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Abstract

Anomaly detection is crucial for maintaining the stability and security of sys-
tems. However, anomaly detection systems often generate numerous false pos-
itives or irrelevant alerts, which obscure genuine security threats. To both re-
duce false positives in time series detection and accurately identify the source of
anomalies, leveraging artificial intelligence techniques has emerged as a promis-
ing solution. These techniques can analyze strong temporal correlations and
dynamic variations across different data frames. Existing detection methods
face two primary challenges leading to false positives or negatives: (i) detect-
ing anomalies in multivariate time series requires accounting for both temporal
dependencies and complex interactions between variables; and (ii) traditional
fixed-threshold approaches often struggle to adapt to dynamic environments. To
address these issues, this paper proposes an anomaly detection method based on
the Mixer-Transformer architecture. By combining the Mixer model with the
Anomaly Transformer, the proposed method effectively captures global depen-
dencies by alternately modeling interactions along both the channel and time
dimensions, thereby enhancing its ability to extract complex spatiotemporal
features. Additionally, an adaptive threshold update mechanism is employed to
dynamically adjust the anomaly detection criteria in response to data fluctua-
tions. The F1 scores on three real-world datasets—SMAP, MSL, and PSM—are
97.49%, 95.18%, and 98.20%, respectively. These results demonstrate that the
proposed method outperforms existing technologies in reducing false positives
and enhancing the detection accuracy of multivariate time series anomaly de-
tection.
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1. Introduction

With the rapid advancement of artificial intelligence (AI) and the Internet of
things (IoT), critical systems—such as industrial production, intelligent trans-
portation, financial transactions, and medical monitoring—are generating vast
amounts of time-series data [1, 2, 3]. These data not only reflect system’s opera-
tional status but also contain valuable insights into equipment performance and
potential faults. Anomaly detection in time-series data is essential for ensuring
the secure operation of these systems, optimizing performance, and preventing
losses. It helps identify hidden fault patterns, detect sudden abnormal events,
and recognize potential risk signals, enabling timely intervention before issues
escalate [4]. As a result, anomaly detection plays a vital role in modern in-
dustrial and intelligent systems, making it a core technology for data-driven
security monitoring.

Time-series anomaly detection continues to face several challenges. First,
anomalies are typically rare and diverse [5, 6], often hidden within large vol-
umes of normal data. Anomaly detection systems are commonly burdened by
numerous false positives or irrelevant alarms [7], which can obscure genuine se-
curity threats, waste resources, and reduce detection efficiency, all detrimental
aspects given that models need to possess robust anomaly recognition capa-
bilities. Second, time-series data often exhibit non-linear, non-stationary char-
acteristics and complex inter-variable correlations [8, 9], presenting significant
modeling challenges for traditional detection methods. Furthermore, many ex-
isting approaches rely on fixed thresholds to identify anomalies, which have
notable limitations. Fixed thresholds fail to account for the dynamic variations
and local fluctuations inherent in time-series data, making them poorly suited to
handle the complex and variable nature of anomaly distributions. As a result,
detection performance may degrade. These challenges highlight the need for
more flexible and intelligent techniques to effectively address the complexities
of time-series anomaly detection.

In response to the challenges outlined above, recent research has proposed
various AI-based methods, such as modeling global temporal dependencies us-
ing self-attention mechanisms and combining generative models to capture the
dynamic features of time-series data [10]. However, as shown in Figure 1, these
methods have not fully explored cross-dimensional interactions within multivari-
ate time-series data and are susceptible to interference from noise in scenarios
with sparse anomalies. Additionally, the use of fixed-threshold approaches for
anomaly detection across different application scenarios presents notable limi-
tations.

To address the aforementioned issues, we propose a time series anomaly
detection method that integrates multi-feature fusion and adaptive threshold
adjustment. This approach combines the Mixer architecture with the Anomaly
Transformer model to simultaneously model the interdependencies between the
time dimension and feature channels. Specifically, the Mixer architecture excels
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at capturing both local and global dependencies in time series data by employ-
ing a multi-channel alternating modeling mechanism. Meanwhile, the Anomaly
Transformer model enhances the capture of long-range dependencies through its
self-attention mechanism, boosting the model’s ability to extract complex dy-
namic spatiotemporal features. To enhance adaptability, an adaptive threshold
update mechanism is introduced, which dynamically adjusts anomaly detection
criteria based on shifts in the model’s predictions and historical data. The
threshold is automatically modified in response to changes in data distribution,
ensuring the consistency and accuracy of detection criteria and data features.
Consequently, the proposed model effectively handles unstable or changing envi-
ronments, providing more flexible and accurate anomaly detection capabilities.
The main contributions of our work are as follows:

• The proposed Mixer-Transformer framework introduces hybrid feature fu-
sion and alternately models the interaction between channel and time di-
mension information, thereby improving performance in handling complex
time series data, particularly with long time spans and multi-dimensional
data;

• An adaptive threshold update mechanism is designed to automatically
adjust the threshold according to dynamic changes in the data, enabling
the model to handle different anomaly patterns with greater flexibility and
adaptability;

• The effectiveness of the proposed method is verified on three real-world
datasets through ablation experiments, which comprehensively analyze
the contribution of each component to overall performance and confirm
the key role of the Mixer-Transformer architecture and adaptive threshold
mechanism in enhancing anomaly detection capabilities.

The rest of this paper is organized as follows: Section 2 reviews related works.
Section 3 outlines the research questions. Section 4 presents the proposed Mixer-
Transformer framework. Section 5 details the algorithms and execution steps.
Section 6 discusses the comparison and ablation experiments with the baseline.
and Section 7 concludes the paper and outlines future research directions.

