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Abstract—The growing demand for smart cities necessitates
advanced solutions to promote urban sustainability. Digital Twin
(DT) technology offers transformative potential by synchronizing
virtual and physical environments in real time and enabling
capabilities such as monitoring, forecasting, simulation, and pre-
scription. However, existing smart city approaches often empha-
size virtual representation while lacking core DT functionalities
and a unified, extensible framework. This paper introduces a
comprehensive DT framework designed to support a broad range
of urban applications with enhanced operational capabilities.
Validated using real-world air quality data, the proposed system
demonstrates significant improvements in emissions reduction, air
quality monitoring, and pollutant management. Key contributions
of this work include a function-rich and generalizable DT frame-
work, AI-driven adaptability, and extensive validation through
predictive analytics. This study establishes a replicable blueprint
for metropolitan-scale DTs, balancing comprehensive functionality
with responsive, data-driven urban analytics.

Index Terms—Digital Twin, Smart City, Air Quality Manage-
ment, Artificial Intelligence

I. INTRODUCTION

The rapid growth of urban environments and the increasing
demand for sustainable development have spurred global inter-
est in innovative solutions for smart cities. Within this evolving
landscape, Digital Twin (DT) technology has emerged as a
transformative tool, offering a dynamic, virtual representation
of physical urban systems that continuously synchronize with
real-time data to reflect the city’s behavior, conditions, and
attributes [1]. By enabling real-time monitoring, predictive
analytics, and scenario simulations, DTs support improved
connectivity, optimized resource utilization, enhanced infras-
tructure efficiency, and stronger environmental sustainability
initiatives.

Effective air quality management, an essential component of
smart city development, requires accurate, real-time monitoring
and future insights. These capabilities empower urban planners
to reduce vehicle emissions, improve air quality, and support
broader sustainability goals. Digital Twin technology offers
a data-driven foundation for modeling pollution dynamics,
including emissions and air quality indices. However, while
existing smart city DTs address environmental monitoring, they
often lack advanced functionalities and a unified, extensible
framework for comprehensive pollution control across diverse
urban landscapes.

Existing smart city DTs are application-specific and predom-
inantly emphasize virtual 3D visualization [2], [3], rather than

incorporating advanced digital twin functionalities such as pre-
dictive forecasting, “what-if” scenario analysis, and diagnostic
capabilities. This limits their broader applicability and impact.

This paper addresses these limitations by introducing a smart
city digital twin framework. Focusing on real-time air quality
management, the proposed architecture is validated using data
from IoT-based air quality sensors deployed across Madrid. Our
framework supports advanced DT functionalities by integrating
dynamic data processing and deep learning models to en-
able forecasting, simulation, and operational insights. Through
comprehensive experimentation, we evaluate the effectiveness
of this approach in managing city-scale applications, thereby
establishing a robust foundation for next-generation smart city
digital twins.

The key contributions of this paper are as follows.
1) A comprehensive framework is introduced for Urban

Digital Twins that allows implementing advanced digital
twin functionalities.

2) An AI-driven framework is incorporated into the archi-
tecture that adjusts prediction models based on real-time
urban dynamics and changing conditions.

3) The developed DT architecture supports generalizability,
enabling its application across various smart city do-
mains.

4) The feasibility of the proposed methodology is validated
through a case study of real-time air quality monitoring
using an IoT network deployed in Madrid.

II. RELATED WORK

In recent years, urban Digital Twin implementations have
gained global attention, with notable examples in Helsinki,
Finland [4], Rennes, France [5], Berlin, Germany [6], Florence,
Italy [7], Singapore1 and Victoria, Australia2. However, these
solutions are typically designed for specific use cases, limiting
their adaptability to broader smart city applications, and most of
these DT implementations primarily focus on 3D virtual model-
ing rather than leveraging key digital twin functionalities, such
as real-time prediction, dynamic simulation, and prescriptive
analytics.

While the visualization of city characteristics enhances urban
connectivity, the prediction and simulation functionalities of

1https://oecd-opsi.org/innovations/virtual-twin-singapore/
2https://www.land.vic.gov.au/maps-and-spatial/digital-twin-victoria
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Fig. 1: Overview of the System Architecture

a digital twin further optimize city operations through proac-
tive management. Both prediction and simulation rely heavily
on time-series data. In this context, Recurrent Neural Net-
works (RNNs), particularly Long Short-Term Memory (LSTM)
networks, have emerged as state-of-the-art models for time-
series prediction. Although Gated Recurrent Units (GRUs) are
also employed, LSTM networks often demonstrate superior
predictive performance [8]. Prior studies have validated the
effectiveness of LSTM models in urban prediction tasks. For
instance, combining traffic and noise pollution data has been
shown to improve prediction accuracy [9], while incorporating
surrounding traffic flow data can further enhance model perfor-
mance [10].

