a new prime z’,
update the accumulator to obtain the new value as Cpew =
c- gm, mod N.

V. THE PROPOSED SCHEME

This section describes the scheme from four critical pro-
cesses: system initialization, identity management, access con-
trol framework, and EMRs sharing. The frequently used nota-
tions are listed in Table II.

A. System Overview

Fig. 2 illustrates the complete process of generating and
securely sharing Electronic Medical Records (EMRs), which
can be divided into five key parts.

1) Patients generate health data during medical encounters,
such as consultations, treatments, and hospitalizations.
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TABLE II
KEY NOTATIONS

Notation Description

E; Entity ¢

TA Trusted authority

Pubk(g,) The public key of E;

IMC Identity Manage Contract

RMC Roles Management Contract
RPSC Role Permission Setting Contract
EACC EMR Access Control Contract
EDSC EMR Decryption Smart Contract
SK Session key

CTg) Ciphertext for x

UAE,) User attributes of E;

EMR Electronic medical record
SysID; Pseudonym of E;

PRE Proxy ReEncryption

Fid The file identity

AES Advanced Encryption Standard

TS Timestamp
PY(r) Access policy
AT Time threshold

Pharmaceutical
R&D institutions

Academic

Patient

institutions

Fig. 2. EMRs generation and sharing process.

Medical staff input this data into the medical service
system, which serves as the source for creating EMRs
(marked (D).

2) The data owner encrypts the generated EMRs and stores
them in the hospital database through the hospital’s
internal gateway, thereby completing the in-hospital data
collection process (marked (2).

3) The encrypted EMRs are then transmitted to cloud
servers. Along with this, the data owners submit cor-
responding data fingerprints and access control policies
to the blockchain using smart contracts (marked (3)).

4) EMR requesters, such as medical service institutions,
pharmaceutical R&D institutions, and academic institu-
tions, construct data sharing requests and submit them
to the blockchain. This process relies on smart contracts
to enable efficient data access control based on RBAC

(marked @).

5) Cloud servers perform the proxy re-encryption algorithm
based on the permission credentials to facilitate secure
sharing of EMRs (marked (3)).

B. System Initialization

The system initialization is carried out by the system
initiator T'A, and the initialization procedure is described as
follows.

1) T'A randomly selects a large prime number ¢ € Z; and
constructs two cyclic groups G, Go with the order g.

2) T A establishes a bilinear mapping as € : G xG1 — Ga.

3) TA selects g; as a generator of G; and chooses a hash
function H : {0,1}* x Z7 — {0,1}*.

4) TA selects the BLS signature algorithm, denoted as
Sig(-), and adopts AES as the symmetric encryption
method, denoted as Enc(-).

5) T'A randomly chooses x € Z; as the system private
key ssk and further computes the system public key as
spk = gf.

6) Finally, T'A initializes the accumulator as A, = g{\o,
where Ao € Z; is a randomly selected number.

PM = {Gla GQ; q,91, é) Aav H()’ <Enc()) DGC(')>, Slg()}
will be finally published by T'A as the public parameters.

C. Identity Management

1) Identity Registration: To enhance the reliability of sys-
tems, all involved parties should register their identities before
sharing EMRs. Therefore, we incorporate smart contracts and
cryptographic operations to manage identity information. To
be specific, we first outline the identity registration process as
follows.

1) E; with identity ID; € {0,1}* randomly selects 7; €
Zy as its private key Prik g,) and further generates the
public key as Pubk(g,) = g1'.

2) FE,; generates a session key SK by running the Diffie-
Hellman protocol with T'A and further encrypts ID; as

3) TA decrypts the CT(;p,) as Dec(CT(ip,), SK) —
{ID;||Pubkg,)} and further generates the pseudonym
as follows:

SysID; = ¢i** @ ID;. (D

4) T A invokes the smart contract Identity Manage Contract
(IMC) (i.e., Alg. 1) to update the dynamic accumulator
A, in the immutable ledger issueLedger. Subsequently,
TA obtains the dynamic accumulator A\, and the corre-
sponding witness pair as (A,, W;) (lines 3-10).

5) TA generates the unique registration credential as:

Proof(rp,) = Sig(H (SysID;||Pubkg,)), ssk). (2)

6) T'A sends <SysIDi,Proof(1Di), Aa,Wi,TS> to E;
through a secure channel.
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Algorithm 1: Identity Manage Contract (IMC)
Input: Pubkg,), SysID;, A,.
Output: result.
1 mapping (string = string) issueLedger;
2 Identity registration:
3 Require(msg.sender==T"A);
// Only TA has this permission.
4 H(Pubkp,)||SysID;) — \i;

i
k=0 Ak

s Do gt = g7 = Aa;
6 issueLedger.push(T'S = A\,);
7 (Bafg2) = Wis
8 result + (Dg, Ws);
9 return result;
10 Identity verification:
1 issueLedger.getTop() — AL;
// Get the latest accumulator value.
12 result < AL;
13 return result;
14 Identity revocation:
15 Require(msg.sender==T'A);
// Only TA has this permission.
16 issueLedger.getTop() — AL;
18 (AL/917) = Das
19 for Wy in (W, Wo, -
20 L if k! =i then

7W’n) do

21 L Wprew = Wi, /g

22 issueLedger.push(TS = A,);
23 result « (Wew Whew ... Jynew);
24 return result;

2) Identity Verification: In the process of mutual com-
munication, it is inevitable to verify the identity of relevant
entities for security reasons. E; executes the following identity
verification process to confirm the legitimacy of FE; using the
registration credential Proofp,).

1) E; verifies Proof(p,) by performing the method as:

Checkrp,y = Verify(spk, H(SysID;||Pubkg,)),
PTOOf(ID,;))(3)

2) If Check(p,) is false, it indicates that F; has not been
authenticated by TA. Otherwise, I; further invokes IMC
(i.e., Alg. 1) to obtain the current accumulator A/, (lines
11-13).

3) E; verifies whether the registration information is
ValiTcLl by using the stored dynamic accumulator A/, =
glz’“z0 * and the witness (D, W;). To be specific, E;
performs the following operations.

a) COmputes (A;/Aa — g]hZZ:i-H Ak

k=0,k#i Nk

) = pi.
b) Computes W; - p; = g7 — P
¢) Computes H(Pubkg,)||SysID;) — ;.

d) Verifies g} - p* < AV

. ) r c Ak n
Due to g3 - pf = g3 - g7 0 and A, = g0

if gi\i - pf = A, it indicates that F; is currently a legitimate
entity.

Ak
9

D. Roles Assignment

FE; invokes the procedure AssignRole(-) with its attributes
UA(g,) to obtain its system role. The specific procedure is
illustrated as follows.

AssignRole(U Ag,), Proofrp,) — Role(g,: This method
first verifies Proof(;p,) by performing BLS signature verifi-
cation as é(PrOOf(IDi), 91) ; & g?(SySIDiHPubk(Ei))’ Spk> )
After this verification, Roles Assignment Contract (RAC, i.e.,
Alg. 2) will be activated to allocate the role to F; according
to the predefined role assignment policy PY(r).

PY(r) = {Pid, Attris : {k : v}(...ny, Role : (d,p,7)}, (4)

where Attris € PY(r) represents the attributes of system
roles, Role is the corresponding system roles (e.g., doc-
tors (d), pharmacists (p), and researchers (r)). In addition,
Pid € Py(R) is the unique storage credential for Py(n) in
IPFS (InterPlanetary File System). An example of PY () is
illustrated in Fig. 3.

