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Abstract—The proliferation of Internet-of-Things (IoT) devices
has led to significant challenges in managing radio access and en-
ergy efficiency in resource-constrained wireless sensor networks
(WSNs). The Time-Slotted Channel Hopping (TSCH) protocol,
part of the IEEE 802.15.4e standard, offers a promising solution
for addressing these challenges, particularly through its collision-
free scheduling mechanism. However, existing TSCH scheduling
schemes often rely on centralized coordination or extensive
control message exchanges, leading to inefficiencies in terms of
energy consumption and bandwidth usage. We propose a novel
decentralized TSCH scheduling framework driven by Bernoulli
Multi-Armed Bandit (MAB) learning. Our approach enables each
node to independently learn and optimize its transmission sched-
ule without requiring control information from a central server
or neighboring nodes. We explore multiple bandit action selection
policies, including ϵ-greedy, Upper Confidence Bound (UCB), and
Thompson Sampling, and highlight their limitations in low data-
rate networks. To overcome these challenges, we introduce a Low-
Rate Resilient Policy (LRRP) that enhances TSCH scheduling in
sparse traffic conditions by synthesizing packets to compensate
for sample deficiencies. Experimental results demonstrate that
our framework achieves collision-free scheduling and substantial
energy savings while ensuring scalability for large networks. The
proposed method outperforms traditional policies, particularly
in heterogeneous and low-traffic environments, making it highly
suitable for resource-constrained IoT networks. The bandit-
driven scheduling approach is shown to achieve upto ≈ 19%
increase in throughput for a 50-nodes IoT network, compared
with existing scheduling mechanism.

Index Terms—Decentralized Scheduling, Time-slotted Channel
Hopping (TSCH), Mult-Armed Bandit, IoT Networks.

I. INTRODUCTION

The rapid proliferation of Internet-of-Things (IoT) devices
and Wireless Sensor Networks (WSNs) has introduced critical
challenges in managing network traffic, energy consumption,
and communication overhead. These technologies are widely
deployed across various domains such as smart cities, agri-
culture, health monitoring, and wearables. As the number of
connected devices continues to grow, ensuring reliable and
energy-efficient connectivity has become increasingly diffi-
cult, particularly in resource-constrained environments. Key
challenges include maintaining stable radio connectivity while
optimizing energy usage and minimizing bandwidth overhead.

To address these challenges, several standard protocols
have been developed for IoT and sensor networks, with
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Notations and Nomenclature
N Set of nodes cells
τ Network Topology
S Set of TSCH cells
C Number of channels
T Number of timeslots
A Global Action space
Ri(t) Reward for player i in epoch t
α Learning rate
Vt ∗ (i) Value of an arm for player i at time t
tr Ramp up duration
TL Sleep scheduling kickoff duration
ϵ Exploration parameter in epsilon-greedy
c UCB parameter
αs, βs Beta distribution parameters for Thompson Sampling
Rk(t) Regret for player k at time t
a∗ Optimal arm
µ̂∗ Optimal arm value
λ Poisson data rate mean
F Mapping Function
ASN Absolute Slot Number
CHoffset Channel offset
NCh Number of available channels
TSCH Time Slotted Channel Hopping
MAB Multi-Armed Bandit
LRRP Low-Rate Resilient Policy
UCB Upper Confidence Bound
TS Thompson Sampling
MAC Medium Access Control
ppf Packets per frame

specific focus on connectivity and power efficiency. Proto-
cols such as WirelessHART [1], ISA100.11a [2], and IEEE
802.15.4e [3] provide mechanisms for reducing energy con-
sumption while maintaining reliable communication. The
IEEE 802.15.4e standard introduces the Time-Slotted Channel
Hopping (TSCH) protocol, designed to ensure high reliability
and low power consumption in IoT applications. TSCH al-
lows devices to communicate using scheduled time-slots and
channel hopping, which mitigates interference and enhances
the chances of achieving collision-free communication.

TSCH schedules can be computed either centrally or in
a distributed manner. Centralized approaches, such as those
discussed in [4]–[9], rely on a central controller to assign
transmission schedules based on global network knowledge.
While this guarantees optimal schedule allocation, it imposes
significant communication overhead between the controller
and IoT nodes, leading to increased bandwidth usage and
energy expenditure. On the other hand, distributed approaches
[10]–[12] aim to allow nodes to coordinate schedules locally,
reducing the need for extensive communication. However,
these methods still rely on control message exchanges, as
seen in Orchestra [10] and DIS-TSCH [11], introducing ad-
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ditional energy and bandwidth costs—an undesirable effect
in resource-constrained networks. While several recent works
have applied machine learning to optimize TSCH scheduling
[13]–[15], they too often rely on centralized control or incur
high communication overhead. For instance, [13] uses Hier-
archical Reinforcement Learning (RL) to optimize schedules
but still depends on centralized training, making it unsuitable
for resource-constrained networks. Distributed RL-based ap-
proaches, such as those in [12], [16], address some of these
issues but still require control message exchanges, resulting in
energy and bandwidth overhead. Additionally, techniques like
QL-TSCH [16] assume high network traffic, which limits their
effectiveness in low-traffic IoT deployments.

In this paper, we propose a fully decentralized schedul-
ing mechanism for IoT networks using the TSCH access
scheme, generalized for any traffic conditions. Unlike exist-
ing approaches, our method enables each node to compute
its transmission schedule independently, without relying on
control message exchanges with other nodes or a central
controller. This decentralized approach is particularly advanta-
geous for low-power and resource-constrained IoT networks,
as it reduces energy consumption and communication over-
head. By eliminating the need for network-wide coordination,
the proposed scheme also scales efficiently, handles network
heterogeneity and adapts to dynamic conditions.

Our proposed scheduling mechanism models each node as
a Bernoulli Multi-Armed Bandit (MAB) that learns from its
experienced collisions to allocate collision-free transmission
slots. While the proposed scheduling mechanism is designed
to operate across a wide range of traffic conditions, special
attention is given to low-traffic scenarios due to the limitations
of conventional learning-based scheduling algorithms in sparse
networks. Standard learning-based TSCH scheduling methods
struggle to converge in heterogeneous and low-data-rate en-
vironments due to sample insufficiency. Since real-world IoT
deployments often exhibit a mix of high and low traffic con-
ditions, our approach ensures reliable scheduling performance
under varying network loads, making it applicable to both
dense and sparse deployments.

