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Abstract—The growing need for intelligent tools to support
urban planning and resource management has positioned Digital
Twin (DT) technology as a cornerstone of smart city development.
DTs, as dynamic virtual replicas of physical systems, offer capabil-
ities that extend beyond mere representation, enabling monitoring,
diagnostics, forecasting, and optimization. In the context of urban
traffic management, DTs provide a robust solution for real-
time traffic monitoring and predictive analytics. However, existing
approaches often lack a systematic design methodology, leading to
challenges in scalability and adaptability, particularly in hetero-
geneous environments. This paper presents a novel methodology
for developing scalable and adaptive smart city DT architectures,
with a focus on real-time traffic management. A modular and
unified software framework is proposed, leveraging Al-driven
approaches to address the complexity of managing diverse traffic
data sources. A sequential learning model is integrated into the
architecture to enhance the DT’s adaptability to evolving traffic
conditions and congestion patterns. The proposed framework
is validated using real-world traffic data from an IoT network
deployed in Madrid, demonstrating its scalability and low-latency
performance. Experimental results highlight the effectiveness of
the framework in handling heterogeneous traffic scenarios and its
ability to deliver accurate predictions while minimizing resource
overhead.

Index Terms—Digital Twin, Smart City, Artificial Intelligence

I. INTRODUCTION

The growing global trend towards smart cities highlights the
crucial need for advanced tools and services to facilitate urban
planning, optimize resource management, and support decision-
making. In this context, Digital Twin (DT) is one of the imper-
ative technologies with promising capabilities and a wide range
of applications [1]. DT is a virtual representation of a physical
system that reflects its behavior, status, and properties. This
software counterpart of the physical system is continuously
updated, often in real time, with relevant data characterizing the
physical system in its operating environment [2]. DT’s features
and abilities go beyond the mere representation of the smart
city by offering monitoring, diagnostics, forecasting, predicting
operational problems, simulation, and optimization [3].

Effective traffic management, a cornerstone of smart city
initiatives, relies heavily on accurate and timely predictions.
Such capabilities empower urban planners to optimize travel
routes, improve traffic flow, reduce operational costs, and en-
hance overall system efficiency. In this context, DT technology
offers a robust solution by enabling data-driven modeling of
urban road networks, including traffic intensity, speed, and flow.
However, while several approaches to smart city DTs exist, they

are often narrowly focused on specific domains such as traffic
or energy systems and lack a holistic, scalable architecture for
practical deployment in diverse urban environments.

There are existing works on smart city digital twins, with
many approaches considered, each focusing on different ap-
plications such as traffic, energy, etc. [4], [S] However, these
approaches do not propose a holistic sofware architecture or a
systematic methodology necessary to design and deploy a smart
city digital twin. As a result, it is challenging for developers
to apply a standard method to achieve their objectives. In
addition, due to the lack of generalizability, these data-driven
DT design approaches often face the challenges of scalability
in heterogeneous environments. For instance, in the traffic
management scenarios, dedicated DT modeling, with separate
training procedures for each of them, needs to be done for
traffic monitoring in each road within the city. These architec-
tures require unique Al models for traffic predictions trained
for each traffic flow sensor station/road. Considering the smart
city use case of Madrid, there are more than 7,000 strategically
positioned vehicle detectors across the city, operating at over
4,000 measurement points [6]. In such a scenario, developing
unique DT software and training separate Al models for each
station is impractical, as it is both time- and cost-inefficient.
Additionally, creating a large model capable of predicting traffic
on any road would negatively impact the performance of a
digital twin, which needs to operate in real time with minimal
latency.

This paper addresses these challenges by introducing a
systematic and scalable methodology for designing smart city
DTs, with a focus on real-time traffic management. The pro-
posed framework employs a modular software architecture,
incorporating an Al-driven sequential learning model to adapt
dynamically to changing traffic conditions and ensure scal-
ability across heterogeneous environments. The methodology
is validated using real-world traffic data collected via an IoT
network deployed in Madrid, demonstrating its effectiveness in
managing large-scale urban traffic systems.

Specific contributions of this paper are as follows.