{
"Pid": "9EE47D94A7ACEE3A9831417...",
{"'role_name": "Doctor",
"required_attributes": {
Educational background: [Bachelor's degree or above in Clinical Medicine],
Professional Certification: [Valid Physician Practicing Certificate,...],
Work experience: ["Working full-time"],
Skill requirements:|
Proficient in operating electronic medical record systems,...],
Training requirements:[
Annual Medical Safety Training Qualified ",...],
1
{ "role_name": '"Pharmacist",
"required_attributes": {
"Education background": ["Bachelor degree or above in pharmacy],
"Professional certification": ["pharmacist qualification certificate",...],
"Work experience": ["work in hospital pharmacy > 6 months],
""Skill requirements":[
"Drug compatibility taboo recognition ability", ...],
"Training requirements":[
"Drug management system operation certification"....],
1
{ "role_name": "Researcher",
"required_attributes": {
"Education background": ["master of Medicine/Biology/statistics or above],
"Professional certification": ["GCP (clinical trial quality management practice)
certification"),
"Work experience": ["participating in > 2 clinical research projects"],
""Skill requirements":[ "Data management and analysis capabilities",...],

i

}

Fig. 3. An example of role assignment policies.

As shown in Alg. 2, RAC takes Pid and UA(g,) as input
parameters and defines a blockchain ledger RolesLedger to
store the mapping relationship between entities and roles.
Additionally, an IPFS client is defined to obtain the stored
Policy according to the input Pid (lines 3-4). If the policy is
not found, it indicates that the required policy is not stored in
IPFS. Otherwise, the obtained attributes Policy.Attris will
be used to search the matching attributes in UA(g,) (lines

7-9). Finally, RAC determines whether F; meets the obtained



JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Policy by counting the number of matching attributes between
Policy.Attris and U A(g,) (lines 10-13).

Algorithm 2: Roles Assignment Contract (RAC)

Input: Pid, UA(E,;)s Pubk’(Ei).
Output: result.
1 count = 0, Policy = null,
2 mapping(string = string) RolesLedger;
3 client = ipfs_httpclient.connect();
// Connect to IPFS.
4 Policy = client.cat(Pid);
// Download the target policy.
5 if Policy == null then
6 L return null;

7 for (key = attris) in Policy.{Attris} do
8 if UA g,y matches attris then
9 L count = count + 1;

10 if count == UAg,).size() then

1 H(Pubkg,)) — key;;

12 RolesLedger.push(key; = Policy.Role);
13 return Policy.Role;

14 return null;

E. Access Control Framework

In this section, we elaborate this access control framework
from three aspects: permissions setting, permission granting,
and permissions revocation.

1) Permission Setting: To achieve fine-grained data access
control, EMRs are structured as JSON tuples that include
medical testing reports, diagnosis reports, and personal infor-
mation. Here, we define EMRs as:

MR = {Fid, P, M, D}. (5)

As in (5), P represents the personal information of patients,
M is the medical testing report, and D refers to the diagnosis
report from doctors. To enable patients to manage their EMR
access permissions, Role Permission Setting Contract (RPSC)
is designed to allow EMR owners to set specific access per-
missions. Specifically, the corresponding workflow of access
permission setting is described as follows.

1) E; (data owner) constructs a permission setting request

as:

PR = {Fid, Perm : (Role = (P, M, D)), Eid}, (6)

where F'id € PR is the unique identity of MR,
Perm is the corresponding permissions of the given
Role. Also, Eid = (Pubkg,),Sig;) is introduced to
identify the request sender, containing the corresponding
Pubk g,y and Sig;.

2) E; sends the generated PR to Role Permission Setting
Contract (RPSC, Alg. 3), and IMC will be invoked to
verify the legitimacy of E;. After that, RPSC verifies the
contained signature as Verify(Pubkg,), Sig;, H(PR))

9
= True (lines 4-7).

3) After completing the above verifications, RPSC will be
used to set the access permission for the given MR.
RPSC first verifies the existence of MR by querying
IPFS (lines 8-10). Afterward, Perm will be iterated
to construct FilePermission object and initialize a role-
permission mapping EMRsRoleAccess (lines 11-20).

Algorithm 3: Role Permission Setting (RPSC)
Input: Fid, Perm, Eid = (Pubkg,), Sig;).
Output: True or False.

1 Struct FilePermission {uint Personal; uint Medical;
uint Diagnosis; }

mapping(string = FilePermission) RolePermission;

mapping(string = mapping) EMRsRoleAccess;

Call the contract IMC: RPSC «+ Ag;

Perform identity verification using

Aa: RPSC «+ C’heckjpi;

if !C’heck(IDi) then

7 L return False;

wm s W N

=)

// Call IMC to realize identity
authentication.
8 client = ipfs_httpclient.connect();
9 if ! client.exist(F'id) then
10 | return False;

11 for (key = perm) in Perm do
12 F M=FilePermission(perm.P, perm.M, perm.D);
13 | RolePermission.add(perm.Role = FM);

14 if EM RsRoleAccess.get(Fid) == null then

15 EM RsRoleAccess.add(Fid =
RolePermission);

16 else

17 EM RsRoleAccess.get(Fid) — OriginPerm,;
18 for (key = perm) in Perm do

19 L OriginPermlkey] = perm;

20 EM RsRoleAccess.update(Fid =
OriginPerm);

21 return True;

2) Permission Granting: When [E; attempts to access an
EMR MR, with Fid, a data access request AR should be
constructed as:

AR = {Fid, Pubk(Ei),ROle(Ei),TS, Sig;}. @)

As mentioned in (7), F'id represents the unique identifier of
the requested MR;. Pubkg,) and Role g, are E;’s public
key and role, respectively. In addition, Sig; generated by
E; is used to ensure the integrity of AR. The constructed
AR is submitted to the smart contract EMRs Access Control
Contract (EACC, Alg. 4), and EACC further cooperates with
the aforementioned IMC and RPSC to realize the EMRs access
control as follows.

1) EACC verifies the received AR by checking the con-
tained signature Sig;. If the signature verification fails, it
indicates that AR is invalid; this procedure is terminated
(lines 2-3).



JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

2) EACC then invokes the contract IMC to verify the
legitimacy of E; by verifying the dynamic accumulator
N, If E; is invalid, this procedure is terminated (lines
4-7).

3) EACC retrieves the role associated with FE; from the
deployed Role Access Contract (RAC) as Role; . It then
compares the declared role Role; € AR with Role} to
verify the authenticity of Role; € AR (lines 8-11).

4) EACC invokes RPSC with the given F'id to query the
ledger EMRsRoleAccess and generates the correspond-
ing permission proof Proof(ccess) (lines 12-16).

Algorithm 4: EMRs Access Control Contract (EACC)
Input: Pubk:(Ei), Fid, Role;, Sig;.
Output: Proof(sccess)-

1 mapping(string = boolean) GrantLedger;

2 if ! Verify (Pubkg,), Sig;, H(Fid||Role;)) then

3 | return null;

4 Call the contract IMC: FACC < Ay;

5 Perform identity verification with
Ng: FACC «+ Check(IDi);

6 if !Ch@Ck([Di) then

7 L return null;

// Call IMC to realize identity
authentication.
8 Call RAC: EACC «+ RolesLedger;
9 RolesLedger.get(H (Pubkg,))) — Role;;
10 if Role}!= Role; then
1 L return null;

12 Call RPSC: FACC + EMRsRoleAccess;

13 EM RsRoleAccess.get(Fid) — RolePermission;

14 RolePermission.get(Role}) — FilePerm;

15 {FilePerm, Fid, Pubkg,), Expire, TS} —
Proof(access);

16 GrantLedger.add(H (Proof(gecess)) = True);

17 return Proof(,ccess)s

3) Permission Revocation: In practice, the permission re-
vocation functionality enables a timely response to abnormal
account situations by revoking permissions assigned to specific
roles. For instance, when a doctor FE; is transferred from an ad-
ministrative position to a regular position, their administrative
privileges need to be revoked. This process can be illustrated
through three cases of permission revocation: revocation of
access proofs, revocation of roles, and revocation of identities.
Here are the details of each case:

1) If E; attempts to revoke the access credentials of E;
to a given EMR, E; invokes the predefined blockchain
ledger GrantLedger and reset the access credentials as
GrantLedger. update(H(Proof(,ccess)) = False).

