
Demo: Decentralized Product Lifecycle
Management Using Blockchain and Digital Twins

Ranjit Kannappan∗,†, Julien Hatin∗, Emmanuel Bertin∗,†, Noel Crespi†
∗Orange Innovation, 14000 Caen, France

†Samovar, Telecom SudParis, Institut Polytechnique de Paris, France
(ranjit.kannappan, julien.hatin, emmanuel.bertin)@orange.com, noel.crespi@telecom-sudparis.eu

Abstract—Managing a product throughout its various lifecycle
stages is essential for all stakeholders involved. Efficient man-
agement is supposed to streamline process, enhance product
quality, increase customer satisfaction, and improve profitability.
The current architecture faces challenges that impact trust
among stakeholders because of its centralized architecture. This
paper presents a blockchain-based solution to enhance trust and
transparency in product lifecycle management. Using Asset Ad-
ministration Shell (AAS) as a standardized digital representation,
we model and share product digital twins via IPFS. The proposed
architecture demonstrates how smart contracts and IPFS enable
the creation, sharing, and traceability of digital twins throughout
the product lifecycle, fostering collaboration among stakeholders.
This is illustrated through the use case of an electric vehicle,
where digital twins are created for critical components like
the EV battery and tire and enabling tracking across different
lifecycle stages. Additionally, we evaluate the implementation for
scalability, latency, and cost efficiency.

Index Terms—Blockchain, Smart Contract, IPFS, Digital Twin,
Asset Administration Shell

I. INTRODUCTION

The product lifecycle spans from conception to recycling,
involving multiple stakeholders who generate data to optimize
processes and reduce carbon emissions [1]. While Product
Lifecycle Management (PLM) tools bridge silos between
functions like design and manufacturing [2], they lack inter-
organizational collaboration [3], limiting access for SMEs due
to high costs [4]. Data exclusivity, the lack of common syntax
and semantics further hinder collaboration and innovation
among stakeholders.

The solution we demonstrate is a decentralized product
lifecycle system that utilizes digital twin to represent the
product virtually. Digital twins play an important role to
achieve lifecycle tracking. With the recent development of
the Asset Administration Shell, a semantic standardization
of digital twin to facilitate interoperability and information
exchange[5], we are able to achieve secure distributed sharing
with no single entity playing the part of monopoly. Our system
utilizes Interplanetary file system (IPFS) to store lifecycle data
in a decentralized manner.

In this paper, we present our implementation of decentral-
ized lifecycle of product that uses a sample AAS file to create
a digital twin and share them between lifecycle parties. Two
types of digital twin are created in this demonstration. They
are as follows

1) Component digital twin: These twins are digital repre-
sentation of individual component of a product. Each
component digital twin contains detailed information
about the component, such as design data, performance
data and lifeycle information depending on the type
of sub model that is being used. several sub model
templates are provided by IDTA, the creator of AAS. We
utilize a sample AAS that is provided with 4 sub models
in it. More sub models can be added as necessary using
our system into the digital twin of the component.

2) Product digital twin: These twins contains a group
of component digital twins. Several component digital
twin make up a product and this product is represented
by product digital twin. This twin can be generated by
an assembler who receives multiple components to be
assembled physically.

After creation of a digital twin, component digital twins
are shared using two approach. One where sender shares the
component twin to the receiver and another where the receiver
requests the data to be shared. Both creation and sharing are
authorized and recorded in blockchain using smart contracts.
The data of the components are encrypted and stored in IPFS.
The encrypted hash is shared to the appropriate parties.

II. DECENTRALIZED LIFECYCLE APPROACH

A. System Architecture
In our proposed high level architecture Fig.1, we leverage

several technologies to demonstrate the creation and sharing
of digital twin of products in a decentralized manner.

Communication and Asset layer contains AAS sub model
templates which are used to create AAS file for a component
of a real asset. The first party in the lifecycle (often the
manufacturer) initiates the creation by either creating AAS file
externally using Aasx package explorer[6] and present the file
as an input or that party can create a digital twin using empty
aas file and then add submodel using our system. Creation
of digital twin using aas file and adding subcomponents
individually is recorded in the blockchain.

Storage Layer contains IPFS to manage off chain storage.
IPFS is chosen because of its decentralized nature with content
addressing for data integrity and cost efficiency. Data is
encrypted and stored in IPFS. Features such as IPFS manifest
and PubSub are utilized for structured storage and key sharing
respectively.