1) A modular software architecture for smart city Digital
Twin is proposed with the key focus on traffic manage-
ment.

2) An Al-driven approach is adopted for making the DT
software architecture scalable, thus making it suitable for
heterogeneous traffic scenarios with a large number of



Sensors.

3) A sequential learning model is developed and integrated
with the proposed software architecture to make the DT
informed and adaptive to future traffic congestion.

4) The viability of the proposed methodology is demon-
strated through a case study of real-time traffic moni-
toring using an IoT network deployed in the smart city
of Madrid.

5) A detailed characterization of the developed system is
presented by means of extensive experiments performed
using a wide range of predictive learning algorithms.

The remainder of the paper is structured as follows. In Sec-
tion II, we introduce the related work, Section III describes the
smart city digital twin architecture, and Section IV illustrates
the experiments carried out and results. Finally, we describe
the conclusion and future work in Section V.

II. RELATED WORK

There have been many smart city digital twin implementa-
tions in recent years such as Helsinki, Finland [7]; Rennes,
France [8]; Berlin, Germany [9]; Zurich, Switzerland [10];
Singapore [11]; and Florence, Italy [12]. However, Most of
these are tailored to specific use cases and greatly focus
on virtual 3D representations while insufficiently addressing
some of the important functionalities in DT such as analytics,
prediction and what if analysis. Moreover they are lacking of a
systematic approach and modular framework where they have
limited possibility to deploy on different scenarios.

In smart city use cases, traffic prediction has received
significant attention, and Deep Learning (DL) methods have
gained popularity over traditional statistical and machine learn-
ing methods. Recurrent Neural Networks (RNNs) in [13],
Long Short Term Memory (LSTM) and Gated Recurrent Units
(GRUs) in [14], and graph convolutional networks in [15]
are proposed for traffic flow prediction. To improve the ac-
curacy of DL models, attempts have been made to include
more information from the surroundings. In [16], LSTM is
utilized for traffic prediction by using both traffic and noise
pollution data. Similarly, in [17], the authors propose a traffic
flow prediction method using LSTM, incorporating surrounding
traffic flow data. However, the DL models enhance prediction
accuracy, these models are not easily generalizable, requiring
the training of a large number of models to predict city-wide
traffic flow, which can be a significant challenge for smart
city DTs. Therefore, such solutions are not ideal for smart
city DTs which are large-scale solutions. This issue is partially
addressed in [18], where the authors introduce a traffic sensor
redundancy reduction method and use an LSTM model to
predict traffic flow in Madrid. This method attempts to tackle
the problem by reducing redundant sensor data. However, the
model’s adaptability to other roads remains limited, potentially
leading to inaccurate predictions.

In contrast, the existing solutions described above face sev-
eral limitations, including a lack of a systematic approach and
modular architecture, insufficient generalizability for different

use cases, and the limited scalability of DL solutions for
traffic prediction. To address these challenges, we propose a
systematic methodology for implementing smart city DTs. This
methodology features a modular architecture that can be applied
to various smart city use cases while enhancing scalability for
smart city DTs.

III. SMART CITY DIGITAL TWIN ARCHITECTURE

In this section, we describe the proposed software architec-
ture for smart city DT. This architecture is an extension of our
previous work [19] by introducing a correlation analyzer that is
capable of calculating the correlation coefficient with the aim
of reducing the number of prediction models, and by adding a
model library that serves as a repository for prediction models
so the prediction can be more effecient. As shown in Figure
1, the proposed architecture consists of six subsystems: edge,
data management, digital twin, event management, resource
management, and system management, each with its constituent
components. An architectural view of the proposal and the
components involved in the different segments for smart city
traffic management is detailed below.

A. Edge Subsystem

The edge subsystem connects the IoT data sources to the data
management subsystem, enabling seamless data acquisition.
The IoT sensors located across the city that gather traffic
data with timestamps and geographical data are used for data
collection at the edge subsystem. Traffic data were collected
from the open data platform of the city of Madrid [6]. Madrid
has 60 permanent traffic stations distributed all over the city as
shown in Figure 2. These stations record the number of vehicles
per hour throughout the day. The dataset includes hourly traffic
data for January and February 2024.