2. Related Work

In the field of anomaly detection, researchers have proposed various AI-based
methods to address anomalies in different types of data. Early research focused
primarily on statistical and traditional machine learning models. However, with
advancements in technology, deep learning and other sophisticated models have
gradually become mainstream, providing more effective solutions to the com-
plexity and nonlinearity of time-series data. The goal of anomaly detection
is to identify behaviors or data points that deviate from normal patterns, a
process that requires a deep understanding of the data’s features and accurate
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modeling. As data dimensions and complexity increase, the limitations of tradi-
tional methods have become more evident, driving the continuous development
of new approaches based on deep learning, graph neural networks, and adaptive
thresholds.

Table 1: Comparison of Methods Based on Various Criteria (✓: Fully supported, △: Partially
supported, ×: Not supported)

Category Method/Model Temporal De-
pendency

Multivariate
Interaction

Threshold
Mechanism

Adaptability
to Dynamics

Statistical & ML ARIMA, Isolation
Forest [11, 12, 13,
14, 15]

△ (Linear, lo-
cal)

× × (Fixed) ×

Deep Learning Basics LSTM, CNN,
Transformer
[16, 17, 18, 19, 20,
21, 22, 23, 24, 25]

✓ (Nonlinear,
global)

△ (Implicit) × (Fixed) △ (Partial)

GNN + Adaptive Threshold GNN-based models
[19, 26, 27, 28, 29,
30]

✓ (Graph-
based)

✓ (Explicit via
graph)

✓ (Adaptive,
e.g., EWMA)

✓

Proposed Method Mixer-Transformer
+ Dynamic Thresh-
old

✓
(Global+Local
via Mixer-
Transformer)

✓ (Explicit
channel-time
mixing)

✓ (Adaptive,
dynamic up-
dates)

✓

2.1. Anomaly Detection in Statistics and Machine Learning

Traditional methods for anomaly detection primarily rely on statistical and
conventional machine learning models to capture the characteristics of time-
series data. Statistical methods detect anomalies by analyzing the mean, vari-
ance, and autoregressive properties of time series (e.g., ARIMA models) [11,
12, 13]. However, these methods assume data stationarity, making it difficult
to handle the complex patterns of non-stationary or nonlinear data encoun-
tered in real-world scenarios. Unsupervised learning methods, such as Isolation
Forest, identify outliers by learning the distribution of normal data [14, 15] .
While these methods address some of the limitations of statistical approaches,
they struggle to model the dependencies in high-dimensional, multivariate data.
Furthermore, fixed-threshold methods, which are commonly used for anomaly
detection, fail to account for the dynamic changes and local patterns inherent
in time-series data.

2.2. Anomaly Detection Based on Deep Learning

The rise of deep learning has introduced a new paradigm in time-series
anomaly detection, significantly enhancing detection performance through non-
linear feature extraction and complex pattern modeling. Recurrent networks,
such as LSTM, effectively capture temporal dependencies [16, 17, 18], while
convolutional neural networks (CNNs) excel at extracting local features [19].
However, both methods struggle to handle long-range dependencies and multi-
variate interactions. In recent years, Transformer-based self-attention methods
have shown exceptional performance in time-series modeling [20, 21, 22, 23].
For example, the Anomaly Transformer [20] detects anomalies by comparing
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the differences between prior-associations and series-associations in time-series
data. While the self-attention mechanism facilitates global modeling of rela-
tionships [24], existing methods still leave room for improvement, particularly
in terms of modeling multivariate feature interactions and representing anomaly
patterns[25].

2.3. Anomaly Detection in Multivariate Time-Series with Adaptive Thresholds

Anomaly detection in multivariate time-series data requires addressing both
temporal dependencies and complex interactions between variables [19, 26, 27,
28]. Some studies have leveraged Graph Neural Networks (GNNs), to model
the relationships between variables as a graph structure [29]. However, these
approaches often suffer from high computational complexity and limited per-
formance in scenarios with sparse anomalies. Additionally, traditional fixed-
threshold anomaly detection methods lack the flexibility needed to effectively
adapt to the dynamic patterns of time-series data. Recently, some studies have
explored adaptive thresholding [30], dynamically adjusting detection criteria
using techniques such as sliding windows and exponentially weighted moving
averages, thereby enhancing the model’s ability to adapt to complex anomaly
patterns.

3. Problem Description

Anomalies in time series data are typically characterized by their rarity and
weak association with the overall dataset. These outliers often manifest at
specific, localized time points where their relationships are concentrated. This
localized concentration forms a key distinguishing feature, known as ’Association
Discrepancy,’ which can be used to differentiate normal points from anomalies.
Understanding this discrepancy is crucial for time series anomaly detection, as
intuitively explained in a Bilibili video by blogger Mardinff, and illustrated in
Figure 1. In real-world applications, however, data often exhibit complex cross-
variable relationships and auxiliary features, which can significantly influence
anomaly patterns. As such, anomaly detection methods must account not only
for temporal dependencies but also for the combined impact of related variables.

The primary goal of this research is to develop an advanced time series
anomaly detection method that effectively captures the subtle and localized na-
ture of anomalies by considering both temporal dependencies and cross-variable
relationships. The focus is on creating a flexible detection framework capable
of adapting to varying data characteristics, particularly in environments where
anomalies evolve over time.