Note that while sparse traffic conditions reduce the like-
lihood of collisions, they do not guarantee collision-free
scheduling. In fact, as shown later in this paper, there is more
than 25% loss in performance in the traditional scheduling
methods for data rate of 0.6 packet per frame in a 30-nodes
multi-point-to-point networks. Additionally, such scenarios
often lead to idle listening and wasted energy, particularly in
these approaches. The proposed learning-assisted framework
ensures robust scheduling by enabling nodes to adapt dynam-
ically to traffic patterns and network heterogeneity. By opti-
mizing sleep and transmit schedules through a decentralized
learning approach, the proposed mechanism minimizes energy
expenditure while maintaining performance. It also addresses
the sample insufficiency challenge inherent in sparse traffic
scenarios, enabling nodes to learn collision-free schedules
even with limited data transmission. The specific contributions
of this paper are as follows:

• We develop a fully decentralized TSCH scheduling archi-
tecture that operates without a central controller or inter-

node coordination. The scheduling problem is formulated
as a multi-player Bernoulli bandit game, where each
node independently learns to find an efficient schedule.
This is motivated from the decentralized decision-making
capabilities of MAB models, which rely solely on local
observations, such as collision feedback. Unlike pre-
defined scheduling schemes that require prior knowledge
of network conditions, the proposed approach can adapt
to network heterogeneity and changing traffic conditions.

• A new MAB arm selection policy, incorporating synthetic
packet generation, is proposed to enhance the scheduling
scheme’s performance in low-traffic environments. The
efficiency of this policy is compared with the existing
baseline policies for different networking scenarios.

• An analytical model for determining regret definitions
and bounds for these bandit policies is presented in the
context of the TSCH resource allocation problem. This
model theoretically validates the proposed policy’s per-
formance improvement in low-traffic network conditions.

• A comprehensive analysis of the proposed scheduling
mechanism is performed under various network condi-
tions, including scalability and adaptability to heteroge-
neous IoT networks.

II. RELATED WORK

A. Resource Allocation in IoT Networks
Scheduling and resource allocation for IoT and sensor net-

works have been an interesting topic for researchers. In [17],
the authors developed an adaptive access protocol for vehicular
ad-hoc networks (VANETs), following a Time Division Mul-
tiple Access (TDMA) scheme. The mechanism developed in
that work relied on the information up to the three-hop neigh-
borhood of a vehicular IoT node to support high priority safety
applications. Simulation results demonstrated the efficiency of
the protocol in terms of a higher packet delivery ratio (PDR)
than that of the state-of-the-art approaches. Similar TDMA
scheduling protocols were developed for dynamic networks
in [18], that allow nodes to find a collision-free slot in real
time based on their neighbors’ access scheme information. The
performance of these MAC scheduling schemes, however, rely
on the accuracy of information from the neighboring nodes.
The authors in [19] introduced a prediction-enabled TDMA
MAC protocol (PTMAC), in which each node continuously
monitors for the occurrence of packet collisions in each slot
in a TDMA frame. Upon collision detection, the node informs
its neighbor to change its schedule to another time slot.
Additionally, a node can detect potential collisions beyond
its two-hop neighborhood by receiving notifications from its
neighbors, allowing it to further adjust its time slot. However,
when a node is reassigned to a free time slot, PTMAC may
introduce new potential collisions, as it does not account
for collisions within these previously unused slots. Another
TDMA-based access control scheme (TCGMAC) for non-
stationary topologies is proposed in [20], in which a game-
theoretic approach for scheduling using a hybrid TDMA and
CSMA access scheme is adapted. The paper demonstrates the
ability of the protocol to reduce latency and packet loss, but
does not guarantee a collision-free scheduling.
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B. TSCH Scheduling Mechanisms

There are existing works that deal with scheduling in TSCH
networks. The work in [4] proposes a mobile scheduling
protocol for TSCH-based IoT networks. That proposed MSU-
TSCH algorithm enables cell allocation by establishing a virtu-
alization connection between the sink and the IoT nodes. Such
an approach reduces the collisions and energy expenditure
in the network, but relies on a central server for updating
the scheduling policies. In [5], the authors develop a TSCH
cell allocation strategy for a niche low-latency application
of in-vehicle sensor network. A cross layer mechanism is
adopted for topology management and TSCH scheduling using
an optimized graph isomorphism algorithm. The proposed
approach is applicable for networks with limited sensor nodes
that send data to a central sink. A polynomial-time algorithm
for maximizing network throughput in a TSCH network with
centralized connectivity is proposed in the work reported in
[6]. In addition, an auction based scheduling policy is designed
to assist the throughput maximizing algorithm that also ensures
a fair bandwidth allocation across the network. The centralized
TSCH algorithm proposed in [7] executes a sequential multi-
hop scheduling by allocating cells to links following non-
conflict and non-interference rules. A central controller does
the allocation by assigning an optimized number of cells
to each link depending on the network traffic conditions.
In the work reported in [8], the authors develop an SDN-
controlled scheduling scheme for industrial IoT applications.
The centralized SDN controller does resource allocation using
a link quality estimation algorithm while keeping latency at
check. Similar centralized schedulers designed for wireless
industrial networks are reported in [9]. Their technique of
time-grouping different links allows the scheduler to achieve
better reliability than the existing scheduling mechanisms.

C. Reinforcement Learning-enabled Scheduling

Dynamic channel allocation for satellite IoT network using a
centralized Deep Reinforcement Learning scheme is proposed
in [21]. The proposed mechanism allows a central controller
to learn scheduling decisions on-the-fly to reduce the average
transmission latency. Similarly in [22], the authors exploit
Phasic Policy Gradient Reinforcement Learning for resource
allocation in TSCH network of sensors transmitting data to a
central base station. A runtime resource management frame-
work for TSCH wireless sensor networks in real time using
Reinforcement Learning is proposed in [13]. The authors use
a data-driven approach for self-adaptation of optimal sloframe
length. In [14], the researchers consider the problem of energy
management in TSCH networks and propose an RL algorithm
for efficient radio scheduling to reduce energy expenditure.
The reported performance shows the ability of the protocol
to realize power savings while achieving similar networking
performance. Search for an optimal channel hopping using
MAB is reported in [15]. The proposed approach improves
network reliability and energy efficiency, without guarantee-
ing a collision-free transmission. The paper [23] develops a
strategy, where different RL agents address a multi-objective
problem, optimizing throughput, power efficiency, and net-

work delay based on predefined application requirements.
All these centralized scheduling approaches ensure a high
reliability in cell allocation, as the decisions are controlled
by a single entity (the central controller/server). However, in
addition to putting the entire computation burden on the central
controller, these approaches also require additional energy
and bandwidth overhead for communicating the policies and
learning observables to and from the server.