B. Data Management Subsystem

The IoT sensor data from the edge subsystem are processed,
converted, and stored in the data management subsystem. The
data management subsystem contains software components for
each of these tasks. The preprocessor checks the time-series
data and confirms that the data contains sufficient information
for conversion. It resolves common issues in time-series data,
such as irregular timestamps. Before sending to the data con-
verter, it scales the data using equation 1.

Lscaled = M (D
Tmax — Tmin

The data converter transforms this scaled data into the NGSI-
LD [20] format. The data model used by the converter is defined
by the digital twin subsystem. As the descriptive model that
can accurately represent time-series data, a transportation data
model called “Traffic Flow Observed” from the Smart Data
Models [21], which adheres to NGSI-LD principles, is used.
This data model includes attributes such as date observed,
intensity, location, and address, which effectively represent
date and time information, traffic intensity, and geographical
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Fig. 1: Overview of the System Architecture
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Fig. 2: Distribution of Permenant Traffic Stations in Madrid.

location in a smart city. This step ensures that the data conforms
to the structure required for injection into the context broker.
The data injector injects the NGSI-LD data received from
the data converter into the context broker. The injector updates
the entities created in the context broker for each traffic station
using it’s REST API. Persistent storage and retrieval require
a scalable and generalized mechanism. To achieve this, Stellio
[22], an open-source context broker, is used. Stellio operates
on linked-data principles and adheres to the NGSI-LD standard.
It offers a standardized API that supports data retrieval, entity
querying, and subscription mechanisms, ensuring compatibility
with various data models across different domains in smart

cities.
C. Digital Twin Subsystem

The digital twin subsystem is composed of modules for
modeling, analytics, visualization, and access to external users
and applications. It uses the data in the context broker for
correlation analysis, training the DL models, and real-time
prediction.

1) Correlation Analysis: Correlation measures the similarity
between two data sets. Correlation anlyser module calculates
the correlation and identifies highly correlated traffic stations,
which are then used for prediction with Al models trained on
one of the traffic stations. This approach aims to reduce the
need for training separate Al models for each traffic station,
thus minimizing both time and cost. Figure 3 shows the highly
correlated traffic stations. Traffic stations TS13, TS21, TS36,
and TS45 have a correlation value exceeding 0.95 with TSI,
while TS3, TS6, TS14, TS15, TS16, TS17, TS19, TS22, TS37,
TS40, TS41, TS42, and TS57 have correlation values ranging
from 0.9 to 0.95. The traffic stations with the highest correlation
to TS1 are used to test the DL models trained on TS1.

2) Traffic Prediction: Traffic Station TS1 data for January
2024 were used to train five well-known DL models: RNN,
LSTM, Multilayer Perceptron (MLP), GRU, and Autoencoder
(AE). These models were then tested on the traffic stations
identified through the correlation analysis. For all models, the
hyperparameters were tuned to enhance prediction accuracy.
The details of the DL models, including their hyperparameters
and architectural specifications, are presented in Table I. The
four stations with the highest correlation to TS1, exceeding a
correlation value of 0.95—TS13, TS21, TS36, and TS45—were
used to test the DL models trained on TS1. For these stations,
the DL models forecast the traffic flow from 2 February to 9
February 2024.



Ts1
LE
TS5 -
157 % ™
TS9 -

TS11 -

T513 || I
TSlS] u
T517 u
TS19 @ r{
T521

TS23 :l am
TS25 -

TS27 -

TS29 -

TS31 -

TS33 -

u
v
TS35 -

TSE?I - I.

TS39 -

TS41 I . I
TS43 -

TS45 A W
TS47 - ||
T549- W

TS51 - ...
TS53 - .

-
TS55 - pe I I
TS57 A ]

TS59 -
[ Cn

(=2}

—

in

Fig. 3: Correlation Matrix results for Jan 2024. Red markers
represent correlations ranging from 0.9 to 0.95 and black
markers indicate correlations exceeding 0.95.