2) If E; misuses role-based permissions to interfere with
or damage EMRs, TA invokes the RolesLedger on the
blockchain and revokes the corresponding role assign-
ment. Thus, F; is no longer authorized to access any
EMRs.

3) If E; is found to be a malicious entity within the
system, TA should revoke the identity of E; by invoking
the Identity revocation subroutine in IMC, and further
performing the following operations.

a) Call the deployed contract IMC and obtain the
current dynamic accumulator A/,.

b) Compute H(Pubkg,)||SysID;) — \;.

¢) Compute A/,/ gi\i’ — A\, and update the dynamic
accumulator as issueLedger. push(TS = A,).

d) Update each witness as W** = Wy/gy =
gzyn":o,j;ék,i Aj
1 .

Through the combined use of the deployed smart contracts
(i.e., EACC, RAC, and IMC), we can achieve the revocation
of user permissions.

F. EMRs Sharing

To clarify the process of electronic medical record (EMR)
sharing, we use the example of EMR sharing between entities
E; and E; to illustrate the functionality of our proposed
proxy re-encryption protocol. This process consists of five
key parts: EMRs Encryption, Permission Verification, EMRs
ReEncryption, and EMRs Decryption.

1) EMRs Encryption: The data owner E; encrypts its own
MR, using its public key as follows.

1) E; selects y € (0,q) and computes C; = gy.

2) FE; computes the corresponding ciphertext of MR; €

3) E; computes the hash of Cy as H(C2) — hcode(pr,)

and stores the calculated hcode(rqr;) in blockchain,
obtaining the blockchain transaction id Tid(pw,).

4) E; constructs Cypr, = {Cl, Ca, TZd(M”Rl)v FZd(MRq)}

as the ciphertext, where H(C1||Co||Tidapr,)) —
Fid pr,)- Subsequently, Crqr, will be submitted and
stored in the cloud server.

2) Permission Verification: Before sharing MR;, E; must
verify E;’s access permissions. The data requester £; must
first obtain the access permission credential Proof(sccess)
from the EMRs Access Control Contract (EACC) as described
in Section V-E.2. Specifically, F; submits a valid access
request AR to EACC, which, upon successful verification of
E;’s role and permissions, issues Proof(sccess) s @ tamper-
resistant credential. This credential is cryptographically signed
by EACC and recorded on the blockchain for auditability.
Once in possession of Proof(gccess)» I; presents it to the
data owner E; during the permission verification phase to
demonstrate its eligibility for accessing the requested EMR.
This step ensures that E; can independently verify F;’s access
permissions without relying on a centralized authority. The
detailed verification process is as follows.

1) Ej sends its access permission credential Proof(sccess)
to entity I; as E; — E; : {Proof(access)s T'S, Sigpr)}-
After receving the credential, E; checks if Proof(access)
has expired by comparing Expire € Proof(access) With
the current timestamp 7'Sy,5q,-

2) Since Ej; generates the signature for Proof(gccess) Us-
ing its private key, E; verifies the received signature
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as Verify(Sig(,f), Proof(access)- { Pubkg;)}) < True to
check whether E; is the owner of Proof(access)-

3) E; verifies the authenticity of Proof(sccess) by query-
ing the decentralized ledger GrantLedger in EACC as
GrantLedger. get(H(Proof(,ccess))) < True.

4) If all the verifications of 1), 2), and 3) pass, it indicates
that F; has the access permission to MR,;. Otherwise,
the sharing process should be terminated immediately.

Finally, E; invokes the smart contract IMC and performs the
Identity verification subroutine to check the registered identity
of Ej as E; — IMC' : { Pubkg,y, T'S}. After completing the
above access permission verification of E;, E; performs the
subsequent re-encryption algorithm.

3) EMRs ReEncryption: The data owner E; collaborates
with the cloud server (i.e., proxy server) to re-encrypt the
requested MR, as follows.

1) Ej sends its public key Pubkp,) = gy’ to E;, E;

then generates the re-encryption key as ReKey;.; =

Pubkfy,) = g1
2) E; obtains C from the proxy server and computes C] =
cr.

TiTj

3) E; computes C3 = C] - ReKey;—,; = g{"" - g3
further sends C'5 to cloud servers.

and

4) Integrity Verification: E; performs integrity verification
on the received Cjwzi as the following steps.

1) E; obtains the ciphertext C'y = {C2, Cs, Tid pr,) }
from cloud servers.

2) Ej queries the hash value hcode ) from blockchain
using Tid(pmr,) € Cg, -

3) Ej computes the hash of Cy € Oy, as H(C2) —
heode( iz ,)-

4) E; checks whether hcode| | = hcodelyr . If
hcode’( Mqu)!: hcodeZ‘MRi), ijtm should be dis-
carded, and the data sharing procedure will be termi-
nated.

5) EMRs Decryption: After validating 'y, E; sends it
along with Proof(4ccess) 10 EMR Decryption Smart Contract
(EDSC, Alg. 5), EDSC then decrypts Cy . as follows.

1) EDSC computes the partial decryption parameter as
Plimsg) = (Pubk(Ei))P”kwj) = g, and further
computes Pémj) =C3/pisjy =91

2) EDSC obtains the target MR; by computing p/(i ) ®
CQ = gll”'i D (g{’)y D MRZ = MRZ

3) EDSC extracts the access permission for the
obtained MR; as (Proofigccess)-FilePerm) —
FilePermg;).

4) If (FilePerm.Personal == 0) then EDSC performs
H(MR;.P) — Py. Similarly, EDSC verifies other
fields of MTR,;, and further performs hash blinding
on the relevant data fields (i.e., Medical, Diagnosis),
achieving fine-grained EMRs sharing.

Finally, the processed MR; using segmented hashing will
be transmitted to £;. The detailed data decryption process is
summarized in Alg. 5.

Algorithm 5: EMR Decryption Contract (EDSC)
Input: Cl\ ., Proofiaccess)> Sigpys)-
Output: MTR;

1 if ! Grant Ledger.get(H (Proof(gccess)) then

2 L return null;

3 if lverify(Sigpg), Proof(access)-{Pubk}) then
return null; // Proof(gecessy does not
belong to Ej.

P’l"ik)(Ej) _ g'ri"rj,
- J1

k)

Plivg) = (Pubk(g,))

/ _ _Cs __ YT,

Plims) = pampy 91

Plisy) ®Ca = gi™ ® (97')! ® MR; = MRy;

Proof(access)-FilePerm — FilePermg,;);

// Perform hash blinding on relevant
fields based on the corresponding
access permissions.

9 for key in [ Personal’ Medical', Diagnosis’] do

10 L if FilePermp;).key == 0 then

1 | H(MR;.key) = MR, key;

12 return MR;;

e N & W

VI. SECURITY ANALYSIS

In this section, we analyze the security of the proposed
scheme to demonstrate that it meets the aforementioned secu-
rity requirements. Additionally, we provide a formal security
proof using BAN-logic [21] and the ProVerif tool [28].

A. Informal Security Analysis

We informally demonstrate that this scheme can effectively
resist various attacks described in Section III-B. Furthermore,
we conduct an informal security analysis to show that the
proposed protocol is secure against additional attacks not
covered in Section III.

Theorem 1. (Entity Anonymity). The proposed scheme
preserves the anonymity property.

Proof. During the registration phase, the system identifier of
each entity is calculated as SysID; = g;°* @ I D;. Malicious
attackers can only obtain the real identity ID;, if the trusted
authority’s private key ssk is compromised.