D. Decentralized Scheduling Approaches
There are a few recent attempts to formulate the decen-

tralized implementation of the TSCH scheduling problem.
In the work reported in [12], the authors break down the
centralized implementation into several localized implemen-
tation with the computation at a parent node within a cluster.
The cell allocation problem is coined as a Markov Decision
Process (MDP) at each parent node and Deep Q-Learning is
used for function approximation of the scheduling actuation.
The CSMA-CA enabled RL policy improves the QoS, while
trading it off with learning convergence. Similarly, multi-agent
Q-learning is adopted for TSCH scheduling in a decentralized
manner in [16]. The proposed mechanism reduces the network
collision without eliminating contention. The authors in paper
[10] investigate the use of TSCH protocol with Orchestra
scheduling approach for decentralized IoT arrangement. The
demonstrated performance reported high end-to-end latency
for heterogeneous traffic distribution. The work in [11] pre-
sented a constant-time distributed scheduling algorithm for
multi-hop sensor networks. The CSMA-CA based protocol
reduces network delay and energy wastage, while still not
allowing a contention-free allocation. A non-stationary policy
for multi-user spectrum sharing in cognitive radio network is
handled in a decentralized manner in [24]. The problem of
channel allocation in IoT networks over unlicensed spectrum is
modeled as a contextual multi-player MAB game in [25]. The
paper aims to find an optimal channel allocation while finding
a good balance between efficiency and scalability. A multi-
player MAB approach for decentralized TSCH cell allocation
in a heterogeneous network is presented in [26]. The learning-
driven protocol increases network throughput but does not
provide a collision-free schedule. In addition, the collisions
increase with a rise in the number of users accessing the
spectrum, leading to scalability issues. Although implemented
in a decentralized setting, these approaches rely on signaling
and control information sharing among neighbors, which lead
to energy-bandwidth overhead. In addition, most approaches
allow contention to exist, thus, limiting them for applications
with no access delay concerns. Moreover, these protocols with
decentralized learning are all developed for networks with high
data rates and do not perform well in low traffic conditions,
due to sampling problems. Our work considers all these
aspects, while developing the decentralized TSCH scheduling
framework using Bernoulli Bandit, making it suitable for a
wide range of networks incorporating heterogeneity, scalability
and low-traffic conditions.

Although Multi-Armed Bandit (MAB) models have been
explored in other contexts, applying them to decentral-
ized Time-Slotted Channel Hopping (TSCH) scheduling in
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TABLE I: Summary of Related Work

Study Approach Strengths Limitations
[17]–[20] TDMA-Based Scheduling High PDR, Adaptive collision

detection
Relies on accurate
neighbor information

[4]–[9] Centralized TSCH Scheduling Optimized collision avoidance,
Energy-efficient

High overhead, Not scalable

[13]–[15], [21]–[23] RL for TSCH Scheduling Adaptive to dynamic traffic Centralized connectivity requirement,
Scalability issues

[10]–[12], [16], [24]–[27] Decentralized Scheduling Throughput improvement Limited to high traffic rate, Lacks
collision-free guarantee

resource-constrained IoT networks introduces several unique
challenges. First, sparse traffic conditions result in sample
deficiencies, hindering the learning process. To address this,
the proposed framework generates synthetic packets to en-
sure sufficient training data. Second, achieving collision-free
scheduling without explicit node coordination requires in-
novative approaches to decentralized learning. Our method
enables nodes to infer optimal schedules based solely on local
collision feedback, overcoming scalability issues associated
with centralized systems. Lastly, balancing trade-offs between
energy efficiency, throughput, and latency in dynamic and het-
erogeneous networks adds further complexity. The proposed
framework addresses this by optimizing a long-term reward
function, ensuring a balanced and adaptive scheduling strategy.

III. BACKGROUND

A. Time Slotted Channel Hopping (TSCH)

Time Slotted Channel Hopping is one of the operating
modes of the IEEE 802.15.4 standard [3]. It was primarily
developed for reducing collisions by providing slotted access
across different channels in a medium. It has also been shown
to be effective in mitigating the effects of multipath fading
and interference achieved using channel hopping mechanism.

In the TSCH protocol, the network is assumed to be time
synchronized. A slotframe is discretized into certain timeslots,
where a node transmits a packet and receives an acknowl-
edgement. If a packet transmission fails, the node attempts
retransmission in the next available time slot, following the
TSCH collision avoidance protocol. The size of the slotframe
determines the maximum number of schedulable timeslots
and the timeslot cycle, which is preset based on network
size and degree. At the beginning of each timeslot, a TSCH
node selects a frequency channel according to a predefined
hopping sequence. The channel hopping sequence is defined
by the network designer and is used to determine the frequency
channel for each timeslot. The channel selection (Chi) for
node i is executed using the following equation.

Chi = F [(ASN + CHOffset)%NCh] (1)

Here, F is the mapping function that defines the hopping
sequence, ASN is the absolute slot number representing the
number of timeslots elapsed since the start of the network,
CHOffset is the channel offset and NCh is the number of
available channels.

The TSCH scheduler assigns specific timeslots for com-
munication between nodes. In the traditional approach, a
centralized arbitrator computes the schedule for each of the

TSCH nodes, which then downloads and executes the schedul-
ing protocol. There are decentralized implementations of the
TSCH scheme as well, as proposed by some recent works
[10]–[12]. Here the nodes cooperate with one another, by
means of extra signaling, such as via a hash function, to
compute a collision-free schedule. In addition to collision
control, one additional requirement of an efficient schedule is
energy management. In other words, the nodes are expected
to be asleep in all the timeslots where they are not expected to
transmit or receive packets. Thus, an effective channel hopping
schedule would enable the resource-constrained nodes to save
energy.

B. Multi-Armed Bandits (MAB)

Multi-Armed Bandits [28] is a class of Reinforcement
Learning (RL) Algorithms [29] used in non-associative set-
tings. This kind of framework is applicable in scenarios where
the system or the learning environment does not transition
from one state to another. Essentially, an MAB algorithm
does not possess the state-based concept found in traditional
reinforcement learning. A well-studied variant within MAB
is the ‘k-armed bandit’ problem. Here, the learning agent, or
bandit, has k potential arms or actions to select from. Each
arm is associated with a stochastic reward whose distribution
is unknown to the agent. Upon choosing an arm or action, the
agent receives a sample reward based on this unknown distri-
bution, providing feedback on the selected action’s outcome on
the system performance. The agent’s objective is to maximize
the total cumulative reward over an infinite time horizon by
learning to estimate the reward distributions of the available
actions.

Formally, the value V (a, t) of an arm a at time t, in simplest
form, is given by the discounted sample average of the reward
associated with the arm, that is,

V (a, t) = V (a, t− 1) + α× ra(t) (2)

The MAB agent or the bandit picks an arm a from the set
of possible arms A, observes the reward and updates the arm
value using Eqn. 2, with a learning rate α. By the law of large
numbers, the model converges when the number of reward
samples collected is sufficient enough that the discounted
sample average of the reward distribution becomes close to
the expected reward for all the arms. This condition can be
expressed as:

|E[ra]− lim
N→∞

N∑
t=1

αt × ra(t)| < ϵ;∀a ∈ A (3)
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Bernoulli Bandit [30], [31] is a class of Multi-Armed Bandit
problem, where the reward distribution follows Bernoulli Dis-
tribution. This indicates that, for each arm, the reward is binary
and occurs with probability p and (1− p) respectively. Many
real world events that have binary outcomes can be modeled
using a Bernoulli Bandit problem, for example, clinical trials,
A/B testing etc. Although, theoretically, as shown in [32], it
is possible to compute a deterministic optimal policy (OPT)
for a Bernoulli reward. However, for anything beyond some
simple scenarios, finding such policies is considered infeasible
in current research [33] for which suboptimal policies are used
in practice.