Several challenges must be addressed in this study. First, the presence
of multiple related variables complicates the task of isolating anomalies based
solely on individual features, necessitating the careful integration of auxiliary
features and cross-variable interactions into the anomaly detection process.
Moreover, the dynamic nature of real-world data further complicates anomaly
detection. A fixed-threshold approach, commonly used in traditional methods,
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Figure 1: (a) By leveraging the differences between prior-association and series-association,
anomalies can be effectively distinguished from normal data points.(b) Existing methods typ-
ically focus on univariate data or single-point observations, neglecting the contextual infor-
mation in multivariate data and the complex dependencies between variables. Additionally,
fixed-threshold methods often fail to account for the dynamic nature of time-series data, lead-
ing to limitations in their effectiveness.(c) The use of alternating modeling between channel
and time dimension interactions effectively captures global dependencies and enhances the
model’s ability to extract complex dynamic spatiotemporal features. At the same time, an
adaptive threshold update mechanism is employed to flexibly adjust the anomaly detection
criteria based on dynamic changes in the data.

is insufficient as it fails to account for the changing characteristics of time series
data, leading to suboptimal performance.

4. Building Proposed Mixer-Transformer Model

In this section, the Mixer-Transformer is introduced, incorporating the Mixer
structure. By alternately modeling interactions between the channel and time
dimensions, this approach effectively integrates both local and global feature in-
formation, providing a more comprehensive and abstract representation of time
series data for the Anomaly Transformer. Additionally, an adaptive threshold
is implemented during outlier detection to enhance the model’s adaptability to
complex anomaly patterns.

4.1. Preliminaries

Due to the rarity of anomalies, anomalous points are often weakly associated
with an entire time series, with their associations primarily concentrated at ad-
jacent time points. This concentration of associations at nearby points creates
a distinguishable criterion for differentiating normal from anomalous points, re-
ferred to as association discrepancy. The discrepancy is quantified by comparing
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the prior-association with the series-association at each time point, calculating
the difference using symmetric Kullback-Leibler (KL) divergence.

A prior-association provides the model with an initial hypothesis of associ-
ations based on relationships between adjacent time points, reflecting the ex-
pected pattern of local associations within the time series. During the early
stages of model training, this helps guide the model to focus on the relation-
ships between adjacent time points, preventing blind exploration and accelerat-
ing convergence. Additionally, due to the rarity of anomalies, their associations
are typically more concentrated around adjacent time points. This character-
istic of the prior-association enables the model to become sensitive to anomaly
patterns early in training, establishing a foundation for accurate anomaly detec-
tion in subsequent stages. The association weight of each time point relative to
others is computed using a learnable Gaussian kernel, as shown in the following:

G(|j − i|;σi) =
1√
2πσ2

i

exp

(
−|j − i|2

2σ2
i

)
(1)

where i, j ∈ {1, . . . , N} represent the i-th and j-th time points, respectively,
and σi is the learnable scale parameter corresponding to the i-th time point.
Based on the properties of the Gaussian distribution, the association weight is
computed according to the relative distance |j − i| between time points. The
closer the distance, the larger the weight, reflecting the assumption that adjacent
time points in the time-series are more strongly associated. This embodies
the Adjacent-Concentration Inductive Bias, which posits that the association
between adjacent time points is more concentrated.

Therefore, the prior-association PA can be represented as in Eq.(2):

PA = Softmax

[
1√
2πσ2

i

exp

(
−|j − i|2

2σ2
i

)]
(2)

The association weights of each row are normalized to create a discrete dis-
tribution. This approach adopts the normalization technique from the attention
mechanism, which transforms the prior association strength between adjacent
time points into a probabilistic form, effectively quantifying local dependencies.

Series-association refers to the relationship that is adaptively learned from
the raw time-series data, enabling the model to capture dynamic dependencies
within the time series and reflect the true degree of association between time
points. Unlike prior-association, which is based on a predefined pattern, series-
association is learned directly from the data itself. The calculation of series-
association is performed through a standard self-attention mechanism, as shown
in the following Eq.(3) and Eq.(4):

Q,K, V = X(l−1)W l
Q, X

(l−1)W l
K , X(l−1)W l

V (3)

SA = Softmax

(
QKT

√
dmodel

)
(4)
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where X(l−1) represents the output of the (l− 1)-th layer, l ∈ {1, 2, . . . , L}, and
W l

Q,W
l
K ,W l

V are the learnable parameter matrices. The dimensions of Q,K,V
are N×dmodel,where N is the length of the time-series and dmodel is the number
of channels in the model’s hidden state. QKT represents the dot product of the
query Q and the key K, resulting in an attention score matrix of dimensions
N ×N .

In a multi-layer model, PA and SA represent the set of computation results
for each layer and can be expressed as:

PA = {PA1, PA2, . . . , PAL} (5)

SA = {SA1, SA2, . . . , SAL} (6)

To more comprehensively measure the difference between two distributions
and avoid biases caused by the order of the distributions, symmetric Kullback-
Leibler divergence is used (considering both KL(PAl

i ∥ SAl
i) and KL(PAl

i ∥
SAl

i)) to calculate the difference between prior-association and series-association.
The KL divergence for the i-th time point at the l-th layer is defined as:

KL(PAl
i | QAl

i) =
∑
i

pi log
pi
si

(7)

In a multi-layer model, to consider the association information learned at dif-
ferent layers, the association discrepancies from each layer are fused to obtain
a more representative and stable association discrepancy metric. By averaging,
the model can reduce the impact of a poorly learned or anomalous layer on the
overall association discrepancy calculation, thereby more accurately reflecting
the association characteristics of the time points in the time-series. The associ-
ation discrepancy between PA and SA in a multi-layer model can be computed
by the following:

AssDis(PA, SA;X) =
1

L

L∑
l=1

[
KL(PAl

i ∥ SAl
i) +KL(SAl

i ∥ PAl
i)
]

(8)

The association difference quantifies the distributional discrepancy between
the prior association and the serial association. A larger AssDis value indicates
a greater deviation of the association pattern at the current time point from the
typical local adjacent dependency characteristics, thereby reflecting the severity
of the anomaly.