Theorem 2. (Conditional Traceability). The proposed
scheme preserves the conditional traceability property.

Proof. To protect against malicious activities that could
compromise the protocol, it is essential that real identities
are traceable. All generated system IDs are stored on an
immutable blockchain ledger. The trusted authority (TA) can
decrypt identities using its private key with the formula
SysID; @ g;** — ID;. Therefore, only the TA has the
capability to trace the real identities of all entities.

Theorem 3. (Data Integrity). The proposed scheme ensures
the integrity of EMRs.

Proof. To guarantee the integrity of EMRs, the data owner
directly stores the hash of the ciphertext C5 in the blockchain
ledger during the data encryption stage. Furthermore, the
transaction ID T'idysy is packaged and stored in the cloud
along with C'5. Therefore, data users can determine whether
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the stored C5 has been tampered with by comparing the on-
chain hash value with the current hash value.

Theorem 4. (Data Confidentiality). The proposed scheme
ensures the confidentiality of data.

Proof. To ensure the confidentiality of EMRs, the data
owner F; encrypts EMRs using its own public key as Cy =
PUbk?E,.,) &M = (¢97)Y @ M, and y € (0,q) is a selected
random number. It is evident that as long as the parameter y
remains confidential, the confidentiality of M can be main-
tained.

Theorem 5. (Secure Access Policy). The proposed scheme
ensures the integrity of access policies.

Proof. The access policy, formatted in JSON, is submitted
to IPFS, which maintains data integrity through the use of
distributed hash tables (DHT) and Merkle Directed Acyclic
Graphs (DAGs). Any modification made to the policy will
alter its hash value, triggering a network-wide verification
mechanism that prevents data tampering. Therefore, the stored
access policy cannot be tampered with.

Theorem 6. (Session-key Security). The proposed scheme
effectively prevents session-key computation attacks.

Proof. During the registration phase, user F; and the
Trusted Authority (TA) generate the session key using the
Diffie-Hellman protocol. Specifically, the session key from E;
to TA is given by K; y74 = (Yra)*, and the session key
from TA to E; is given by K74 .; = (Y;)***. As a result,
computing the session key is computationally infeasible for
an adversary who does not possess the secret parameters x;
and ssk.

Theorem 7. (Resistance to Proof Forgery). The proposed
scheme resists forgery of access credentials.

Proof. In this scheme, Proof(access) is the sole creden-
tial for data access permissions, determining whether access
requests can be approved by the deployed access control
mechanism. Since the hash of Proof(gccess) is stored in
the immutable blockchain, any forged proof Proo f(’access)
can be detected by verifying its hash against the blockchain
record. Furthermore, Proof(,ccess) contains the user’s public
key Pubk;, which prevents adversaries from impersonating
authorized users and using their proofs to access EMRs.

Theorem 8. (Resistance to Impersonation Attacks). The
proposed scheme is secure against the impersonation attack.

Proof. If an adversary A impersonates a legitimate entity
E; to construct requests (e.g., AR, PR) to perform operations
allowed in the system, A should forge a digital signature ¢’ to
replace the digital signature from E;. Afterward, the recipients
of requests will verify the requests by checking the contained
signature. Obviously, the forged signature ¢’ will not pass the
signature verification, and the requests will be discarded.

Theorem 9. (Resistance to Replay Attacks). The proposed
scheme is secure against replay attacks.

Proof. Suppose an adversary A can capture transmitted
messages. Even if A retransmits these messages, the recipients
can verify their validity by analyzing the contained timestamp

?

as (T'Snow — T'S) < AT. Since the timestamp threshold AT
is small, the proposed scheme is secure against replay attacks.

Theorem 10. (Resistance to Man-in-the-Middle Attacks).
The proposed scheme is secure against man-in-the-middle
(MITM) attacks.

Proof. Assume that an adversary .4 has the capability to
intercept the transmitted request PR;. A then attempts to
modify PR; and sends it to an entity E;. To modify the
request PR;, A should generate a new signature Sig’ for the
modified request PR;. To generate a valid digital signature, .4
needs to obtain the corresponding private key from the public
key, which is equivalent to Bob solving the discrete logarithm
problem. This demonstrates that the proposed scheme is secure
against man-in-the-middle (MITM) attacks.

B. Formal Security Analysis

1) Rules of BAN-logic: BAN-logic is a belief-based model
logic that can be used to prove whether the proposed scheme
can achieve the expected security requirements. Hence, we
adopt BAN-logic to formally verify the security of the scheme,
and summarize the related notations in Table III.

TABLE III

NOTATIONS USED IN BAN-LOGIC.
Notation Description
Pl=X P believes the message X.
PaX P receives the message X.
P|~X P sent the message X.
Pl= X P controls the message X.
#(X) X is fresh (X is not a replayed message).
{X}x X is encrypted with key K.
{X} 1 X is a signature signed with a private key K 1.
(X)y X is sent combined with Y.
P&, Q P and @ share the secret key K.
P \Eg Q P believes @Q’s public key is K.

BAN-logic derives final beliefs from initial assumptions
through rules, usually involving the following critical rules.
1) R1 (Message-Meaning Rule): If P believes that K is
the public key of ), and P received X signed with Q’s
private key K ! (i.e., {X} 1), then P believes Q sent
X.
PI=5Q,P<a{X}r
P=Q|~X
2) R2 (Jurisdiction Rule): If P believes that () has juris-
diction over X, and P believes that () believes in X,
then P believes in X.
P=Q=X,Pl=Q=X
Pl=X
3) R3 (Message-Signature Rule): If P knows Q’s public

key K and a signature { X } -1, then P believes () sent
X.

PAK,Pa{X}g—
P=QI|~X
4) R4 (Nonce Verification Rule): If P believes that X is
fresh and P believes that () has declared X, then P
believes that () believes in X.
PI=#X),P=Q|~X
P=QI=X
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5) RS (Freshness Rule): If X is fresh, then the composite
message containing X is also fresh.
P = #(X)
P=#(X,Y)
6) R6 (Belief Rule): If P believes () trusts the message
(X,Y), then P believes @ trusts X.
Pl=Q=(X)Y)
P=Ql=X
2) Idealization and initial assumptions: The idealized form
of our scheme is as follows:

e M1 (Identity Registration): This message pair corre-
sponds to the above registration process in Section V-C.
1) E;, — TA: {IDMPUbk(Ei)}KiHTA;
2) TA — E;: {SysID;, Pubkg,), TS}|{H(SysID;
||PUbk(Ei))}spk’l'
e« M2 (Role Assignment Request & Response): This mes-
sage pair corresponds to the role assignment process in
Section V-D.

3) From S6 and the Freshness Rule (R5), we have E; |=
#(H (SysIDi||Proof(ip,)||2Na||Wil|TS)).

4) Applying the Nonce Verification Rule (R4) to the results
of steps 2 and 3, we conclude that

E; |=TA |= H(SysID;||Proof(;p,)

Dol Wi T'S).

©))

5) Given the properties of the hash function, we can infer

E; |= TA |= (SysIDs, Proof(ip,y, Na, Wi, TS).
Applying the Belief Rule (R6) gives us that

E; |=TA |= Proof(ip,), (10)
E; |=TA |= SysID;. (11)

6) Finally, using S8 and the Jurisdiction Rule (R2), we
obtain the desired belief as

E; |= Proof(ip,) (12)
E; |= SysID;. (13)

Thus, the validity of the registration credentials is con-

1) E; - RAC: {UA(Ei)aPTOOf(IDi)aTS}HH(UA(Ei) firmed.

1Proof1o0|ITS)} pubks,, -1
}rac_pk_l .

e M3 (Access Proof Generation): This message pair cor-
responds to the permission-granting process defined in
Section V-E.