IV. DECENTRALIZED TSCH CELL ALLOCATION USING
BERNOULLI BANDITS

The proposed TSCH scheduling mechanism, as mentioned
earlier, is developed considering completely decentralized
implementation. That is, each TSCH node node is allowed
to find its schedule independently without the control of a
central arbitrator. This gives the advantage of accomplishing
cell allocation with a reduced bandwidth and energy overhead,
owing to the removal of the need of sharing and downloading
control information and scheduling policies.

Let us consider a network with the set of nodes N and a
given topology defined by a directed graph τ . As shown in Fig.
1, each node is equipped with a Bernoulli Bandit that has |S|
number of arms, where S represents the set of cells in a TSCH
slotframe. Note that |S| = C × T , where T and C denote the
number of timeslots and channels in a slotframe, respectively.
The bandit action is to pick a cell from set S such that the
collisions in the entire network are minimized. Thus, the entire
network can be visualized as a multi-player Bernoulli Bandit,
where each agent or bandit interacts via its arm or action.
Each player independently and without information sharing,
aims to cooperatively find a schedule that minimizes MAC
packet collisions in the network.

Thus, we have a multi-player bandit scenario, where the set
of players is N = 1, 2, ....., N . Here, the action space of each
player i ∈ N is the set of |S| arms Ai = S. The global action
space in this setting can be given as A = ∪N

i=1Ai. For a finite
time-horizon T , and the arm ai(t) chosen by player i at time
t, the action profile a(t) is defined as the vector of the actions
taken by the players, that is, a(t) = {a1(t), a2(t), ....aN (t)}.
Because of the decentralized nature of the problem, any bandit
(or player) can only know about its own arm and has no
knowledge about the arms pulled by other bandits or players
in the environment.

The Bernoulli reward for a player i, in this scenario, is
dictated by the fate of the transmitted packet in the chosen
TSCH cell. In other words, the player i receives a reward of
0 if the packet gets collided due to overlapped transmission
by other nodes in the network; otherwise it receives a reward
of 1 for each successful packet transmission. Formally, reward
for player i in an MAB decision epoch t is defined as:

Ri(t) =

{
1, for successful transmission by i at epoch t

0, for collision
(4)

From the bandit point of view, if a set of players P ⊂ N
that are directly connected to each other, defined by graph
τ , pick the same arm a∗(t), then each of these players will
receive a reward drawn from a distribution with zero mean.

The objective of each player (that is, node in this context),
in a global sense, is to pick an arm a∗ ∈ A that maximizes
the expected long term reward.

a∗ = arg maxa∈A

N∑
i=1

E[ri(ai,P)] (5)

From the perspective of TSCH, the concept used here is
that each node, acting as a Bernoulli Bandit, will learn to
independently find a TSCH transmission schedule (STx ⊂ S)
such that there is no packet collision. This is demonstrated by
an example shown in 2 for a simple 4-node TSCH network.
Each node selects a transmission cell and monitors whether the
transmission results in success or collision. Depending on the
transmission outcome, it updates its learning parameters using
the specified reward function to maximize long-term reward.
Initially, as illustrated in Fig. 2, each node randomly selects
TSCH cells, causing overlapping transmissions and collisions.
However, as learning advances, each node learns to choose
cells that avoid collisions, achieving a collision-free state after
convergence.

Once the transmission scheduling is done, the next course
of action for a node is to determine the listening schedule,
that is, to find out on which TSCH cells it should remain
awake for successful reception of MAC packets from its
neighbors. The problem here boils down to finding the TSCH
schedules of the neighboring nodes. This is important because
if the listening schedule is not efficient, there will be idle
listening that would lead to energy wastage. Nevertheless, once
the transmission schedule is determined using the Bernoulli
Bandit framework detailed above, determining the listening
schedule is straightforward. This is accomplished by the sleep-
listen scheduler (indicated in Fig. 1) after the transmission
scheduling bandit agents converge. The sleep-listen scheduler
ensures that the wireless node it is part of, remains awake
in all the TSCH cells for a kickoff duration, comprised of
TL number of slotframes. Within this kickoff duration, the
sleep-listen scheduler computes the TSCH cells on which the
node should expect packet transmissions from its neighbors.
If it receives p(> 0) number of packets in cell s ∈ S , then
the node remains on in cell s for listening after the kickoff
duration. For the set of cells SC

L ⊂ S − STx where p = 0
after TL slotframes, the sleep-listen scheduler makes the node
to turn off the radio transceiver in those cells.

V. BANDIT POLICIES FOR TSCH SCHEDULING

As explained in Section IV, each TSCH node is equipped
with a Bernoulli Bandit agent that independently executes a
learning policy to achieve the common network objective of
finding a collision-free transmission schedule. Transmission
scheduling, thus, in this context, is simply finding a TSCH
cell in the slotframe such that there is no overlap in packet
transmission. To achieve this, each bandit picks an arm (that
is, a TSCH cell) to interact with the environment (wireless
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Fig. 1: Bernoulli Bandit Framework for Decentralized TSCH Scheduling

network) and receives a Bernoulli reward that evaluates the
selected arm. The goal of the bandit is to find an arm selection
policy that maximizes the expected reward.

We first explore three standard state-of-the-art bandit poli-
cies: ϵ-greedy, Upper Confidence Bound (UCB) and Thomp-
son Sampling. We briefly summarize these policies in this sec-
tion, talk about their limitations in the context of this problem
of decentralized TSCH cell allocation and then propose a Low
Rate Resilient Policy (LRRP) that is built on top of these
standard policies to overcome these limitations.

Baseline Policies: Three standard action selection policies
are explored as baselines in this paper: ϵ-greedy, UCB and
Thompson Sampling [28], [34], [35]. For ϵ-greedy policy,
the exploration-exploitation trade-off can be manually tuned
by a user-defined parameter ϵ that dictates the probability of
arm-selection stochasticity. In other words, the arm with the
maximum value is selected with probability (1 − ϵ) and all
other arms are selected at random with probability (ϵ), which
decays (exponentially, or linearly, based on the application

requirements) as learning progresses. Formally, the arm se-
lection logic for a node i, at a learning decision epoch t, can
be expressed as

aϵ- greedy
i (t) =

{
randomly select a cell s with probability ϵ

arg max∀s∈SV
(i)
t (s)with probability 1− ϵ

(6)
Here V

(i)
t (s) denotes the value of the arm (or TSCH cell)

s selected by bandit (or node) i at time t; which is updated as

V
(i)
t (s) = V

(i)
t−1(s) + α(Ri(t)− V

(i)
t−1(s)) (7)

In Eqn. 7, α is the learning rate and Ri(t) is the reward
received by bandit i at time t.