In summary, the anomaly score for each time point in the time-series can be
defined as:

AnomalyScore(X) = Softmax
(
−AssDis(PA, SA;X)

)
⊙

[
∥Xi − X̂i∥22

]
(9)

where X̂i is the reconstructed result of the input time-series data X, i ∈
{1, 2, . . . , N}, and ⊙ is the element-wise multiplication.
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4.2. Mixer-Transformer to Anomaly Transformer Model’s Encoder

We incorporate the Mixer structure into the front end of the Anomaly Trans-
former model’s encoder.The architecture of Mixer-Transformer is shown in Fig-
ure 2 . The Mixer consists of a series of Mixer Layers, each containing two fully
connected sublayers: a Feature Mixing sublayer and a Time Mixing sublayer.
The Feature Mixing sublayer focuses on mixing input features along the channel
dimension, capturing interactions between different channels. The Time Mixing
sublayer, on the other hand, mixes features along the time dimension, model-
ing the temporal dependencies between different time steps. The outputs of
these two sublayers are combined through residual connections and then passed
through Layer Normalization to ensure stability and training effectiveness, re-
sulting in the final output of the layer.

Mixer Layer

Time

Feature

FC

ReLU

Dropout

FC

ReLU

Dropout

FC

Dropout

Residual Residual

Time Mixing Sublayer Feature Mixing Sublayer

Layer Norm
Feed

Forward
Layer Norm

Anomaly Attention
&

Sparse Attention
++TSMixer×N Reconstruction

𝒳𝑙−1
𝒳𝑙

Figure 2: Architecture of Mixer-Transformer.

Specifically, for the l-th Mixer Layer, the input is X(l−1) ∈ RB×T×C , where
B is the batch size, T is the number of time steps, and C is the number of
feature channels. The Time Mixing sublayer first reshapes the input into the
form Xt ∈ RBC×T , and then passes it through a fully connected network to
obtain the output U l

t :

U l
t = W l

t2σ
((
W l

t1X
T
t

))T
(10)

where W l
t1 ∈ RDh×T and W l

t2 ∈ RT×Dh are the weight matrices of the fully
connected layers, Dh is the hidden layer dimension, and σ is the activation
function, with GELU used in this work.

The operation of the Feature Mixing sublayer is like that of the Time Mixing
sublayer, except that the input features are reshaped into the formXc ∈ RBT×C ,
and then passed through two fully connected layers to obtain the output U l

c:

U l
c = W l

c2σ(W
l
c1Xc) (11)
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Finally, through residual connections and Layer Normalization, the output
of the l-th Mixer Layer X l, is obtained:

X l = LayerNorm
(
X(l−1) +Reshape

(
U l
t + U l

c

))
(12)

where the Reshape(·) operation reshapes the tensor into the form RB×T×C .
In this work N stacked Mixer Layers are placed at the front of the Anomaly

Transformer encoder, forming the preprocessing module for time-series data,
referred to as MixerPretrain():

MixerPretrain(X) = X l
(
X(l−1)

(
· · ·X1 · · ·

))
(13)

where X ∈ RB×T×C is the original multivariate time-series data, with C rep-
resenting the original feature dimension, and l ∈ {1, 2, . . . , N}. The output of
MixerPretrain(X) contains time-series features with more global contextual in-
formation, which replace the original multivariate time-series data as input to
the Anomaly Transformer encoder.

4.3. Adaptive Thresholds

Anomalies are inherently relative and should be dynamically determined
based on context. For instance, in the SMAP dataset, higher soil moisture
values may fall within the normal range during the rainy season but could be
considered anomalous during the dry season. Similarly, in the MSL dataset, sig-
nificant temperature differences exist between day and night, requiring separate
anomaly detection for each. Fixed thresholds fail to capture these context-
dependent anomaly patterns, making them inadequate for adapting to the com-
plex characteristics of time-series data.

At each time t, the anomaly score sequence within a window of length w be-
fore and after time t, i.e., {St−w, . . . , St, . . . , St+w}, is observed. The calculation
of the adaptive threshold is based on two fundamental assumptions:

1. Local Stationarity Assumption: Over short time windows, the statistical
properties (such as mean and variance) of the time series remain relatively
stable. This allows for the use of local statistics within the window to
set the anomaly threshold. This assumption is consistent with the local
variation characteristics observed in datasets like SMAP, MSL, and PSM,
where indicators such as soil moisture and temperature tend to remain
stable over short periods.

2. Anomaly Sparsity Assumption: The majority of time points are normal,
with anomalies occurring infrequently. This suggests that quantiles can
be used to define an upper bound for local anomalies. This assumption
reflects the low-frequency occurrence of anomalies, such as drought events
in the SMAP dataset and extreme weather events in the MSL dataset.

Based on the above assumptions, we adopt the Exponential Weighted Mov-
ing Average (EWMA) method to smooth the input values in order, to better
capture the long-term trends in the data. Specifically, for a given anomaly score
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St at the current time step, the corresponding EWMA value EWMAt can be
updated using the following recursive relation:

EWMAt = αEWMA(t−1) + (1− α)St (14)

where EWMA(t−1) is the Exponential Weighted Moving Average from the pre-
vious time step, and α ∈ (0, 1) is the smoothing factor. A larger value of α
means that the model places more emphasis on the most recent data points,
while a smaller α value increases the dependence on historical data, resulting in
a smoother model.