1) E;, — FACC: {F’id, Pubk‘(Ei), Role(Ei), TS}H
H(FZd|Publ€(EL) | \Role(Ei) | ‘TS)}Pubk(Ei)*l;

2) EACC — E;i:{Proof(access), Expire, TS}H{H(
Proof(aceess) || Expire||T'S) }sc_pr-1-

Based on the above idealized messages and our scheme
description, we establish the following initial assumptions
necessary for the BAN-logic analysis.

. SI: E; |=228 1A

. S2: B, |="8 pACC.

o S4: E; |E —7 Ej.

ubk(E.)

e S5: FACC |EP —’ Ej.

o S7: EACC |= #(TS).

o S8 E; |=TA= (SysID;, Proof(p,))-

o S9: E; |= RAC = Roleg,).

o S10: E; |= EACC = Proof(access)-

3) Proof Process: We formally analyze the security of our
scheme from three aspects: the validity of registration creden-
tials, the credibility of assigned roles, and the authenticity of
access credentials.

(1) Validity of registration credentials.

1) From MI, E; sees the message signed by TA: F; <

H(SysID;||Proofip,||Aal[Wil|TS)

spk—1°
2) Using S1 and the Message-Meaning Rule (R1), we
deduce that
E; |=TA |~ H(SysID;i||Proofp)||2d|Wil|TS).

®)

(2) Credibility of assigned roles.

1) From M2, E; sees the role assignment message: E; <
{ROle(qu)’TS}‘H(ROZe(Ei)|TS)»,’aC_pk71'

2) Using S3 and the Message-Meaning Rule (R1), we
deduce that

E; |= RAC |~ (Role(g,, TS). (14)
3) From S6 and the Freshness Rule (R5), we conclude that
E; |= #(Roleg,), TS). (15)

4) According to (14) and (15), we apply the Nonce Verifi-
cation Rule (R4) to conclude that

E; |= RAC |= (Role(g,), TS). (16)

5) From (16), we apply the Belief Rule (R6) to conclude
that
E; |= RAC |= Role(g,). a7

6) Finally, using S9 and (17), we apply the Jurisdiction
Rule (R2) to obtain that

Hence, the credibility of assigned roles is formally analyzed.

(3) Authenticity of access permissions.

1) From M3, EACC sees FE;’s request: FACC <
H(F2d| ‘Pubk(Ei) | |R0l€(Ei) TS)Pubk(En*l .

2) Using S5 and R1, EACC believes E; sent the request:

EACC |= E; |~ (Pubkg,), Role(g,), TS).  (19)

3) Considering S7 and (19), we apply the Freshness Rule
(R5) to conclude that

4) According to (19) and (20), we employ the Nonce
Verification Rule (R4) to conclude that
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5) From the second part of M3, we can conclude that
E; < {H(Proof(access) ‘ |TS)}sc_pk*1

6) Using S2 and the Message-Meaning Rule (R1), we
deduce that

E; |= EACC |~ (Proof(access)s T'S)-

(22)

(23)

7) From S6 and the Freshness Rule (R5), we can conclude
that
E; ‘E #(Proof(access)vTS)-

8) Considering (23) and (24), we apply R4 (Nonce Verifi-
cation Rule) to conclude that

E; |= EACC |= (Proof(sccess), T'S).

(24)

(25)

Using S10 and (25), we apply the Jurisdiction Rule (R2)
to obtain that

E; |= (Proof(access), T'S). (26)

Therefore, the authenticity of the access permission creden-
tial is proven.

C. Formal security verification using Proverif

In this section, we adopt the widely accepted automated
verification tool Proverif to verify the security of our scheme.
Through a simulation study using the Proverif tool, we demon-
strate that the proposed scheme can maintain data confiden-
tiality, data integrity, and efficient data access control. Our
proposed protocol will be specified to the Proverif tool in the
form of a protocol model written in its dedicated modeling
language. The protocol model consists of a set of processes.
Each process represents the behavior of a protocol participant
and comprises a sequence of operations. Since entities Patient,
Doctor, Cloud, and AccessControlContract are communicating
with one another in the proposed scheme, these entities are
modeled as processes Patient, Doctor, Cloud, and AccessCon-
trolContract as shown in Fig. 4 and Fig. 5. During the access
control process, the order in which events are triggered is an
extremely important security objective. For instance, the data-
access event in the doctor process can only be triggered after
the predefined permission-grant event in the AccessControl-
Contract process. Otherwise, it is likely to suggest that the
proposed access control mechanism has been compromised.
Hence, the correct sequence of events should be event (Doc-
torAccessedEMR) ==> event(AccessGranted(Doctor_pub)).
Here, the expression DoctorAccessedEMR ==> Access-
Granted(Doctor_pub) means that event DoctorAccessedEMR
occurs after event AccessGranted.

Based on the proposed scheme, we summarize the sequence
of events as follows.

1) Only legitimate users can request access to the stored
EMRs. Therefore, the user authorized to access EMRs
must be a legitimate user in the system, which can be
expressed as: event(PermissionGranted(uid)) ==> (uid
= Doctor_pub).

2) Only after obtaining authorization from AccessCon-
trolContract can doctors pass the verification process.

(* Patient Process *)
let Patient =
(* Data encryption *)
New y:nonce;
let C1 = exp(g, y) in
let C2 = xor(exp(Patient pub, y), PatientEMR) in
let hoodeM = h(C2) in
out(c, (hoodeM, C1, C2));
(* Access control policy setup *)
let policy = createPolicy(Doctor, Researcher) in
out(c, sign(policy, Patient priv)).

(* Doctor Process *)
let Doctor =
(* Access request *)
new reqNonce:nonce:
let accessReq = (Doctor_pub, Fid, Doctor_role, reqNonce) in
let sigReq = sign(accessReq, Doctor priv) in
out(c, (accessReq, sigReq)):

(* After receiving proof *)
in(c, proof:proof);
if verify(proof, h(accessReq), TA pub) then
(* Send public key for re-encryption *)
out(c, Doctor_pub);
(* Receive and verify re-encrypted data *)
m(c, (C2_prime:cipher, C3:bitstring, Tid:hash));
let storedHash = queryBlockchain(Tid) in
1f h(C2 prime) = storedHash then
(* Decryption *)
let tho = exp(Patient pub, Doctor priv) in
let tho_prime = div(C3, rtho) in
let decrypted = xor(tho_prime, C2_prime) in
event DoctorAccessedEMR (decrypted)
else event IntegrityViolationDetected
else event InvalidAccessAttempt.

Fig. 4. Patient and Doctor processes.

This is expressed as: event(AccessGranted(Doctor_pub))
==> event(PermissionGranted(Doctor_pub)).

3) Only after the requesting party has passed the verifica-

tion from data owners can it obtain the requested EMR.
This can be represented as: event(DoctorAccessedEMR)
==> event(AccessGranted(Doctor_pub).

The results of the ProVerif code execution are presented
in Fig. 6. This simulation involves a protocol with four
parallel processes and five verification queries. As illustrated in
Fig. 6, all four parallel processes were executed successfully,
ensuring the confidentiality of Electronic Medical Records
(EMRs)—meaning that no attacker can access sensitive infor-
mation. Furthermore, Fig. 6 demonstrates that the sequence of
events proceeded normally, indicating that the proposed access
control scheme is reliable and meets the necessary security
requirements.

VII. PERFORMANCE ANALYSIS

To validate the feasibility of our proposed scheme, we devel-
oped a prototype and conducted comprehensive performance
evaluations.
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(* Cloud Server Process *)
let Cloud =
(* Store encrypted data *)
in(c, (hoodeM:hash, C1:bitstring, C2:cipher));
store EMR Record = (C1, C2, hoodeM);
(* Re-encryption service *)
in(c, (C1_prime:bitstring, reKey:reKey)):
let C3 = mult(C1 prime, reKey) in
out(c, C3).