On the other hand, in UCB arm selection policy, the explo-
ration is adaptive and data-driven. MAB regret minimization in
UCB is handled in a more elegant manner by favoring less ex-
plored arms that are likely to yield high rewards. This dynamic,
confidence-interval-based exploration-exploitation balance is
executed as:
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Fig. 2: An example scenario of learning TSCH transmission
schedule in a four-nodes network.

aUCB
i (t) = arg max∀s∈S(V

(i)
t (s) + c

√
ln(t)

Nt(s)
) (8)

Here, Nt(s) denotes the number of times cell s has been
picked as the bandit arm for transmission till epoch t and
hyperparameter c controls the exploration-exploitation trade
off. The value update for V (i)

t (s) is executed using Eqn. 7.
Note that for the ϵ-greedy and UCB policies mentioned

above, the bandit executes exploratory behavior using hyper-
parameters ϵ and c, to ensure that the bandit doe not get stuck
to a sub-optimal arm. Using such exploratory behavior, these
policies help the agent to update its value function to account
for any dynamism in the environment, which is the wireless
network in this case.

Another baseline MAB action selection policy considered
in this work is Thompson Sampling, which takes a Bayesian
approach to navigate the exploration-exploitation dilemma in
arm selection. In this approach, a prior probabilistic reward
distribution is associated with each arm of a bandit. In this
paper, β-distribution is considered as the prior. As learning
progresses, the bandit sees more and more samples of the
reward for the arm selected, and thus, update the distribution
associated with the arm. The parameters (α(i)

s , β
(i)
s ) of node

i’s distribution associated with arm (cell) ‘s’ are updated at
epoch t using the following equation:

(α(i)
s (t), β(i)

s (t)) =


(α

(i)
s (t), β

(i)
s (t))

, if arm selected ̸= s
(α

(i)
s (t), β

(i)
s (t)) + (Ri(t), 1−Ri(t))

, if arm selected = s
(9)

At the end of each learning epoch, samples are drawn from
each arm’s respective β- distribution and the arm with the
highest sample value is picked. As the learning progresses,
these distributions converge to the true reward distributions of
the corresponding bandit arms which ensures that the arm with
the highest expected reward value is chosen.

Algorithm 1 Low Rate Resilient Policy (LRRP)
Input:

• Slotframe S, TSCH cells {s1, s2, . . . , sk}
• Set node data packet rate λ (packets per frame)
• Baseline bandit action selection policy (e.g., Thompson

Sampling, ϵ-greedy, UCB)
• Hyperparameters: tr (ramp-up duration), α (learning

rate), ϵ (for ϵ-greedy), c (for UCB), prior distributions
β
(i)
s (αs, βs) (for Thompson Sampling)

Output:
• Optimal TSCH cell s∗ for collision-free transmission

Initialization:
• Set value estimates V

(i)
0 (s) for each cell s ∈ S

• Set prior parameters for (α(i)
s , β

(i)
s ) for Thompson Sam-

pling
• Initialize the slotframe and prepare nodes for transmission

scheduling
1: for each node i do
2: for each learning epoch t do
3: if t ≤ tr then
4: if MAC queue of node i is empty then
5: Generate a synthetic noise packet
6: end if
7: end if
8: Execute action selection policy:
9: if ϵ-greedy policy then

10: Randomly select a cell s with probability ϵ,
else choose s = argmax∀s∈S V

(i)
t (s)

11: else if UCB policy then
12: s = argmax∀s∈S

(
V

(i)
t (s) + c

√
ln(t)
Nt(s)

)
13: else if Thompson Sampling policy then
14: Sample X (i)

t (s) from β
(i)
s (αs, βs),

s = argmax∀s∈S X (i)
t (s)

15: (α
(i)
s (t), β

(i)
s (t)) =

16:


(α

(i)
s (t), β

(i)
s (t)),

if arm selected ̸= s

(α
(i)
s (t), β

(i)
s (t)) + (Ri(t), 1−Ri(t)),

if arm selected = s
17: end if
18: Transmit packet in selected cell s
19: Compute Bernoulli reward Ri(t)
20: Update value estimate for selected cell s:
21: V

(i)
t (s) = V

(i)
t−1(s) + α(Ri(t)− V

(i)
t−1(s))

22: end for
23: end for

One common characteristic of these policies is that the
bandit’s model updates depend on the rate at which it is being
able to sample the reward distribution. In other words, the
model weight update frequency has the bottleneck of the rate
of generation of the observables that can contribute to reward
computations. In this context, since the reward is computed
from the fate of a packet transmission (success/collision), the
bandit update frequency is bounded by the packet generation
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rate of the TSCH nodes. To exemplify, for a homogeneous
network data rate of λ packets per frame (ppf), the nodes
on the average would have to wait for 1/λ number of
slotframes to update the learning parameters of the bandit it
is associated with. This would, in turn, effect the learning
performance, convergence speed and eventually would im-
pact on the algorithm’s adaptability to network dynamism as
well as its key performance indices. Given that the learning
convergence duration should be sufficiently smaller than the
network time constant for an efficient and adaptive protocol,
this slow convergence would lead to an inability to adapt to
dynamic network conditions with a low data rate. Additionally,
when the network size (that is the number of interacting
bandits) increases, the learning convergence would become
even slower. This explanation can be mathematically validated
using the regret analysis presented in Section VI.

In order to ameliorate the above limitations, a strategy
for handling the low data rate scenario is developed. In this
proposed Low Rate Resilient Policy (LRRP), a learning ramp-
up phase is introduced while training the bandit, following an
action selection policy. During this phase, comprising of tr
epochs, each node generates MAC packets with the payload
containing encoded noise samples generated using a stochastic
distribution, if the packet queue is empty because of low
data traffic. The generated packets are transmitted following
the actuated transmission schedule driven by the bandit arm
selection policy.

The physical interpretation of this strategy is that in the
event of low data traffic, the learning model is assisted
using samples synthetically generated using the same policy,
as would have been followed if there were any packets in
the transmission queue. Although the payload in the packets
contain noise that is irrelevant to the receiver, the transmission
scheduling of these packets is done by following the same
bandit model. In other words, at any given point of time t,
the bandit arms are drawn from the distribution D(θ; t) and
its parameters are updated (depending on the bandit action
selection policy), irrespective of the payload. This helps the
node to estimate the reward distribution, and consequently
the TSCH scheduling of its directly connected neighbors,
so as to find a collision-free schedule in a decentralized
manner. While this approach is effective in both high and low
traffic conditions, sparse networks introduce a unique chal-
lenge: standard learning-based scheduling policies suffer from
sample insufficiency, leading to suboptimal convergence. The
proposed framework enhances learning in these scenarios by
ensuring a stable scheduling even when network conditions are
not ideal. This design choice allows the proposed framework to
operate efficiently across different IoT deployments, regardless
of data traffic volume.