Fig. 1. Architecture of the implemented system

Blockchain Layer implements the Ethereum blockchain.
Parity Ethereum (development mode) is used to run a local
node, Truffle deploys smart contracts, and Web3.js interacts
with the contracts. The following contracts are deployed:

• ContractRegistry.sol: Registers and retrieves contracts,
creating instances of component digital twins.

• Authorization.sol: Manages attribute-based access con-
trol (ABAC) for secure data sharing and ownership track-
ing.

• Signature.sol: Handles transaction signatures for data
sharing, including signature requests and retrieval.

• ComponentDT.sol: Manages digital twins of individual
components, including ownership updates and subcom-
ponent additions.

• ProductDT.sol: Aggregates component twins to represent
the final product, managing data sharing and lifecycle
processes.

• MasterContractRegistry.sol:manages the creation and
tracking of ProductDT Contract instances. It allows au-
thorized user to create new ProductDT instances using a
set of addresses of componentDT instances

Collaboration Layer includes multiple stakeholders (de-
signers, manufacturers, supply chain, users, maintainers, recy-
clers) as shown iN Fig.1. Stakeholders create and share digital
twins, interact with contracts, and record all actions on the
blockchain, ensuring transparency and collaboration.

B. Twin Creation & Sharing

When a digital twin is created using aas file (Fig.2), we
parse the aas file which is in the format of aasx that has XML
structure. For each submodel present in this file, encryption
is done using AES-256 symmetric encryption and a key is
produced. Encrypted data is stored in IPFS and a content
identifier is generated(Orange CID in Fig.2). The content
identifier is used to locate and retrieve the content. The key of
the encrypted data and the generated CID is encrypted again
using public key of the owner and stored in manifest (green
keys in Fig.2). Manifest in IPFS is used to organize and store

structured data. It is often used to store a set of CIDs, which
in our case, encrypted key and CID is stored together in a
manifest. Manifest CID is generated and is kept by the owner.

Fig. 2. Twin Creation and Sharing using sub models (Green represent the
encrypted key and CID, while orange represent the decrypted/original key and
CID)

In our system, data sharing is achieved through two ap-
proaches. The first is First Party Data Sharing, where the
owner initiates sharing (Fig.2). The owner retrieves the CID
and encrypted key (green key, Fig.2), decrypts them, and re-
encrypts the batch (key and CID) using the receiver’s public
key ((pubK)Party 3). The encrypted batch (approximately 300
bytes) is published via IPFS PubSub under the topic ”Keys.”
Subscribed parties receive the batch, and the intended receiver
decrypts it to access the submodel. Encryption and decryp-
tion use sec256k1 and AES-256-GCM. Successful sharing is
recorded in the blockchain via the Authorization contract.

The second is Second Party Data Sharing, where the
receiver requests access to a submodel by interacting with the
Signature contract to generate a signature request. The owner
signs the request, and after verification, the first-party sharing
process is triggered. The transaction is then recorded in the
blockchain.

III. IMPLEMENTATION

This section details the implementation process, including
the setup of the blockchain and IPFS, encryption mechanisms
for secure data storage, and the workflows for creating and
sharing digital twins using smart contracts. For our implemen-
tation, we developed smart contracts in Solidity [7] and de-
ployed them on a local Ethereum blockchain. Parity Ethereum
was used for this purpose, running in development mode with
an instant seal engine and a single node on a local machine.
The machine is equipped with 8 GB of memory, an Intel Core
i7 processor, Intel HD Graphics 3000, and runs on Ubuntu
20.04.6 LTS. The contracts were compiled and deployed using
the Truffle suite. IPFS node was setup and running in parallel
to parity blockchain in the same machine.

Submodels are encrypted using the AES-256-GCM sym-
metric cryptographic algorithm, ensuring secure encryption
and decryption with a 256-bit symmetric key and a random 16-
byte initialization vector (IV), making ciphertext unique even



Fig. 3. Manifest of key and CID that are encrypted together

for identical data. An authentication tag protects the integrity
of encrypted data by detecting unauthorized modifications.
For sharing, a hybrid encryption mechanism combines Elliptic
Curve Diffie-Hellman (ECDH) for key exchange and AES-
GCM for data encryption. The symmetric key is encrypted
using a shared secret derived from an ephemeral private key
and the recipient’s public key via ECDH, achieving forward
secrecy. The manifest (Fig 3) includes the encrypted CID, key,
ephemeral public key, IV, and tag for decryption. Only the
owner can decrypt the submodels from the manifest using their
private key, maintaining an organized and secure list of CIDs
pointing to submodels.