In contrast, existing solutions face several key limitations,
including limited functionality stemming from a primary focus
on virtual 3D visualizations, and restricted generalizability due
to application-specific designs. To address these challenges, we
propose a comprehensive urban digital twin framework capable
of supporting diverse digital twin functionalities, demonstrated
through an air quality monitoring use case in the city of Madrid.

III. SYSTEM ARCHITECTURE

In this section, we describe the proposed framework for
urban Digital Twins. As shown in Figure 1, the proposed
architecture implements four types of digital twins: descriptive,
predictive, prospective, and prescriptive, each with unique
functionalities. An architectural view of the proposal and the
components involved in the different types of digital twins for
smart city air quality management is detailed below.

A. Descriptive Digital Twin

The Descriptive DT captures the smart city’s current and
historical states, encompassing static and dynamic characteris-
tics. It provides a real-time snapshot by accessing air quality
data collected from IoT sensors deployed across Madrid3.
At the data injection chain, incoming data are preprocessed
to validate the time-series consistency and ensure sufficient
information before being transformed into the Next Generation
Service Interface-Linked Data (NGSI-LD) format4. The data
are then injected into the context broker using the “Air Quality
Observed” data model from Smart Data Models5. It is important
to note that the framework is designed so that it could support
various types of smart city applications, such as traffic manage-
ment. These data can be connected to the proposed architecture
by leveraging appropriate smart data models. For instance, for
traffic information “Traffic Flow Observed” can be utilized
at the Descriptive Data Models module. All descriptive data
are stored in Stellio6, an open-source, NGSI–LD–compliant
context broker built on linked-data principles, which provides
a standardized API. The Descriptive DT also supports time-
based filtering, aggregation, and other augmentation functions
on time-series data.

B. Predictive Digital Twin

The Predictive DT extends the descriptive DT by estimating
future states based on historical and current data of the smart

3https://datos.madrid.es/portal/site/egob/
4https://www.etsi.org/committee/cim
5https://smartdatamodels.org/
6https://stellio.readthedocs.io/en/latest/



Fig. 2: Actual, Predicted and Simulated Air Quality Data for 28079008 Air Monitoring Station Different Pollutants

city. These predicted values are generated using prediction
models in the supporting functions module. In our implemen-
tation, predictive AI models are dynamically trained using the
data from air quality monitoring stations. The predictions are
generated on demand, and they can be either stored in the
context broker or provided to external applications.

C. Prospective Digital Twin

The Prospective DT extends predictive capabilities by en-
abling “what-if” analysis. This is done by modifying the
current state to simulate intended actions, and then executing
predictions on this altered state. It allows alterations to the air
quality data, and simulations are performed using the prediction
AI models.

D. Prescriptive Digital Twin

The Prescriptive DT determines the actions required to
achieve a desired target state. It performs iterative “what-
if” analyses on air quality data to evaluate the impact of
potential alterations. This twin leverages a prescription service,
which proposes successive adjustments, and utilizes AI-based
prediction models to assess and guide the system toward the
intended outcomes.

Moreover, the API gateway enables external applications and
users to access the smart city DTs. We adopted the open-source

FastAPI library7 to implement a RESTful interface for seamless
interaction with the DTs. The data manager plays a critical
role in ensuring smooth data flow and facilitating control
information exchange between the DTs and the context broker.
It communicates with the context broker via its REST API to
access and manage stored data. During real-time monitoring,
prediction, simulation, and prescriptive analysis processes, the
data manager retrieves the necessary air concentration data to
support accurate forecasting and analysis. It also handles data
retrieval tasks required for LSTM model training.

The proposed system offers a holistic framework that sig-
nificantly enhances both functionality and generalizability. In
contrast to existing architectures, it streamlines development
processes and places greater emphasis on digital twin modeling,
making it particularly well-suited for smart city applications.