Note that the Low Rate Resilient Policy (LRRP) encapsu-
lates a baseline bandit policy which each player follows to
draw its arm from. This is the same policy that the bandits
use for sample generation when there is sample deficiency
due to low network data traffic. Thus, its regret bound and
the convergence behavior would be dictated strongly by the
baseline bandit arm selection logic used. In this work, we focus
on Thompson Sampling-enabled LRRP mechanism, owing to

its strong theoretical regret bound and its robust behavior
in estimation of the reward distribution [28]. The steps of
execution of Low Rate Resilient Policy (LRRP) are formally
enumerated in Algorithm 1. The bandit regret definition in
the context of TSCH scheduling and the bounds for different
policies are formulated in the following section.

It is worth emphasizing here that in the proposed decen-
tralized scheduling framework, no explicit control information
exchange occurs between nodes. Instead, implicit coordination
is achieved through local observations of collisions. Each node
independently learns its optimal schedule using a Bernoulli
Multi-Armed Bandit (MAB) approach, where decisions are
biased by a long-term reward function. This design choice
reduces communication overhead and energy consumption,
particularly in large-scale IoT networks. Experimental results
(see Section VII) demonstrate that the proposed framework
achieves comparable throughput and low collision rates with-
out requiring explicit node interaction. Additionally, the Low-
Rate Resilient Policy (LRRP) addresses potential sample in-
sufficiency in sparse traffic conditions, ensuring robust sched-
ule optimization and maintaining network performance.

Notably, the proposed Bernoulli MAB learning framework
differs from existing MAB-based scheduling approaches in
several ways. First, the Low-Rate Resilient Policy (LRRP)
addresses the challenge of sample insufficiency in sparse
traffic scenarios by generating synthetic packets during idle
periods, ensuring reliable learning even under low-data-rate
conditions. Second, unlike traditional methods that rely on
explicit coordination between nodes, the proposed framework
eliminates communication overhead by enabling fully decen-
tralized learning based solely on local collision feedback.
Third, the framework simultaneously optimizes multiple net-
work objectives, including throughput, and energy efficiency,
making it particularly suitable for resource-constrained IoT
networks.

VI. CONVERGENCE AND COMPLEXITY ANALYSIS

A. Regret Bounds

In this section we define the Bandit regret in the context of
TSCH cell allocation and present an analysis on the theoretical
regret bounds that we obtain from different arm selection
policies mentioned earlier in section V. In general, MAB regret
for agent k at epoch T can be expressed by the following
equation.

Rk(T ) = Tµ∗(k)−
T∑

t=1

E[µ(ak(t))] (10)

In Eqn. 10, µ∗(k)) is the expected reward for the optimal
arm, and µ(ak(t)) is the reward for arm ak(t) selected by k
in epoch t. The regret for the entire system with N players
(IoT nodes) can be expressed from Eqn. 10 as follows.

R̂(T ) = T µ̂∗ −
T∑

t=1

E[µ̂(a(t))] (11)

In the scenario of TSCH cell allocation with the bandit
reward given by Eqn. 4, the optimal expected reward is
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achieved the case when the nodes find a cell that does not
overlap in timeslot or in channel in the slotframe. In that
case, the value of the optimal expected reward µ̂∗ = N .
Before moving forward, one generalization that is required
for Eqn. 11 in the context of this paper is the inclusion of
packet generation rate (λk). Additionally, the optimal arm
value becomes µ̂∗ =

∑N
k=1 λk. Then the regret expression

can be defined as:

R̂(T ;λ) = T

N∑
k=1

λk −
T∑

t=1

E[µ̂(X(t)
T
.a(t))] (12)

Here X(t) is an N -D vector with each element comprised
of an indicator function 1k(t), 1 ≤ k ≤ N , which is defined
as:

1k(t) =

{
1, if there is a packet to be transmitted by k at t
0, otherwise

(13)
The regret bounds for the baseline bandit policies referred

in section V can be derived in the context of this problem
using the formulation given in [36]–[40]. Following the same
approach, the regret bounds for the proposed LRRP with these
baseline policies can be derived as follows. Since LRRP allows
the nodes to generate synthetic packets in the event of low data
rate, the effective sample generation rate becomes λk → 1.
Thus the regret bounds can be obtained as:

R̂(T ;λ)LRRP-ϵ-greedy ≤ O(T−1/3(|S| × logT )1/3) (14)

R̂(T ;λ)LRRP-UCB ≤ 8
∑

i:µi<µ∗

lnT

µ∗ − µi
+(1+

π2

3
)

|S|∑
i=1

(µ∗−µi)

(15)

R̂(T ;λ)LRRP-TS ≤ O(
√
NT × lnT ) (16)

In the above bounds, S denotes the set of cells in a TSCH
slotframe and N = |N | is the number of nodes contending
for cells in that frame, as has been explained in section IV.

B. Complexity Analysis

The computational complexity of the proposed decentralized
TSCH scheduling framework is analyzed based on its major
components: Multi-Armed Bandit (MAB) parameter update,
reward calculation, and schedule optimization. This analysis
considers both per-node and network-level complexities to
highlight the efficiency and scalability of the proposed method.

Each node maintains |S| arms, representing time slots, and
updates the reward for the selected arm based on observed
collisions. For each selected arm, the reward is updated in
O(1) time. The selection of an arm involves computing or
retrieving the action policy (e.g., ϵ-greedy, UCB, or Thompson
Sampling). For ϵ-greedy, the complexity is O(|S|) as it scans
all |S| arms. For UCB, the complexity is also O(|S|) due
to the computation of confidence bounds for all arms. For

Thompson Sampling with a simple Beta distribution update,
the sampling step is O(|S|). Per Time Step Complexity: Thus,
the total complexity per time step for MAB learning is O(|S|).

With respect to the Low-Rate Resilient Policy (LRRP), the
issue of parameter update in sparse traffic is addressed by syn-
thesizing packets during idle periods. This involves generating
a synthetic packet, which is a constant-time operation (O(1)).
In other words, adding LRRP does not increase the overall
time complexity of MAB learning, as it only adds a constant
overhead.

Thus, for a single node operating over T time steps, the
total computational complexity is: O(T.K). This includes T
arm selection and reward update operations over K arms.
In order to compute network-level complexity, for a network
with N nodes, where each node operates independently, the
total complexity scales linearly with the number of nodes:
O(N.T.K). Since no explicit control message exchange oc-
curs, the algorithm avoids the quadratic or higher complexities
typically seen in centralized scheduling methods.

Memory Requirements: Each node stores the state of |S|
arms (e.g., reward values, confidence bounds, or distribution
parameters). The memory requirement per node is O(|S|). At
the network level, the total memory requirement is: O(N.K).