Fig. 4. Re-encrypted components sent as message through PubSub topic-
”Keys”

The sender chooses the submodels to share and re-encrypts
the key & CID using private key of recipient. Two submodels
”Nameplate” and ”Document” are selected by the sender and
the re-encrypted batch of these submodels are shown (Fig.4).
Sender sends this encrypted batch through the PubSub channel
in the topic : ”Keys”. Other parties can subscribe to this topic,
all the message shared in this topic is visible to all parties(refer
Fig.5).Only the recipient for whom the message is meant can
decrypt the batch using their private key. This ensures a secure
key sharing in a open channel.

Fig. 5. The IPFS node subscribed to PubSub topic-”Keys” and a message
received while listening.

For both First party and second party data sharing, this
sharing mechanism is the same. In the first party data sharing,
the sender manually selects the submodels to share to the
reciever. For the second party data sharing, the reciever creates
a request to recieve the submodels. Reciever interacts with the

smart contract Signature.sol to creates a signature request with
the senders address for required submodels (refer Fig.6)and
AccessRequested event is emited after request creation. In front
end, sender receives the request and the message contains hash
of the component.

Fig. 6. Receiver creates a signature request and access request is sent to the
senders address.

The message is then signed using the private key of the
sender for each component(refer Fig.7). The signature along
with its submodels are sent back to CollectSignature function
of Signature contract. The collectSignature function is used
to collect and verify digital signatures for the requested
components. For each component, it calculates a messageHash
using the keccak256 hash of the receiver and the component,
then verifies the signature by extracting the signer’s address
from the signature using ecrecover function. If all signature
are valid, the request is marked as signed and emits an event
which executes the sharing algorithm from the front end of
sender.

Fig. 7. The sender signs the request for each component requested and sends
the signature to the smart contract.

IV. EVALUATION

We evaluate our implementation in terms of deployment
costs, latency, and scalability under varying concurrent request
loads. The one-time deployment costs of all the smart contracts
for the implementation using Truffle framework is summarized
in Table I with a gas price of 20 gwei. Authorization con-
tract and Contract Registry has the highest cost with 0.022
and 0.023 eth respectively. Nested data structures, such as
attributes and roles, incur higher cost. In order to add or
remove attributes, for loop is used to loop through array which
increases gas costs as well. Including other contracts, the total
deployment costs comes to 0.113 eth or 356.57 Euro. The
same gas consumption is used to calculate the estimated cost
on L2 (Arbitrum), reducing expenses by 95%.

The Component Twin creation process is the most resource-
intensive one, with the highest latency of 167 ms (Table II). It
involves creating a smart contract instance for two components
using sample aasx files, representing a Electric vehicle battery
and a vehicle tire with 4 submodels: Nameplate, Document,



TABLE I
COSTS OF DEPLOYMENT OF SMART CONTRACTS

Contract Cost (Eth) Cost
(L1)

Est.Cost
(L2)

Migration 0.005 15.78 e 0.07e
Authorization 0.022 69.42e 0.32e
ComponentDT 0.016 50.49e 0.23e

ContractRegistry 0.023 73.58e 0.33e
ProductDt 0.008 25.24e 0.12e

MasterContractRegistry 0.021 66.26e 0.30e
Signature 0.021 66.26e 0.30e

Total Cost 0.113 356.57e 1.61e
Note: The cost (L1) represents our implementation cost in Layer 1

blockchain, while Est. Cost (L2) represents the estimated cost in the
Arbitrum Layer 2 blockchain.

Service, and Identification. Twin sharing, the least expensive
process, shares 2 submodels (Nameplate and Document) in
65 ms, measured from retrieval to the execution of the addAt-
tribute function in the authorization contract. Product Twin
creation involves interacting with the MasterContractRegistry
to link Component DT contracts into a Product DT. The
total signature process for sharing 2 submodels takes 265 ms,
covering signature request, sign & verify, and data-sharing
execution, with costs of 0.43 and 0.33, respectively, for request
and retrieval. The estimated costs in the L2 blockchain, as
shown in Table II, are drastically cheaper compared to running
the implementation on a public blockchain like Ethereum.