TABLE I: Specifications of the Learning Models and Hyper-
parameters

Model RNN LSTM MLP GRU AE

3 Dense 2 GRU 1 Dense
Arch 1 RNN 2 LSTM | layers layers encoding

’ 1 Dense | layers 1 Dense 1 Dense | 1 Dense

output output output
Units in 64 64 each 128,64,32 | 64 each 16
Layers - - - - -
Activation | oy ;| ReLU | ReLU ReLU | ReLU
Functions Sigmoid
Epochs 20 20 20 20 20
Batch size | 32 32 32 32 32
Optimizer | Adam Adam Adam Adam Adam
Loss MSE MSE MSE MSE MSE
Function

3) Visualization and API: The visualization module displays
the prediction and correlation results, while the API component
enables external applications and users to access the digital twin
models for visualization, correlation, and prediction purposes.
We adopted the FastAPI [23] library to provide a REST in-
terface. For example, through this API, an external application
can request traffic predictions.

D. Event Managment Subsystem

A mechanism is required for data exchange and control
between subsystems and modules. The event management
subsystem ensures the smooth flow of data for processes such
as correlation analysis and real-time prediction. It extracts data
from the context broker for correlation analysis and, based on

the highly correlated roads, ensures that the correct real-time
traffic station data are sent for prediction. In this case, data
from traffic stations TS13, TS21, TS36, and TS45 are sent for
prediction.

E. System Management Subsystem

The system management subsystem ensures overall security
for the system and emphasizes the importance of addressing
various security requirements. Access to the data stored in the
data management subsystem is controlled through appropriate
mechanisms. In the architecture, Keycloak [24], an authentica-
tion and authorization manager, is employed to secure access
to the context broker by enforcing basic rules and functions.

FE. Resource Management Subsystem

Apart from the above subsystems, we use a resource man-
agement subsystem to manage the distribution of computing
resources. Container images of the software components are
utilized, with the context broker and DT subsystem modules,
including the correlation analyzer and predictor, running on
the core servers, while other software components operate on
Jetsons and Raspberry Pis for operational simplicity. This setup
is orchestrated using K3S [25].

In comparison with existing DT implementations, the pro-
posed implementation provides a holistic framework and a
systematic approach. Most of the components are reusable,
significantly saving implementation time. This modular archi-
tecture places a greater focus on DT modeling. Moreover, this
architecture promotes generalizability and scalability. Since our
DT implementation offers a comprehensive framework and a
clear perspective on the constituent components, it supports
scalability and generalizability, making it suitable for the design
and implementation of smart city DTs.

IV. EXPERIMENTS AND RESULTS

The smart city digital twin has been evaluated for traffic
data collected for the city of Madrid [6]. The data collection
spanned from January to February 2024. The details of the DL
models used, including the hyperparameters and architectural
specifications, are tabulated in Table L.

The learning models for traffic prediction are implemented
in the DT subsystem. The data collected using the IoT traffic
sensors and devices in the edge are processed and stored in the
data management subsystem, which is used for training of the
learning models, correlation analysis, and real-time prediction
at the DT subsystem. The authentication and authorization are
handled by the system management subsystem, and the event
calls for prediction and correlation by the modules in the DT
subsystem are handled using the event management subsystem.

The experiments primarily focused on analyzing the perfor-
mance of the prediction models on traffic data. To that end,
experiments were conducted for different DL models trained
on the traffic data of traffic station TS1, at which the data
was collected by the other traffic stations. The comparison of
the predicted traffic intensity and the true traffic intensity is
demonstrated in Figure 4. The general observation here is that,
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Fig. 4: Actual and Predicted Traffic Data for Different Prediction Models.

for all DL models, the predicted traffic flow is closer to the for sequential data.
ground truth. This is because of the fact that for all four traffic
stations, the data have a high correlation with traffic data from
traffic station TS1. The prediction errors of the DL models,

in terms of MAE, MSE, and RMSE, for different stations are

TABLE II: Prediction Performance based on MAE, MSE, and
RMSE for different Deep Learning Models