Additionally, an adaptive threshold update mechanism is designed to estab-
lish a sensitive response boundary based on the difference between the current
input value and the moving average. The update formula for the threshold is
expressed as follows:

δt = αδ(t−1) + (1− α)
(
EWMAt + 2

√
(St − EWMAt)2

)
(15)

where δt is the threshold at the current time step. The term
√
(St − EWMAt)2

calculates the absolute deviation between the current anomaly score St and the
moving average value EWMAt, representing the distance between the current
observation and the smoothed trend.

In the threshold update process, not only is the threshold at the previous
time step, δt−1, considered, but the current deviation, i.e., the absolute value
of (St−EWMAt), is also incorporated. This approach enables the threshold to
adapt to fluctuations in the input data, thereby better reflecting changes in the
current data.

4.4. Complexity Analysis and Optimization

Compared to the original Anomaly Transformer, our method effectively re-
duces the computational complexity of local dependency modeling by incorpo-
rating the Mixer architecture. Specifically, the Mixer component uses a local
self-attention mechanism with a time complexity of O(Nd), which significantly
lowers the computational cost for processing long time series. In contrast, the
Anomaly Transformer relies on a global self-attention mechanism with a time
complexity of O(LTransformerN

2d), primarily due to the dependency calculations
across the entire sequence. The overall time complexity of the combined model
is O(LMixerNd) + O(LTransformerN

2d), where the Mixer reduces the burden of
local computations, but the global dependency modeling in the Anomaly Trans-
former still dominates the computational cost.

To reduce computational overhead, this paper proposes a soft sparsifica-
tion method based on threshold filtering. By introducing a learnable threshold
parameter, the model adaptively truncates attention scores according to their
actual distribution. Although the resulting sparse pattern may lack strict reg-
ularity, it more accurately captures the intrinsic characteristics of the data.
Furthermore, the sparsification degree is controlled by a sparsity coefficient,
offering greater flexibility in balancing performance and efficiency.
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The specific implementation is as follows: a learnable parameter τ is in-
troduced prior to the Softmax operation to serve as a threshold for filtering
attention scores.

Ã = ReLU

(
QK⊤
√
D
− τ

)
(16)

where Ã is the sparse attention score matrix, and ReLU() denotes the rectified
linear unit activation function. Attention scores below the threshold τ are trun-
cated to zero, effectively filtering out weaker scores and enabling sparse control
over the attention mechanism.

A = βSoftmax(Ã) + (1− β)Softmax

(
QK⊤
√
D

)
(17)

where β is a controllable sparsity parameter that allows flexible adjustment of
the sparsification intensity.

5. Algorithm and Execution Steps

In this section, the step-by-step process for implementing time series anomaly
detection is outlined, utilizing a combination of Mixer-based preprocessing, asso-
ciation computation, and adaptive threshold updating. The proposed method-
ology is designed to capture subtle and dynamic anomalies in time series data,
particularly in the presence of complex, interdependent features. The primary
goal is to identify anomalous time points while dynamically adjusting the de-
tection threshold based on the evolving characteristics of the data.

To achieve this, three main algorithmic execution steps are introduced. First,
the original time series data is processed through an N -layer Mixer architecture
to extract time- and feature-related patterns. This preprocessing step is crucial
for transforming the raw data into a form that can be analyzed for anomalous
behavior. Second, the preprocessed data is used to calculate two key associ-
ation metrics—prior-association (PA) and series-association (SA)—which are
then combined to compute the anomaly score. Finally, the adaptive threshold
update step fine-tunes the anomaly score using an exponentially weighted mov-
ing average (EWMA) technique, allowing the model to adapt to changes in the
data over time.

Time series anomaly detection is implemented through three algorithmic
execution steps, as shown in Figure 3.

Algorithm 1 takes the input time series data X ∈ RB×T×C and processes
it through an N -layer Mixer structure. The time series data is reshaped at
each layer, where it undergoes two main operations: Time Mixing and Feature
Mixing. In the Time Mixing step, the model learns temporal dependencies by
applying transformations along the time axis. Similarly, Feature Mixing oper-
ates on the feature dimension to capture dependencies among different features.
Both operations involve matrix multiplication followed by nonlinear activation
functions, such as ReLU or Sigmoid, introducing non-linearity to the model.
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Algorithm 1 Mixer Preprocessing Time Series

1: Input: Time series X ∈ RB×T×C , N=4
2: Output: MixerPretrain(X) # Time series after N layers of Mixer Layer

processing
3: for l = 1 to N do
4: Time Mixing:
5: Xt ← Time Mixing Sublayer-Reshape(X(l−1))
6: U l

t ←W l
t2 · σ(W l

t1X
T
t )

T

7: Feature Mixing:
8: Xc ← Feature Mixing Sublayer-Reshape(X(l−1))
9: U l

c ←W l
c2 · σ(W l

c1Xc) # W l
c1,W

l
c2 ∈ RBT×C

10: X l ← LayerNorm(X(l−1) +Reshape(U l
t + U l

c))
11: end for
12: Return: MixerPretrain(X)← X l(X(l−1) (· · ·X1 · · · ))

After each operation, the results are combined using a residual connection to
retain the information from previous layers, mitigating the vanishing gradient
problem. Layer normalization is then applied to stabilize the training process
and avoid overfitting. The final output, denoted as X l, is a transformed version
of the original time series data, which is then passed to the next step in the
anomaly detection pipeline.