Comparison to Centralized Methods: Centralized schedul-
ing algorithms often require global coordination, resulting in
O(N2) or higher complexity due to the need for network-wide
conflict resolution and control message processing. In contrast,
the proposed decentralized framework scales efficiently, mak-
ing it suitable for large networks with minimal computational
and communication overhead.

TABLE II: Default Simulation Parameters

Parameter Value
α 0.01
c 0.15
ϵ e−t/50

tr 5000 frame duration
TL 100

V
(i)
0 (s),∀i, s Uniform random

(α
(i)
s (t), β

(i)
s (t)), ∀i, s (0,0)

VII. EXPERIMENTS AND RESULTS

A. Experimental Setup

The performance evaluation of the proposed TSCH schedul-
ing framework driven by Bernoulli Bandits was conducted
through experiments using a MAC network simulator. The
simulations were executed on a system equipped with an
Intel(R) Core(TM) i7 (10th gen) processor running a 64-
bit Windows 10 (v22H2) operating system. The developed
time-driven MAC layer simulation software is designed in
Python 3.7. The simulation kernel with embedded learning
components performs event scheduling in terms of packet gen-
eration, transmissions and receptions. We consider a general-
ized network model with multi-point-to-multi-point, partially-
connected topologies. Specifically, two broad categories of IoT
networks are explored. First, a multi-point-to-point connec-
tivity with N nodes sending MAC packets to a central base
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Fig. 3: Convergence behavior of different bandit policies with respect to (a) throughput, (b) collision probability (c) TSCH
frame status (the number within cell indicates the node transmitting packet in that cell)

station and second, a mesh network with bidirectional traffic
flow between the one-hop neighbors. At the MAC layer, it
is assumed that the network time is synchronized. Time is
slotted and there exists multiple channels that the node can
use for transmission, as is the case with general Time Slotted
Channel Hopping (TSCH) networks mentioned earlier. The
MAC slotframes are of fixed size, which is dimensioned a
priori based on the average degree of the network graph.

The application layer traffic generation at the source is
stochastic and follows a Poisson distribution with mean data
rate of λ packets per frame. Note that the traffic pattern follows
an Independent Identical Distribution (IID) across the network.
Each node maintains an M/G/1/K buffer/queue, where the
Poisson distributed queue arrival rate is governed by λ, and
the queue service rate is determined by the TSCH scheduling

policy actuated by the proposed learning mechanisms.
The default experimental parameters are presented in Ta-

ble II. The performance metrics used for evaluation of the
proposed approach were: (i) throughput, measured as the
fraction of successfully transmitted packets relative to the
total generated packets; (ii) collision probability, defined as
the proportion of packets that experienced transmission colli-
sions; (iii) energy efficiency, defined as the fraction of time
nodes remained active versus in sleep mode and (iv) learning
convergence, evaluated in terms of the time required for nodes
to attain a stable, collision-free scheduling policy.

B. Performance Analysis

To understand the performance achieved with the proposed
TSCH scheduling framework driven by Bernoulli Bandits, we

Fig. 4: β-distribution pdf associated with each arm for three different stages of learning (t = 100, 2200, 3500)
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first experiment with a multi point-to-point network, with 30
nodes sending data to a base station. The initial experiments
are conducted with the baseline action-selection policies de-
tailed in section V. The learning convergence behavior of
these policies, viz, ϵ-greedy, UCB and Thompson Sampling,
for this network is demonstrated by throughput and colli-
sion probability in Fig. 3 (a) and (b). It can be observed
that the convergence speed of Thompson Sampling (TS) is
comparatively slow compared to that of ϵ-greedy and UCB.
This is because when the nodes use TS for learning the arm
selection policy, then it updates its parameters of the prior
distribution, which is β-distribution in our case, and samples
are drawn from the updated parametric model. At the start of
learning, the distribution is close to a uniform distribution and
with an increase in the number of samples received (collision
information in this case), the distribution gets closer and closer
to a Gaussian distribution, with its statistical mode at the
arm with maximum expected reward. On the other hand, the
policies ϵ-greedy and UCB are inherently greedy in nature
and favor the action that gives short term high reward. This
process helps them to attain convergence faster, but at the cost
of settling in a sub-optimal arm selection, as can be seen from
the figure, where ϵ-greedy learns a sub-optimal policy resulting
in a non-unitary network throughput.

The TSCH transmission schedule of all the nodes at dif-
ferent learning stages is shown in Fig. 3 (c). The TSCH
cell allocation status is presented at three stages: at the
beginning, in an intermediate stage, and at the end of learning
convergence. Figure 3 (c) shows that initially, the nodes select
the TSCH slots randomly, resulting in many collisions (shown
in red) due to overlapped transmission in time. However, as
learning progresses, the nodes learn to select TSCH cells,
independently and in a decentralized manner, to find a TSCH
schedule. such that the number of collisions goes down. The
figure clearly shows that after learning converges, there are
no collisions in the TSCH frame. From the Bernoulli Bandit
perspective, the progression of the probability density function
(pdf) of the reward associated with each arm (TSCH cell) of
a single node, while using Thompson sampling, is depicted
in Fig. 4. The figure shows the snapshots at three stages of
learning, initial, intermediate and post-convergence stage. The
figure shows that sampling probability of each arm, based
on reward distribution, initially remain in the same ballpark;
but with time the pdf of the optimal arm gets narrower and
becomes associated with a high reward value, with a high
sampling probability.

The convergence behavior shown in Figs. 3 and 4 are for the
situation when the Poisson data rate is saturated at λ = 1 ppf.
However, that assumption cannot be generalized to realistic
network conditions. When the traffic data rate goes down, the
problem of sample deficiency arises for bandit parameter up-
date, as mentioned earlier in section V. This is experimentally
shown by the throughput progression plot in Fig. 5, for the
same 30-nodes multi-point-to-point network. It is observed
that all the three baseline bandit policies, that is, ϵ-greedy,
UCB and Thompson Sampling, are unable to attain a collision-
free TSCH transmission schedule. Note that ϵ-greedy performs
slightly better than UCB and Thompson Sampling due to its

Fig. 5: Convergence behavior of bandit policies for low data
rate (λ = 0.45 ppf)

greedy behavior in arm selection. In fact, the more greedy a
policy is, the less it is affected by the lack of samples. In
other words, due to its greedy nature of reward maximization,
the true nature of the reward distribution is ignored, and as
a result the throughput degradation is less affected by the
lack of training samples. On the other hand, in the absence
of sample unavailability, Thompson Sampling cannot make
the approximation of Gaussian distribution from the initial
Uniform distribution, which manifests as collisions in the
TSCH slotframe. Another key observation from Fig. 5 is that
the proposed Low Rate Resilient Policy (LRRP) policy allows
the nodes to learn a collision-free transmission schedule. This
is accomplished by transmitting packets with payloads of noisy
samples, in the scenarios of sample deficiency for parameter
updates. It is worth noting that the initial throughput of the
network, in the scenario of LRRP update rule, is lower than
when the standard bandit policies are used. This is because,
owing to synthesized packet generation, the network load
increases which substantially increases the collisions, resulting
in low throughput.