(* Smart Contract Processes *)
let AccessControlContract =
in(c, (req:(pubKey*id*role*nonce), sigReq:proof));
if verify(sigReq, h(req), getPubKey(req)) then
(* Check RBAC permissions *)
if hasPermission(req, Patient policy) then
let accessProof = generateProof{req) in
out(c, sign(accessProof, Contract priv))
else event PermissionDenied
else event InvalidSignature.

Fig. 5. Cloud and AccessControlContract processes.

The event AccessUsed is executed at {28}.

A trace has been found.

RESULT not event (AccessUsed) is false.

-~ Query not event(DoctorAccessedEMR) in process 1.
Translating the process into Horn clauses...
Completing. ..

Starting query not event(DoctorAccessedEMR)

RESULT not event (DoctorAccessedEMR) is true.

-- Query not event( ) in process 1.
Translating the pro nto Horn clauses. ..
Completing. ..

Starting query not event(VerifySig)
RESULT not event(VerifySig) is true.

-- Query event(PermissionGranted(uid[])
Translating the process into Horn claus:
Completing. ..

Starting query event(PermissionGranted(uid[])
RESULT event (PermissionGranted(uid[])) i

=> uid[] = Doctor_pub[] in process 1.

[] = Doctor_pub[]
Doctor_pub[] is true.
inj-event (PermissionGranted(Doctor_pub[])) in process 1.

_pub[])) ==> inj-event(PermissionGranted(Doctor_pub[]))
event(PermissionGranted(Doctor_pub[])) is true.
nj-event(Doctor -event(AccessGranted(Doctor_pub[])) in process 1.
g the process i
Completing
Starting query inj-event(DoctorAccessed inj-event (AccessGranted(Doctor_pub[]))
RESULT inj-event(DoctorAccessedEMR) ==> inj-event(AccessGranted(Doctor pub[1)) is true.

Query not attacker(PatientEMR[]) is true.
Query not event(AccessUsed) is false.

Query event(PermissionGranted(uid[])) ==> uid[] = Doctor_pub[] is true.

Query inj-event(AccessGranted(Doctor_pub[])) ==> inj-event(PermissionGranted(Doctor_pub[])) is true.

Query inj-event (D d(Doctor_pub[])) is false.

Fig. 6. Simulation results.

A. Experimental Environment

To evaluate the performance of this scheme, we developed
a prototype based on Hyperledger Besu' and the Java Pairing-
Based Cryptography (JPBC). This prototype consists of sev-
eral medical terminal devices supported by single-board com-
puters (Raspberry Pi 4 Model) and various EMRs generating
and requesting terminals simulated through software. To be
specific, the employed blockchain consists of 4 full-function
nodes and employs the Clique PoA consensus mechanism,
with a block generation time of 15 seconds. All nodes are
deployed within the same local area network to reduce the
impact of network latency on the experiments. To simulate
real medical data, we generate three different scales of EMRs
(5 KB, 50 KB, and 200 KB), structured in JSON format

Ihttps://www.kaleido.io/blockchain-platform/hyperledger-besu

containing patient information, medical reports, and diagnostic
records. Meanwhile, Alibaba Cloud is selected for deploying
cloud-based applications. The specifications of these devices
are described in Table IV.

TABLE IV
SPECIFICATIONS OF DEVICES.

Devices CPU (O} RAM Disk
ThinkPad Intel Core i7-10510U  Windows 10 64GB 256GB
El4 (4.6GHz)

Raspberry Pi  Cortex-A72 Ubuntu 2GB 32GB
4 (1.5GHZ) MATE 16.04

Alibaba ECS Intel Core i7-6700K Ubuntu 24.04 2GB 40GB

To be more general, we choose SHA-256 for hash com-
puting, AES as the symmetric encryption method, and 160-
bit ECC for generating BLS signatures. Here, we use Java to
implement cryptographic operations® as shown in Table V.

TABLE V

EXECUTION TIME OF FUNDAMENTAL OPERATIONS (MS).
Operation Symbol Execution time
Point multiplication tpm 9.87

AES encryption tae 4.21

AES decryption tad 2.36

Bilinear mapping tom 22.32

Hash (SHA-256) th 3.51

BLS signing tys 16.12

BLS verification the 17.37

ECDSA signing tes 11.23

ECDSA verification tew 14.65

In this prototype, Hyperledger-Besu 23.10 is adopted to
construct the blockchain network, and Ubuntu 24.04 is chosen
as the underlying operating system. In addition, the involved
smart contracts > (i.e., IMC, RAC, and RPSC, etc) are written
with Solidity 0.5.8 and deployed in peer nodes. Table VI shows
the running time of smart contracts. The execution time of
each contract remains stable, not exceeding 20 ms, which is
acceptable for healthcare applications.

TABLE VI
EXECUTION TIME OF SMART CONTRACTS (MS).

Smart Contract | Symbol Max Cost Min Cost | Average Cost
IMC time 13.78 5.23 8.46

RAC trac 19.34 7.32 12.14

RPSC trpsc 20.93 8.47 14.02

EACC teacc 25.21 11.07 18.43

B. Comparative Schemes

To facilitate the performance analysis of our scheme, we
introduce some state-of-the-art schemes [26], [29], [31], and
[32] as comparative benchmarks. Here, we provide a brief
introduction to these involved schemes as follows. (1) Peng
et al.[26] designed a patient-centric EMR sharing scheme
based on dual-blockchain and a tripartite authentication key

Zhttps://github.com/smu-lihongzhi/RBACSC/blob/main/RBACSC.java
3https://github.com/smu-lihongzhi/RBACSC/
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agreement (TAKA) based on identity. They established a dual-
blockchain system (MEDchain and SUPchain) to facilitate
secure and precise access control for EMRs. (2) Zhao et al.
[29] proposed BECAAC, a medical data sharing scheme that
utilizes consortium blockchain, edge computing, proxy re-
encryption, and group signatures. They developed a three-layer
architecture consisting of physical, storage management, and
application layers. This architecture features a cloud-edge-
local” storage platform, which enables data access control,
ensures data confidentiality, maintains patient anonymity, and
enhances accountability for malicious behaviors. (3) The au-
thors of [31] proposed a consortium blockchain-based EMR
sharing scheme that utilizes a novel proxy re-encryption and
attribute-based control model. This approach aims to achieve
personalized access while ensuring privacy. (4) Bian et al.
[32] developed a medical record storage system based on a
consortium blockchain, integrating Role-Based Access Control
(RBAC), Advanced Encryption Standard (AES), and Fine-
Grained Access Control with Storage Reduction (FASR). They
utilized Hyperledger-Fabric to create a system that offers
dynamic, efficient data access control by differentiating user
roles. Additionally, they improved storage efficiency through
FASR deduplication, ensuring the secure and efficient manage-
ment of electronic medical records (EMRs). Table VII presents
the comparison of the security properties of these schemes.

TABLE VII
SECURITY PROPERTIES.
Properties [26] [29] [31] [32] Ours
Key Agreement V4 X X IV V4
Anonymity VA V4 V4 X VA
Data Confidentiality X v/ V4 V4 VA
Traceability X X X X VA
Identity Authentication v V4 V4 X V4
Data Integrity v/ X X X VA
Blockchain-based VA V4 V4 IV v
Formal Security Proof v v vV X v
Resistance to Cyberattacks | +/ v V4 IV VA

Table VIII provides a comprehensive comparison of the key
technical features among the benchmark schemes. As shown,
all compared schemes adopt consortium blockchain as the
underlying infrastructure, ensuring decentralized trust. Specif-
ically, our scheme uniquely combines proxy re-encryption
(PRE) with a dynamic accumulator for efficient identity man-
agement, while employing RBAC enhanced by smart contracts
for permission verification. In contrast, schemes [26], [29],
and [31] predominantly rely on attribute-based access control
(ABAC), which introduces higher computational overhead dur-
ing policy matching. Furthermore, our scheme distinguishes
itself by implementing on-chain hash anchoring for end-to-
end integrity verification, a feature not fully addressed in [26]
and [32].