Algorithm 2 Anomaly Score Calculation

1: Input: MixerPretrain(X), where X ∈ RB×T×C

2: Output: AnomalyScore(X)
3: Compute PA(MixerPretrain(X))
4: Compute SA(MixerPretrain(X))
5: Compute AssDis(PA, SA; MixerPretrain(X))
6: Return: AnomalyScore(X)

Algorithm 2 calculates the anomaly score of the input time series data.
It begins by processing the preprocessed time series data MixerPretrain(X)
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to compute two key association measures: prior-association (PA) and series-
association (SA). PA captures the temporal dependencies between adjacent
time points, quantifying how much the current data depends on past data. On
the other hand, SA measures the relationship between the current time point
and other points across the entire time series, capturing long-term dependen-
cies. The Association Discrepancy (AssDis) is then computed as the difference
between PA and SA, serving as a key indicator of deviation from normal pat-
terns. A high AssDis value suggests that the point is an anomaly. The final
output is the Anomaly Score, which indicates the likelihood of each time point
being an outlier, based on the computed associations and their discrepancies.

The purpose of Algorithm 3 is to dynamically adjust the anomaly detection
threshold based on the calculated anomaly scores over time. First, the anomaly
scores are sorted in ascending order to ensure they are processed in temporal
order. The Exponential Weighted Moving Average (EWMA) is then computed
for each score, with a smoothing factor α that gives more weight to recent
values, allowing the threshold to adapt to the evolving data behavior. The
updated threshold δt is computed by combining the previous threshold δt−1

and the current EWMA value, along with an additional term accounting for the
deviation between the anomaly score and the EWMA. This adaptive threshold
mechanism enables the model to react to changing patterns in the data, ensuring
that the anomaly detection remains sensitive and accurate over time. The final
output is the set of detected anomaly points, identified as those whose anomaly
scores exceed the updated threshold.

Algorithm 3 Adaptive Threshold Update

1: Input: AnomalyScore(X), w, α
2: Output: Updated AnomalyScore(X)
3: {S1, · · · , St, · · · , ST } ← Sort(AnomalyScore(X))
4: while t is valid do
5: Sw ← {St−w, · · · , St, · · · , St+w}
6: EWMAt ← α · EWMAt−1 + (1− α) · St

7: δt ← α · δt−1 + (1− α) ·
(
EWMAt + 2

√
(St − EWMAt)2

)
8: end while

6. Experiments

This section evaluates the performance of the proposed anomaly detection
model across various datasets. The results demonstrate that the model outper-
forms existing methods when handling complex time series data, particularly in
feature extraction and anomaly detection accuracy.

6.1. Experimental Setup

The experiments were conducted on an Ubuntu 20.04 operating system. The
hardware environment utilized a Tesla V100-SXM2-16GB GPU (1 unit) and an
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Intel Xeon Platinum 8163 @ 2.50GHz CPU (8 cores), with deep learning accel-
eration provided by CUDA 12.2 and cuDNN 8.7.0. The software environment
consisted of Python 3.8.13 and PyTorch 2.2.0.

6.2. Datasets

Three public datasets were used for these experiments. The SMAP (Soil
Moisture Active Passive) dataset, sourced from NASA’s soil moisture moni-
toring mission, contains time-series data of soil moisture recorded by sensors.
The anomalies in this dataset correspond to extreme weather events, such as
droughts and floods, and are commonly used in environmental monitoring and
anomaly detection research. The MSL (Mars Science Laboratory) dataset, pro-
vided by NASA’s Mars Science Laboratory mission, records sensor data gen-
erated during the operation of the Mars rover. The anomalies in this dataset
are related to extreme environmental conditions on the Martian surface, such
as dust storms and extreme temperatures, making it suitable for equipment
fault detection and health monitoring research. The third dataset is the PSM
(Pooled Server Metrics), and contains time-series data of performance metrics
collected from servers during their operation. The anomalies in this dataset
span a wide range of real-world system failures and performance issues, includ-
ing hardware errors, software bugs, and resource leaks, and is widely used in
anomaly detection and server performance analysis.

The anomaly ratios in the three datasets range from 10.53% to 27.76%, pro-
viding a basis for evaluating the algorithm’s performance under varying anomaly
frequencies. Additionally, each dataset presents unique challenges, such as weak
correlations in the SMAP, high coupling in the MSL, and a high anomaly rate
in the PSM. These characteristics offer diverse testing scenarios for a compre-
hensive evaluation of the algorithm’s performance.

In the experiments, each dataset was randomly split into training, validation,
and test sets in the 3:1:1 ratio. The training set was used for model learning, the
validation set for hyperparameter optimization and early stopping monitoring,
and the test set for final performance evaluation.

6.3. Results

To systematically and comprehensively evaluate the proposed anomaly de-
tection method, it is compared with 13 anomaly detection techniques. These
methods represent a range of mainstream paradigms in the field, including sup-
port vector machine-based approaches, tree-based ensemble learning methods,
density estimation-based methods, principal component analysis (PCA)-based
subspace methods, autoregressive and long short-term memory (LSTM)-based
predictive methods, as well as generative approaches based on variational au-
toencoders (VAE) and generative adversarial networks (GAN), among others.

As shown in the experimental results in Table 2 , the proposed anomaly
detection model outperforms the comparison methods across the SMAP, MSL,
and PSM datasets. On the SMAP dataset, the model achieves an F1 score
of 97.49%, while on the MSL and PSM datasets, the F1 scores are 95.18%
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Table 2: Comparative Experimental Results