Fig. 6: Network throughput variation with traffic for different
action selection policies for a 30-nodes multi-point-to-point
network

The variation of network throughput for different network
loading conditions is shown in Fig. 6. There is a non-
monotonic behavior in the throughput variation with data
traffic for the bandit policies of ϵ-greedy, UCB and Thompson
Sampling. This is because, with decrease in network load,
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Fig. 7: Throughput variation with network size for different
action selection policies for a given loading condition

the learning policy update is affected, resulting in a reduced
throughput. Beyond a certain reduction in network load, the
collision probability decreases due to low packet generation
rate, thus reducing the network throughput degradation. Nev-
ertheless, the unitary throughput is maintained when the nodes
use LRRP as the Bernoulli Bandit policy. This is achieved due
to the collision-free transmission-schedule accomplished using
the robust behavior of LRRP for low traffic conditions.

Fig. 8: LRRP learning convergence behavior with different
baseline action selection policies

Another challenge faced by the standard learning algorithms
is the scalability of network performance with network size.
As depicted in Fig. 7, where the network traffic is chosen as
λ = 0.4 ppf, with an increase in network size, the throughput
goes down monotonically, due to high collision probability.
On the contrary, the proposed LRRP logic makes the TSCH
scheduling protocol scalable with network size, maintaining a
collision-free transmission throughout. Notably, the fact that
throughput reduction is affected most for the least greedy-
policy still holds for the scenarios explored in Fig. 5.

TABLE III: Heterogeneous network loading

Heterogeneous Load (λ vector) Average Load
0.5,0.9,0.7,0.4,0.6,0.8,0.6,0.75 0.65625

0.1,0.2,0.15,0.25,0.3,0.25,0.1,0.15 0.1875
0.75,0.80,0.65,0.75,0.85,0.65,0.7,0.8 0.74375

The proposed LRRP action selection strategy can be im-
plemented using any of the baseline bandit policies detailed

Fig. 9: Performance comparison of LRRP with existing
Bandit-driven scheduling approach

earlier in section V. As shown in Fig. 8, using any of the three
policies, viz., ϵ-greedy, UCB and Thompson Sampling, as the
baseline, the LRRP logic allows the nodes to find a collision-
free TSCH schedule. It is also observed that the greedy-
behavior of ϵ-greedy and UCB allows them to achieve faster
convergence as compared to Thompson Sampling, when used
as baseline policies. However, that speed comes at the cost of
settling in a sub-optimal solution, as is observed previously
in Fig. 3. On account of this, in this work, we have primarily
explored Thompson Sampling for baseline arm selection using
LRRP mechanism.

Fig. 9 compares the performance of LRRP with an MAB-
driven state-of-the-art scheduling strategies used in ESS-
MAC [27], EXP3 [41] and EXP3.P with collision resolution
(EXP3.P-CR) [42]. Experiments are performed for a multi
point-to-point network topology for stochastic (Poisson dis-
tributed) traffic with mean data rate of λ = 0.6 ppf. It
is observed that for all the networks, LRRP outperforms
the benchmark slot scheduling policies in terms of network
throughput. Moreover, in contrary to what is observed with
ESS-MAC, EXP3 and EXP3.P-CR, the scheduling policy
of LRRP is scalable with network size. With increase in
network size, throughput achieved in the ESS-MAC scheduler
decreases by 5, 13 and 19% as compared to LRRP for 10,
30 and 50-nodes network respectively. In other words, the
collision probability in the access layer for a lower data
rate significantly reduces for the proposed LRRP scheme as
compared with ESS-MAC’s slot scheduling policy. Similar
observation holds for EXP3 and EXP3.P-CR as well. This
also, in turn, leads to a better energy efficiency for LRRP due
to decrease in the number of re-transmissions of access layer
packets.

The proposed LRRP-driven TSCH schedule learning is
explored in a mesh network as shown in Fig. 10 (a). The
collision probability goes down as learning progresses, as
indicated in the convergence behavior presented in Fig. 10 (b).
Additionally, by experimenting with different heterogeneous
traffic conditions listed in Table. III, the energy savings
accomplished by informed turning-off of the node transceiver,
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Fig. 10: Performance of bandit-driven TSCH schedule learning in a mesh network

using the MAB-assisted TSCH scheduling, are presented in
Fig. 10 (b). The prima-facie take away from the figure is that,
for low data-traffic conditions, nodes learn to find an energy-
efficient transmit-listen schedule by keeping the transceiver in
a TSCH cell turned off when it is not supposed to transmit or
receive packets from its neighbors.

VIII. CONCLUSION

In this paper, we introduced a decentralized TSCH schedul-
ing framework driven by Bernoulli Multi-Armed Bandit
(MAB) learning for IoT networks. Unlike existing approaches
that rely on centralized coordination or the exchange of
control messages, the proposed method enables each node
to learn its own transmission schedule independently, thereby
reducing energy and bandwidth overhead. Through extensive
experiments, we evaluated the performance of three standard
MAB-based action selection policies—ϵ-greedy, UCB, and
Thompson Sampling—and demonstrated their limitations in
scenarios with low traffic data rates, where sample insuf-
ficiency hinders convergence to optimal scheduling. To ad-
dress these limitations, we propose the Low-Rate Resilient
Policy (LRRP), which allows nodes to maintain collision-free
schedules even under sparse traffic conditions by generating
synthesized packets.

Our experimental results highlight several key findings.
First, LRRP achieves superior performance in low-traffic net-
works by overcoming the sample deficiency problem, where
traditional bandit policies struggle. Second, the proposed
method ensures scalability, as demonstrated by its ability
to maintain collision-free TSCH scheduling across varying
network sizes. Third, this approach provides energy savings
by making nodes aware of when they should power down

their transceivers due to periods of inactivity. Finally, the
results demonstrate that while greedy bandit action selection
policies offer faster convergence, they often settle for subop-
timal solutions, whereas Thompson Sampling, coupled with
LRRP, balances exploration and exploitation for long-term
performance gains.

Overall, the decentralized nature and low overhead of the
proposed LRRP-driven TSCH scheduling framework make
it a robust and scalable solution for resource-constrained
IoT networks, offering collision-free access, enhanced energy
efficiency, and scalability with network size and heterogeneity.
Nevertheless, there are several open research problems in this
context which can be explored as a future extension of this
work. To begin with, this work requires the nodes to be able to
reliably observe the collisions encountered by its transmitted
packets. Extending the proposed framework to handle higher
levels of interference and packet loss in challenging network
environments is a future research direction. Another extension
of this work is to develop decentralized mechanisms for as-
signing access priority for transmitting emergency information
while maintaining other performance measures.
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