C. Analysis of Computational Overhead

We analyze the computational overhead of the proposed
scheme by theoretically analyzing the contained cryptographic
operations and the smart contract calls. The specific analysis
process is described as follows.

« Identity registration: During the registration of entities, F;
performs one point-multiplication operation to generate
Pubk(g,) and further performs an identity encryption
operation. Subsequently, TA performs one AES decryp-
tion, a smart contract invocation (IMC), and one digital
signature. Therefore, we define the computational cost of
this phase as T( cq) = tpm + tae + tad + Lime + Los-

e Roles assignment: The method AssignRole(-) performs
one signature verification for the received Proof(ip,).
and invokes the smart contract (RAC) to assign the
corresponding role to E;. Hence, the corresponding com-
putational cost can be defined as T(;q5) = tpv + trac-

o Permission granting: In this phase, E; first constructs a
data access request AR by performing one hash operation
and a message signing. Aferward, E; calls EACC to
obtain its requested access permissions. Therefore, the
computational cost can be further calculated as T{,q,) =
th + tos + thy + teace-

e EMRs sharing: During permission verification, E; first
constructs a request with its permission credential
Proof(qecessy and a signature Sig(,r) for Proof(sccess)-
After that, the EMR owner F; performs the permission
verification operation by invoking two smart contracts
(i.e., EACC and IMC) and checking Sig(,y). In addition,
E; performs two point multiplications and one hash op-
eration during data re-encryption. In the EMR decryption
stage, there exist two point multiplications and three
hash operations. Therefore, the computational cost of the
EMRs sharing phase is T(csn) = tbs +tow +time T leace +
At pyn + 4.

Therefore, the computational cost of our scheme can be ex-
pressed as Tt(oozzs) = Treg)y+ T (ras)+ T (peg) + T(esn) = 239.86
(ms). It is noted that this computational cost 75,5 contains the
computational overhead of identity registration, role allocation,
permission granting, and EMRs decryption. To further evaluate
the performance in terms of computational overhead, some
state-of-the-art schemes [26], [29], [31], and [32] are selected
for comparisons. In Peng et al.’s scheme [26], the proposed
protocol mainly involves user registration, EMR management,
and EMR sharing phases. There exist two point multiplications
and four hash operations during the registration phase, so
the correspondin% computational cost of this phase can be
calculated as T((ffg) = 2tpm +4ty,. Similarly, the computational
overhead of EMR management and EMR sharing are defined
a8 T{o) = 2l + A + Tl +2(bes o), Ty = 2Hom +
4tpm + 8tp, respectively. Consequently, the corresponding
computational cost is defined as Tt(o2ti)l = 10tp,, + 4ty +
19ts + 2(tes + tey) = 305.83 (ms). Zhao et al.’s protocol [29]
mainly contains EMRs creating, EMRs sharing, and tracing
phases, the computational cost of [29] can be calculated as
T2 = Aty +6th + Aty +3(tes+ten) +2(tae+taa) = 240.6
(ms). In the scheme presented by Liu et al. [31], there exist
two point multiplications, three hash operations during the
registration process, four bilinear-mapping operations, two
ECDSA signing operations, and eight hash operations during
EMR sharing. Hence, we can define the computational cost

as i’l(ftlﬁz = 2tpm + 4lom + 2(tes + tey) + 11t = 354.17
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TABLE VIII
COMPARISON OF KEY TECHNICAL FEATURES

Scheme Blockchain Encryption Access Control Identity Management Integrity Verification
Our Scheme Consortium PRE + AES + BLS RBAC + Smart Contracts | Dynamic Accumulator | On-chain hash anchoring
Peng et al. [26] | Dual-Blockchain TAKA + Symmetric ABAC Identity-based Not specified
Zhao et al. [29] Consortium PRE + Group Signatures ABAC Group signatures Edge computing based
Liu et al. [31] Consortium PRE + CP-ABE ABAC Attribute-based Blockchain-based
Bian et al. [32] Consortium AES + FASR RBAC Role-based Not specified

(ms). When it comes to Bian et al’s scheme [32], there
exist four AES encryption/decryption operations, five ECDSA
signing operations, four point multiplications, and eight hash
operations during EMRs access control. Therefore, we can
calculate the corresponding computational cost as Tt(jti)l =

A(tae + tad) +5(tes + tey) + dtpm + 8ty = 223.24 (ms). Table
IX presents the comparison of computational cost.

TABLE IX
COMPARISON OF COMPUTATIONAL COSTS (MS).

Scheme Computational Cost Total

Peng et al’s [26] | 10tpm + 4tpm + 198, + 2(tes + tew) | 305.83

Zhao et al’s [29] | 4tpp, + 6t + 4tpm + 3(tes + tew) + | 240.6
2(t¢l€ + tad)

Liu et al.’s [31] 2tpm + Atpm + 2(tes + tew) + 11t 354.17

Bian et al’s [32] | 4(tact+tqa)+5(testtew)+4tpm+8t, | 223.24

Our Scheme 5tpm + 3(tbs + tow) + Dtpm + 5tn, + | 239.86
2timc + 2teacc + trac

We conduct simulations for this experiment based on the
experimental environment outlined in Section VII-A. In this
section, we compare the proposed scheme with the protocols
of [26], [29], [31], and [32] in terms of the request-response
latency. Specifically, we evaluate the data-sharing request
processing capability by varying the number of concurrent
access requests, legitimate users, and network nodes.
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Fig. 7. Response latency with different access requests.

Given a fixed-size Electronic Medical Record (EMR) and a
consistent network size, we varied the number of concurrent
requests from 100 to 1000 and calculated the average response
latency for each access request. The results are illustrated in
Fig. 7. It is important to note that “access request” refers
to authorized users requesting a specific EMR, excluding

user registration and access authorization processes. As shown
in Fig. 7, the response latency increases with the number
of concurrent access requests. This rise in latency can be
attributed to the increased network load and system demands
that come with higher request volumes. Our approach achieves
the lowest response latency due to the minimal cost of access
permission verification. In comparison to the Attribute-Based
Access Control (ABAC) model presented in references [26]
and [29], the Role-Based Access Control (RBAC) model used
in our scheme is more straightforward and efficient, as it does
not necessitate the validation of numerous attributes. Addition-
ally, the scheme referenced in [31] incurs the longest response
latency due to the maximum number of time-consuming
bilinear mapping operations it performs. While [32] utilizes
a concise and efficient RBAC model, it lacks an identity
authentication mechanism, leading to a significant number of
signature verification operations during EMR sharing.
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Fig. 8. Response latency with different number of legitimate users.

Additionally, we further conduct simulations to analyze the
impact of different numbers of legitimate users on the response
latency. Specifically, we increase the number of legitimate
users in the system from 200 to 1200 while keeping the
number of concurrent requests fixed at 200. As shown in
Fig. 8, we observe that the three protocols (i.e., Peng et al.’s
[26], Zhao et al.’s [29], and Liu et al.’s [31]) based on ABAC
are significantly impacted by the number of legitimate users.
As the number of users increases, the user attributes in the
ABAC model also increase, resulting in higher latency. Mean-
while, the ABAC model-based authorization process involves
retrieving user attributes and matching them against access
policies. Consequently, this ultimately increases latency in the
permission verification phase. In contrast, the RBAC-based
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Fig. 9. Response latency with different number of blockchain peer nodes.

schemes (i.e., our scheme and Bian et al.’s [32]) demonstrate
lower response latency with minimal fluctuations, as the role-
based permission verification is independent of the number
of legitimate users, and access permissions are only bound
to roles. Even though the number of legitimate users in the
system continues to increase, the response latency of our
scheme remains relatively stable. Moreover, although both our
scheme and [32] adopt the RBAC model, our scheme demon-
strates superior latency performance through the integration
of dynamic accumulators and distributed smart contracts for
rapid permission verification.