IV. EXPERIMENTS AND RESULTS

The urban digital twin implementation was validated using
hourly air quality data from Madrid8, collected between January
and April 2024. The learning models used in predictive DT
and prospective DT has the specifications of layer 1 units =
150, layer 2 units = 100, dropout rate =0.03, learning rate =
0.01, time steps = 24, epochs = 100 with early stopping, batch

7https://fastapi.tiangolo.com/
8https://datos.madrid.es/portal/site/egob/



size = 32, activation function ReLU, Optimizer = Adam, Loss
function = MSE. The experiments evaluate the performance
of descriptive, predictive, prospective, and prescriptive DTs for
air quality data. To achieve this, we conducted comprehensive
testing using LSTM models trained on pollutant concentration
readings from air quality monitoring stations and recorded their
outputs and error metrics.

TABLE I: Prescriptive DT Recommendations for Air Pollutant
Reduction to Achieve Target Weekly Averages (April 1–8)

Pollutant Alternation Required
for the Current State

Expected Average
ug/m3

O3 Reduction of 35% 25
NO2 Reduction of 39.5% 25

PM10 Reduction of 49.5 % 9
NOx Reduction of 31.5% 45

TABLE II: Performance of the Prediction Model based on
MAE, MSE, and RMSE for different Air Monitoring Stations

Air Monitoring Station Pollutant MAE MSE RMSE

28079004

NOx 0.0307 0.0022 0.0472
CO 0.0270 0.0013 0.0355
NO 0.0304 0.0026 0.0506
NO2 0.0503 0.0046 0.0675

28079008

NOx 0.0145 0.0008 0.0276
CO 0.0084 0.0002 0.0132
NO 0.0100 0.0006 0.0241
NO2 0.0628 0.0067 0.0817
PM10 0.0235 0.0009 0.0299
O3 0.0707 0.0079 0.0891
SO2 0.0019 0.0000 0.0028
TOL 0.0230 0.0014 0.0375
EBE 0.0092 0.0036 0.0597
PM25 0.0459 0.0033 0.0577

28079017

NOx 0.0260 0.0018 0.0418
CO 0.0260 0.0016 0.0403
NO 0.0260 0.0052 0.0724
NO2 0.0621 0.0068 0.0824

28079035

NOx 0.0688 0.0129 0.1138
CO 0.0504 0.0046 0.0678
NO 0.0432 0.0055 0.0739
NO2 0.1072 0.0168 0.1295
O3 0.0765 0.0118 0.1085
SO2 0.0063 0.0001 0.0078

Figure 2 presents the actual, predicted, and simulated pol-
lutant concentrations—corresponding to the outputs of the
Descriptive, Predictive, Prospective, and Prescriptive DTs, re-
spectively—for O3, NO2, PM10, and NOx at the air quality
monitoring station 28079008. The results demonstrate that the
predicted values are closer to the observed data across all pol-
lutants. This is because the fact that the temporal dependency-
capturing capability of LSTM networks effectively models
pollutant dispersion patterns.

Table I outlines the recommendations provided by the pre-
scriptive DT to reduce pollutant levels to meet target average
values for the week of April 1 to April 8. According to the
results, to achieve a target of 25µg/m³ for O3, a reduction of

35% should be done on the data. For NO2, reaching 25µg/m³
necessitates a 39.5% decrease. PM10 must be reduced by
49.5% to meet a 9µg/m³ target, and NOx requires a 31.5%
reduction to reach an average of 45µg/m³. The simulated values
in Figure 2 show the Prospective DT’s output when imple-
menting the Prescriptive DT’s recommendations. This same
prescriptive approach can be applied to determine actionable
changes required to achieve other target environmental states.

Table II presents the prediction errors, quantified using Mean
Absolute Error (MAE), Mean Squared Error (MSE), and Root
Mean Squared Error (RMSE). The observed trend of improved
Predictive DT performance across the air quality monitoring
stations is further validated by these error metrics, reinforcing
the efficacy of the approach.

V. CONCLUSIONS

In this paper, we propose a methodology to implement
different types of smart city digital twins. Our framework
addresses key limitations of existing implementations, includ-
ing application specificity and functionality constraints. The
methodology has been validated through the use case of air
quality management for the city of Madrid. The results demon-
strate the advanced functionality of the integrated digital twins
for air quality management. Future work will focus on integrat-
ing additional smart city applications, incorporating data from
varied sensing modalities, and refining model generalization to
further enhance the broad applicability of digital twins in smart
city environments.
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