. . . Deep Learning Model | Traffic Station | MAE | MSE | RMSE

reported in Table II. The observation reported above, that is, TS13 0.030 1 0.002 | 0.041
better performance for all the models, can also be visualized RNN TS21 0.028 | 0.002 [ 0.040
TS36 0.039 | 0.003 0.051

here. However, compared to other models a notably lower TSES 00401 0.004 0061
performance for AE is observed, which was not clearly depicted TST3 0035 1 0.002 | 0.047
in Figure 4. Specifically, the following points can be noted: (1) LSTM TS21 0.046 | 0.004 | 0.062
The MLP model is consistently superior to the others in terms %ig g‘gig 8‘882 g‘ggg
of prediction error for all stations. This can be because the TST3 0028 1 0.002 | 0041
traffic flow data exhibit relatively simple and stable temporal MLP TS21 0.026 | 0.001 | 0.038
patterns over the period, and MLPs are efficient at capturing gig 883; 8885 88‘5‘2
such patterns. (2) RNN and LSTM show less performance than TST3 0032 1 0.002 | 0.044
MLP. This can be due to RNN and LSTM models requiring GRU TS21 0.036 | 0.002 | 0.050
large datasets to exploit their sequential modeling capabilities TS36 0.047 | 0.004 | 0.064
. . .. . . TS45 0.038 | 0.003 0.054
effectively. With limited data, they may fail to leverage thglr TST3 0061 10007 1 0.083
strengths and end up underperforming compared to models like AE TS21 0.068 | 0.008 | 0.088
MLP. (3) GRU performs better than LSTM. This can be due to TS36 0.086 | 0.015 | 0.123
TS45 0.094 | 0.018 | 0.133

GRUs having fewer gates compared to LSTMs, making them
computationally more efficient and less prone to overfitting on

The R-squared scores (R?) of the DL models are reported
in Table IIl. The observation reported above, that is, better
performance for MLP followed by RNN, GRU, and LSTM and
the worst performance for AE, can also be visualized here. The

smaller datasets. (4) AE performs least. This can be due to
they do not inherently model temporal dependencies, leading
to weaker performance compared to models explicitly designed



MLP achieved the highest average R? score of 0.939, superior
to the others: 0.930, 0.880, 0.914, and 0.665 for RNN, LSTM,
GRU, and AE, respectively.

TABLE II: Prediction Performance based on R? score for
different Deep Learning Models

. RZ value
Traffic Station - N T TSTM T MLP | GRU | AE
TS13 0.929 | 0.906 | 0.930 | 0.919 | 0.710
TS21 0.919 | 0.806 | 0.928 | 0.877 | 0.611
TS36 0.952 | 0.909 | 0.957 | 0.925 | 0.718
TS45 0.920 | 0.900 | 0.940 | 0.936 | 0.619
Average 0.930 | 0.880 | 0.939 | 0.914 | 0.665

These findings demonstrate that the prediction models trained
on TS1 performed well on traffic stations TS13, TS21, TS36,
and TS45. The models exhibited low errors and high adapt-
ability for these stations identified during the correlation anal-
ysis. This suggests that models trained on one station can
be effectively applied to multiple stations, in this case, for
four stations, reducing the need for explicit training across all
stations. This approach highlights the potential for transferring
prediction models across locations in urban environments,
thereby reducing the number of models required for smart city
DT implementations and enhancing scalability.

V. CONCLUSIONS

In this paper, we propose a modular and scalable software
architecture for smart city digital twins. The developed frame-
work addresses the shortcomings of existing implementations,
which are often overly complex, lack generalizability and
scalability, and are not modular enough, causing limitations
on design and implementations. The developed architecture
has been tested for the use case of traffic management for
the city of Madrid, using real-world data collected using an
IoT sensor testbed. The research presents a detailed system
characterization by evaluating the architecture using different
predictive sequential learning models. The results demonstrate
the generalizability of the adaptive models, offering scalable
solutions for urban mobility while minimizing developer over-
head. Future work on this research includes incorporating
data from diverse sensing modalities, integrating multi-road
predictions, and refining model generalizations to enhance the
broader applicability of digital twins in smart city contexts.
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