As shown in Table VII, both our proposed scheme and the
comparative solutions are implemented on blockchain systems.
In these systems, the size of the network (the number of nodes)
is a crucial factor that directly affects consensus efficiency
and data synchronization latency in decentralized ledgers. To
evaluate the scalability of our scheme, we maintain a constant
number of legitimate users while varying the scale of the
blockchain nodes. We analyze the impact of this variation
on response latency under concurrent requests. As illustrated
in Fig. 9, we measure the average response latency of the
involved schemes for concurrent access requests with 20 and
40 peer nodes in the blockchain, respectively. When comparing
Fig. 9 (a) with Fig. 9 (b), we observe that all blockchain-based
schemes experience increased request response latency as the
number of network nodes increases. For instance, in Zhao et
al.’s scheme [29], when there are 500 concurrent requests and
20 network nodes, the average response latency is 117 ms.
However, when the number of network nodes rises to 40, the
average response latency increases to 140 ms. Similarly, other
schemes, including our own, as well as those by Peng et al.
[26] and Liu et al. [31], show a consistent trend where latency
grows with the expansion of network nodes. In contrast, our
scheme is less influenced by fluctuations in blockchain net-
work nodes because we utilize the Proof-of-Authority (POA)
consensus mechanism. This approach allows for blockchain
verification through predetermined authority nodes, thereby
simplifying the consensus process. Additionally, the imple-
mentation of dynamic accumulators helps to minimize retrieval
delays for identity information during permission verification.

D. Communication Overhead

To evaluate the communication overhead of this scheme,
we focus on the transmitted messages involved in the phases
of identity registration, role assignment, permission granting,

and EMR sharing. To calculate the communication cost, we
assume that the size of identities, pseudonyms, and timestamps
is 4 bytes. Furthermore, we set the average lengths of hash
values, encrypted messages, ECDSA signatures, and BLS
signatures to 32 bytes, 64 bytes, 64 bytes, and 96 bytes,
respectively. Additionally, the length of elements in G and
Gy is 48 bytes, while the size of an element in Z, is 4 bytes.
Table X presents the related notations used in the subsequent
computation of communication overhead.

TABLE X
THE RELATED NOTATIONS (BYTE)
Notation | Length | Description
Sip 4 Length of identities
Spm 4 Length of pseudonyms
Srs 4 Length of timestamps
Sus 32 Length of hash value
SEcc 64 Length of ECDSA signature
SBLS 96 Length of BLS signature
Spk 48 Length of public key
Sem 64 Length of symmetric-encryption results
Sa 48 Length of the element in G; or Gg
Sz, 4 Length of the element in Zq

According to the above-mentioned parameter settings, our
scheme mainly contains M; = {CT{(;p), TS} and My =
{SysID;, Proof(ip,), Na, Ws, TS} during the registration.
Hence the corresponding communication cost is C{;‘frs) =
|CTrp|+2|T'S|+|SysI D;|+|Proof 1 p,)|+|Wi|+|Ad| =
Sem + 257s + Spm + Sprs + 2S¢ = 268 (bytes).
In the role assignment phase, there exists two messages
as: M3z = {UAg,), Proofp,),TS,Sig;} and My =
{Role,T'S}, so the corresponding communication cost is

(oursy = [UA@m)|+|Proofp,)|+2|TS|+|Sigi|+|Role|=
Spm +28pLs+2875+ Sz, = 272 (bytes). When it comes to
the permission granting procedure, there exists a data access
request AR = {Fid, Pubkg,), Role(g,), TS, Sig;}, and the
length of AR is |[AR|= Spys+Spx +Sz, +Sprs +Srs. In
addition, the permission credentials Proof(sccess) i generated
and transmitted to entities, we can further define the length as
|Pr00f(access)|: 382,1 +8us +Spr +28rs = 100 (bytes).
Thereby, the corresponding communication of the permission
granting phase is Cf{f’jrs) = [AR|+|Proof(sccess)|= 256
(bytes). Finally, the communication overhead in the EMR
sharing phase is composed of permission verification and
ciphertext transmission (i.e., {Proofiaccess): TS, Sigpr)}
and {Cy, C3, Tidpqr,)}). and we define the communication
cost as C’fohqfrs) = 3SZq+SH5+SPK+3ST5+SBL5+285,*+
Sus = 328 (bytes). Therefore, the total communication cost
of this scheme 18 Clours) = D icreg.ass pgt.shr C(iours) =1124
(bytes). Fig.10 presents the communication cost of the
involved phases of our scheme.

In Peng et al.’s scheme [26], there are five rounds of message
interaction with a total communication overhead of 1379 bytes
(i.e., 11032 bits). With respect to the communication cost of
Zhao et al.’s [29], there exist six messages, such as M§29) =
{CTm, Pubk, Sig(ECC)a TS}, MgQg) = {Sig(Ecc), Resp €
0,13, TS,CT,}, MY = {g:* € G, Sigipcey, TS, HS},

./\/15129) = {Ret € Z,, Sigscc),e1 € G, ex € G, Pubk, TS},
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M = {Sigpcey, Addr, Pubk, PM;, TS}, and M$? =
{Pubk,CT;,rand € Zg,w € G, Sigpcc), T'S}. Hence, the
communication cost of [29] is C(a9) = 1064 (bytes). In
addition, the communication cost of Liu et al.’s [31] is around
1212 bytes, which includes the communication overhead of
identity registration, data storage, and data access. Similarly,
the communication cost of [32] is just about 873 bytes
due to its lack of security properties such as data integrity
and identity authentication. Fig. 11 shows the comparison
results. We can observe that this proposed scheme exhibits
a communication overhead that is comparable to that of Zhao
et al’s scheme [29], being only slightly higher than Bian et
al’s scheme [32]. Compared with schemes of [29] and [32],
our scheme provides full security properties with acceptable
communication overhead.
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Fig. 11. Comparisons of communication overhead.

VIII. CONCLUSION

This work presents a patient-centered electronic medical
record (EMR) access control scheme that integrates Role-
Based Access Control (RBAC) with smart contracts. This
approach enables fine-grained and decentralized management
of data access. Additionally, we have designed a novel proxy
re-encryption algorithm to ensure the confidentiality of EMRs
during sharing. Formal security verification is conducted us-
ing BAN-logic and ProVerif, demonstrating essential security
properties such as entity anonymity and data integrity. Our

performance evaluation confirms that this hybrid RBAC-smart
contract scheme is significantly more efficient than benchmark
schemes, showing lower computational and communication
overhead with stable response times. This proposal effectively
mitigates vulnerabilities related to centralized trust. It also
overcomes the privacy-preserving limitations of existing EMR
systems. Despite the promising performance and security
features demonstrated by our hybrid RBAC-smart contract
scheme, it is important to acknowledge its inherent limitations,
particularly regarding its dependency on blockchain perfor-
mance. The current implementation relies on a consortium
blockchain with a Proof-of-Authority (PoA) consensus, which,
while efficient in controlled environments, may face scalability
challenges in highly dynamic or large-scale oM T deployments
with massive concurrent access requests. In future research, we
will focus on three main directions: 1) optimizing consensus
mechanisms to minimize the impact of blockchain node scale,
thereby enhancing scalability for large medical networks; 2)
improving the efficiency of dynamic accumulators for exten-
sive identity management and integrating lightweight cryptog-
raphy for IoT-enabled healthcare systems; and 3) conducting
large-scale real-world tests and exploring cross-chain interop-
erability to facilitate the sharing of EMRs across institutions.
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