Method
SMAP MSL PSM

P R F1 P R F1 P R F1

Deep-SVDD[31] 89.93 56.02 69.04 91.92 76.63 83.58 95.41 86.49 90.73
DAGMM [32] 86.45 56.73 68.51 89.60 63.93 74.62 93.49 70.03 80.08
MMPCACD [33] 88.61 75.84 81.73 81.42 61.31 69.95 76.26 78.35 77.29
LSTM [34] 89.41 78.13 83.39 85.45 82.50 83.95 76.93 89.64 82.80
CL-MPPCA [17] 86.13 63.16 72.88 73.71 88.54 80.44 56.02 99.93 71.80
ITAD [35] 82.42 66.89 73.85 69.44 84.09 76.07 72.80 64.02 68.13
LSTM-VAE [36] 92.20 67.75 78.10 85.49 79.94 82.62 73.62 89.92 80.96
BeatGAN [37] 92.38 55.85 69.61 89.75 85.42 87.53 90.30 93.84 92.04
OmniAnomaly[38] 92.49 81.99 86.92 89.02 86.37 87.67 88.39 74.46 80.83
InterFusion [39] 89.77 88.52 89.14 81.28 92.70 86.62 83.61 83.45 83.52
THOC [40] 92.06 89.34 90.68 88.45 90.97 89.69 88.14 90.99 89.54
Anomaly-Transformer [20] 94.06 99.27 96.59 92.05 94.50 93.26 97.37 98.27 97.82
MEMTO [41] 93.76 99.63 96.61 92.07 96.76 94.36 97.46 99.23 98.34
Mixer-Transformer 97.53 98.47 97.49 93.53 96.89 95.18 97.55 98.85 98.20

and 98.20%, respectively. These gains are primarily attributed to two innova-
tions within the Transformer framework. First, the introduction of the Mixer
structure at the frontend of the Transformer encoder significantly enhances the
model’s ability to capture global dependencies and behavioral patterns in time-
series data. The Mixer captures multi-scale dynamic features, such as trends,
cycles, and fluctuations, enabling more comprehensive feature extraction from
complex time-series data. Second, the adaptive threshold, derived from statis-
tical features, automatically adjusts the anomaly detection criteria, improving
the model’s accuracy and robustness in handling non-stationary data variations.

Compared to traditional machine learning methods, such as OC-SVM, Isola-
tion Forest, and LOF, the proposed method significantly outperforms in terms
of precision, recall, and in its F1 score on all three datasets, with improve-
ments ranging from 20% to 40%. This demonstrates that deep learning-based
anomaly detection models are better at capturing complex and abstract feature
representations in time-series data, offering stronger anomaly pattern charac-
terization and generalization capabilities. Traditional methods struggle to effec-
tively model long-term dependencies in time-series data and fail to fully exploit
interactions between multiple variables, limiting their detection performance.

Furthermore, compared to classical time-series anomaly detection algorithms
such as MMPCACD, VAR, and LSTM, the proposed method also achieves sig-
nificant performance improvements. For example, while LSTM can capture
long-term dependencies in time-series data, its recurrent network structure has
limitations when modeling the complex interactions between different time steps
and variables. In contrast, the proposed model’s Mixer-Transformer architecture
enhances the learning capability of spatiotemporal features. This highlights the
advantages of alternating modeling of the channel and time dimensions, as well
as the self-attention mechanism, in capturing global dependencies in time-series
data.

Additionally, the proposed method was compared with several recently in-
troduced deep anomaly detection models, such as CL-MPPCA, ITAD, LSTM-
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VAE, and BeatGAN. The results show that the proposed method outperforms
these models across all three datasets. For example, despite using the advanced
Generative Adversarial Network (GAN) paradigm, BeatGAN’s performance is
still inferior to that of the proposed model. This is primarily due to the in-
herent challenges in training and tuning GAN models, which can lead to less
stable anomaly score estimations. In contrast, the proposed model leverages
the self-attention mechanism and incorporates an adaptive threshold strategy,
enhancing its anomaly detection capability and leading to overall performance
improvements.

Table 3: F1 Score of Mixer Layers of Three Datasets

Mixer Layer SMAP MSL PSM
0 95.46 92.45 97.36
1 95.82 93.65 97.85
2 96.04 93.15 98.06
3 96.62 94.69 97.92
4 97.49 95.18 98.20
5 96.36 94.83 0
6 96.21 94.75 0
7 96.26 94.73 0
8 96.1 95.2 0
9 96.01 95.22 0

As part of the analysis, the effect of the number of Mixer layers on the
model’s performance is examined. As shown in Table 3, optimal performance
is achieved when the number of Mixer layers is set to 4 for all three datasets.
However, when the number of layers exceeds 4, the F1 scores for the PSM
datasets drop to zero.
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Figure 4: Heatmaps of Feature Correlations of the Three Datasets.

As shown in Figure 4 , the features of the SMAP dataset exhibit weak
correlations, with limited negative correlations and a relatively simple overall
structure. As a result, when the number of Mixer layers exceeds 4, the model
can still effectively extract relevant features and maintain stable performance.
In contrast, the MSL dataset features strong correlations and a more complex
clustering structure, allowing the model to capture significant global feature in-
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teractions as the number of layers increases. However, an excessive number of
layers introduces redundant information, leading to a slight decrease in perfor-
mance, though not a drastic one. In comparison, the PSM dataset presents the
highest feature complexity, containing diverse correlation patterns, including
numerous negative correlations (e.g., resource competition). These correlations
make the model prone to introducing noise as the number of layers increases,
resulting in overfitting of conflicting relationships between complex features.
Additionally, as the number of layers increases, the gradient propagation path
lengthens, exacerbating training instability and ultimately causing the model’s
performance to deteriorate to 0.
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Figure 5: Impact of the Window Size on F1 Score for the Three Datasets.

Additional experiments were conducted to evaluate the effect of window size,
with the range set from 30 to 200. As shown in Figure 5, a window size of 110
yielded the best performance across the three datasets. For the MSL dataset,
due to the presence of multiple highly correlated feature clusters and specific
temporal relationships, these patterns are only valid within a certain window
size. When the window size is too large (e.g., 150), the structure of these feature
clusters can be disrupted, leading to a significant decline in performance.