TABLE II
LATENCY AND COST EVALUATION

Process Lat.
(ms) Gas Cost

(L1)

Est.
Cost
(L2)

Component Twin Creation 167 681242 41.40 e 0.20 e
Twin Sharing 64 75393 4.59 e 0.02 e

Product Twin Creation 65 490175 29.82 e 0.14 e
Signature Request 51 138352 8.42 e 0.04 e
Sign and Verify 65 106562 6.48 e 0.03 e

Twin creation and twin sharing processes are evaluated for
latency under varying concurrent request loads using a multi-
threaded approach with the worker-threads module. Each
thread handles a subset of requests, and latency is measured
per batch. Results show that as concurrent requests increase,
latency decreases. For Twin Creation, latency drops from
21.112 ms (1 request) to 0.918 ms (10,000 requests), and for
Twin Sharing, from 45.426 ms to 0.83 ms. This demonstrates
the system’s scalability and efficiency in handling high vol-
umes of operations, such as creating multiple component twins
or assembling them into product twins.

V. DEMONSTRATION SCENARIO

The proposed system is demonstrated through the lifecycle
of an electric vehicle (EV) as a use case. The demonstration
begins with the creation of digital twins for key electric
vehicle components, such as the battery and tires, using Asset
Administration Shell(AAS). The manufacturer initiates the
process by generating component digital twins, encrypting

Fig. 8. Latency vs concurrent requests for Twin Creation

Fig. 9. Latency vs concurrent requests for Twin Sharing

their data, and storing it on IPFS. Next, the sharing process is
showcased, where the manufacturer securely shares the digital
twin of a battery with a service provider for maintenance
tracking. Following this, the recycler demonstrates a second-
party sharing scenario by requesting access to the tire’s digital
twin. The recycler interacts with the blockchain to send an
access request to the vehicle user, who reviews and approves
the request. Once approved, the system securely shares the
encrypted data with the recycler. All interactions, including
twin creation, sharing, and access requests, are recorded on
the blockchain.

VI. CONCLUSION

In conclusion, the proposed decentralized product lifecycle
management system utilizes blockchain, smart contracts, and
IPFS to create and share digital twins securely and trans-
parently. By utilizing Asset Administration Shell (AAS) for
semantic standardization and implementing efficient encryp-
tion mechanisms, the system ensures interoperability and data
integrity. The evaluation demonstrates scalability, with reduced
latency under high concurrent requests, and highlights the cost-
effectiveness of the approach, making it suitable for real-world
lifecycle applications in collaborative and distributed environ-
ments. The electric vehicle use case, such as tracking batteries
and tires through their lifecycle, showcases the system’s ability
to support sustainability by enabling efficient data sharing,
maintenance tracking, and recycling efforts.



REFERENCES

[1] J. Stark, “Product lifecycle management (PLM),” in
Product Lifecycle Management (Volume 1): 21st Century
Paradigm for Product Realisation, J. Stark, Ed., Cham:
Springer International Publishing, 2022, pp. 1–32, ISBN:
978-3-030-98578-3. DOI: 10 .1007/978- 3- 030- 98578-
3 1.

[2] M. W. Grieves, “Product lifecycle management: The new
paradigm for enterprises,” Int. J. Product Development,
vol. 2, no. 1/2, p. 71, 2005.

[3] M. Hayat and H. Winkler, “Blockchain-based decentral-
ized product lifecycle management: A framework for
production network,” in 2023 15th IEEE International
Conference on Industry Applications (INDUSCON),
2023, pp. 1346–1351. DOI: 10.1109/INDUSCON58041.
2023.10374585.

[4] S. de Oliveira and A. Soares, “A plm vision for circular
economy,” IFIP Advances in Information and Commu-
nication Technology, vol. 506, pp. 591–602, 2017. DOI:
10.1007/978-3-319-65151-4 52.

[5] P. I. 4.0 and ZVEI, “Details of the asset administration
shell—part 1: The exchange of information between
partners in the value chain of industrie 4.0 (version
1.0),” Federal Ministry for Economic Affairs and Energy,
Berlin, Germany, Nov. 2018.

[6] Aas package explorer, 2023. [Online]. Available: https:
//github.com/eclipse-aaspe/package-explorer.

[7] E. Foundation, Solidity — ethereum’s smart contract
language, https://soliditylang.org/, 2024.