6.4. Ablation

To comprehensively evaluate the impact and contribution of the two key in-
novations proposed in this paper—the Mixer structure and the adaptive thresh-
old—ablation experiments were conducted. The results of these experiments
are presented in Table 4 below:

The results of the ablation experiments highlight the significant contribu-
tions of both the Mixer structure and the adaptive threshold to the model’s
performance. As shown in Table 4 and Figure 6 :
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Impact of the Mixer structure: Incorporating the Mixer structure leads to
substantial improvements in model performance, particularly in feature repre-
sentation and in modeling global dependencies. On the SMAP dataset, the F1
score increased from 96.59% to 97.01%, while on the MSL and PSM datasets,
the F1 scores improved from 93.26% and 97.82% to 94.40% and 97.92%, respec-
tively. These improvements suggest that the Mixer structure effectively captures
the dynamic and complex characteristics of time series by alternating between
modeling interactions along the channel and time dimensions.

Table 4: Ablation Experiment Results

Method
SMAP MSL PSM

P R F1 P R F1 P R F1

Baseline (B) 94.06 99.27 96.59 92.05 94.50 93.26 97.37 98.27 97.82
Baseline + Mixer (B+M) 95.96 98.08 97.01 93.90 94.90 94.40 97.20 98.65 97.92
Baseline + Adaptive threshold (B+A) 94.55 99.20 96.82 93.12 94.89 94.00 97.38 98.66 98.02
Baseline + Mixer + Adaptive threshold (B+M+A) 96.53 98.47 97.49 93.53 96.89 95.18 97.55 98.85 98.20
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Figure 6: Impact of Mixer Structure and the Adaptive Threshold on Model Performance.

Impact of the Adaptive threshold: The introduction of the adaptive thresh-
old further enhances the model’s ability to handle non-stationary time series
data. On the SMAP, MSL, and PSM datasets, the F1 scores improved from
96.59%, 93.26%, and 97.82% to 96.82%, 94.00%, and 98.02%, respectively. The
adaptive threshold dynamically adjusts the anomaly detection standard based
on the local distribution of anomaly scores, enabling the model to flexibly adapt
to variations in different time intervals. This results in greater robustness and
accuracy in detection.

Combined Impact: When the Mixer structure and the adaptive threshold
are combined, the model achieves optimal performance. The F1 scores on
the SMAP, MSL, and PSM datasets reach 97.49%, 95.18%, and 98.20%, re-
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spectively, surpassing the individual improvements from each innovation. This
demonstrates that the two components complement each other, with the Mixer
enhancing feature extraction and interaction, and the adaptive threshold adding
flexibility in dynamic adjustment. Together, they contribute to the overall en-
hancement of the model’s performance and stability.

Compared to the baseline, the Mixer structure demonstrates a more signifi-
cant improvement in detection performance than the adaptive threshold, owing
to its strong feature fusion capability.

Table 5: Train and Test Time Comparison Across the Three Datasets

Dataset Method Train(s) Test(s)

SMAP
Anomaly-Transformer[20] 699.03 29.51

Mixer-Transformer 718.66 28.68

MSL
Anomaly-Transformer[20] 483.20 28.44

Mixer-Transformer 491.98 27.32

PSM
Anomaly-Transformer[20] 476.87 27.96

Mixer-Transformer 482.11 27.28

Table 5 presents a comparative analysis of the training and testing times
of Anomaly-Transformer [20] and the proposed Mixer-Transformer across three
datasets: SMAP, MSL, and PSM. The results show that Anomaly-Transformer
achieves lower training times—699.03s, 483.20s, and 476.87s on SMAP, MSL,
and PSM, respectively—compared to 718.66s, 491.98s, and 482.11s for Mixer-
Transformer, reflecting an increase of 1.1% to 2.8% in training duration. This
increase is attributed to the additional computational complexity introduced
by the mixer’s structure. However, by incorporating a coefficient attention
mechanism, Mixer-Transformer demonstrates improved testing efficiency, with
inference times of 28.68s, 27.32s, and 27.88s on SMAP, MSL, and PSM, re-
spectively, outperforming Anomaly-Transformer’s 29.51s, 28.44s, and 27.96s by
0.3% to 3.9%. The most significant improvement in testing time is observed on
the MSL dataset, while the largest training time disparity occurs on SMAP.

These results highlight the effectiveness of the coefficient attention mech-
anism in enhancing inference speed, suggesting that Mixer-Transformer is a
promising approach for real-time anomaly detection despite its slightly increased
training overhead. Future work will focus on further optimizing the training pro-
cess to reduce computational costs while maintaining the benefits in inference
efficiency.

7. Conclusion

This study addresses the challenges in time series anomaly detection and
proposes an innovative method that integrates multivariate feature fusion with
adaptive threshold adjustment. While time series anomaly detection plays a
critical role across various fields, traditional methods are often constrained by
the nonlinear and non-stationary nature of the data, as well as the rigidity of
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fixed threshold settings. The proposed Mixer-Transformer method introduces
the Mixer architecture to model global dependencies across both channel and
time dimensions, thereby enhancing the system’s ability to capture complex dy-
namic features. Additionally, an adaptive threshold update mechanism, based
on the sliding window approach and the exponentially weighted moving av-
erage method, is employed to better accommodate dynamic data variations,
improving anomaly detection accuracy. Future work in this area will focus on
anomaly causal analysis to uncover the underlying causes of time series anoma-
lies. By exploring the potential causal relationships behind abnormal events,
this study aims to more accurately pinpoint anomaly sources and enhance the
interpretability and decision-making capabilities of anomaly detection systems.
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