
Smart City Digital Twins: A Modular and Adaptive
Architecture for Real-Time Data-Driven Urban

Management
Manoj Herath, Maira Alvi, Roberto Minerva, Hrishikesh Dutta, Noel Crespi, Syed Mohsan Raza

Samovar, Telecom SudParis, Institut Polytechnique de Paris, 91120 Palaiseau, France.
Email: {manoj.herath, maira.alvi, roberto.minerva, hrishikesh.dutta, noel.crespi, syed-mohsan raza}@telecom-sudparis.eu

Abstract—This paper presents a modular Digital Twin soft-
ware architecture designed for smart cities, leveraging Edge-
Cloud Continuum to enable the development of flexible and
scalable DT-based solutions. Digital Twin technology provides
a powerful framework for simulating, analyzing, and optimiz-
ing urban environments by integrating real-time and historical
data from various city sensors through IoT, AI, and cloud
computing. The proposed architecture addresses the limitations
of existing DT frameworks by focusing on smart city-specific
requirements such as dynamic resource management, real-time
data processing, and autonomous decision-making. The viability
of the proposed framework is demonstrated through a case
study on autonomous traffic management in the city of Issy-
les-Moulineaux. It shows how the proposed framework predicts
traffic patterns and manages network resource allocation by
adjusting the data sampling frequency to balance prediction
accuracy and communication costs. The architecture’s modular
design supports seamless integration and adaptability, making it
suitable for various smart city applications, thereby advancing
the development of more efficient, sustainable, and resilient urban
environments.

Index Terms—Digital Twin, Software Architecture, Smart City,
Artificial Intelligence

I. INTRODUCTION

Digital Twin (DT) technology represents a significant ad-
vancement in the development of smart cities, providing a
sophisticated method for simulating, analyzing, and optimizing
urban environments. It enables comprehensive monitoring and
management of city operations by creating a virtual model
that reflects the real-world environment. This model can sim-
ulate various scenarios, forecast potential issues, and optimize
resource allocation, which is essential for sustainable urban
development. DTs leverage technologies such as IoT, AI,
big data, and cloud computing to collect and analyze data
from numerous city sensors, providing actionable insights for
city planners and decision-makers. This integrated approach
facilitates more informed and proactive urban governance,
improving city services like transportation, healthcare, energy
management, and disaster response.

The framework for a city Digital Twin involves several key
components: data acquisition through IoT sensors, real-time
data processing, and the creation of dynamic simulations that
mirror real-world behaviors [1]. DT can help predict traffic
congestion patterns, optimize energy consumption, and man-
age urban infrastructure more efficiently. Moreover, emerging

technologies like blockchain and 5G further enhance the capa-
bilities of city Digital Twin by ensuring secure data exchange
and supporting high-speed communication. By enabling real-
time remote monitoring and facilitating data-driven decision-
making, DT technology is poised to revolutionize urban man-
agement, creating more responsive, resilient, and sustainable
cities.

A DT can use the smart city’s real-time and historical
data in a secure and efficient form, as well as contribute to
planning and operation. As a result of analysis capability, it can
assist in bridging the gap in decision-making. The advantages
of using DT technology include increased reliability and
availability through monitoring and simulation to improve per-
formance. They are instrumental in enhancing infrastructure
performance, analyzing human dynamics, identifying interde-
pendencies, and monitoring fluctuations over time. DTs offer
key capabilities such as monitoring, analysis, prediction, and
simulation. Monitoring provides real-time insights into the
current behavior of the city, while analysis delves deeper into
the data to uncover additional insights. By leveraging historical
and real-time data, DTs can predict future behaviors of both
humans and infrastructure. Additionally, they can simulate
‘what-if’ scenarios to anticipate emergent behaviors, helping
to understand how a smart city might respond under different
conditions and identifying underlying causes.

In the presence of such complexities in designing a DT
for Smart Cities, with many integrated and interdependent
components, a comprehensive framework is important for
effective management. The availability of a well-curated and
modular framework could attract more developers with low
expertise in DT modeling. To that end, in this paper, we
propose a modular DT software architecture, operating in the
realm of Edge-Cloud Continuum, to support the development
of DT-based solutions for smart cities.

With the long-term goal of demonstrating the working of the
proposed system for different problem domains of smart cities,
in this work, we particularly consider the traffic management
problem. Autonomous traffic management is essential for
optimal city planning; air and noise pollution control; and
sustainable urban development. We specifically show how the
proposed architecture allows the autonomous and standalone
implementation of a Smart City Digital Twin by means of a
collection of real-time data from IoT devices, processing and



storing the collected data, performing historical analysis and
inferencing from the data, and predicting and visualizing future
traffic patterns. In addition to these application-level require-
ments, the proposed framework also considers the problem of
network resource management and allows on-the-fly decision-
making on maintaining the right balance between performance
and resource usage.

There are existing works that deal with defining software
architecture platforms for DT. Several DT architectures have
been proposed, including frameworks proposed in [2]–[9],
each focusing on different core DT attributes and layers,
such as synchronization, data flow, and security. However,
most of these architectures are either too generalized or
specific to industrial applications, making them unsuitable
for smart cities. Standardization efforts, like ISO 23247-2 1

and ITU-T Y.30902, target manufacturing and networking,
lacking adaptability for urban environments. Other existing
architectures also often fail to support DT functions such as
resource provisioning and software alignment.

Although there are existing applications of smart city DTs
[10]–[12], there is a literature gap that exists because of a lack
of software architectures in the context. As a result, it is chal-
lenging for smart city DT developers to use a standard modular
architecture to achieve goals. Existing applications often lack
a modular design approach, rendering them ineffective for
reusability, scalability, and adaptability. To address these gaps,
a novel modular DT architecture is proposed emphasizing
key DT requirements and integrating supporting functions to
simplify software development and deployment.

The paper has the following specific contributions:
• A modular Digital Twin software architecture is pro-

posed, tailored specifically for smart cities, leveraging an
Edge-Cloud Continuum approach to support the develop-
ment of DT-based solutions.

• The viability of the proposed architecture is demonstrated
in autonomous traffic management, showcasing its abil-
ity to collect real-time data from IoT devices, perform
historical analysis, and predict future traffic patterns.

• The proposed framework also addresses the gaps in
existing Digital Twin architectures, which are often either
too generalized or specific to industrial applications, by
focusing on smart city requirements such as resource
management, scalability, and adaptability.

II. RELATED WORK

Architectures for DT have always been of interest to re-
searchers. Josifovska et al. [2] proposed a DT framework
that extensively exploits the composition in physical entities,
virtual entities, data management, and service. Nwogu et al.
[9] proposed a requirement-driven architecture that addresses
the DT core attributes such as synchronization, learning and
adaptability, bi-directional data flow, monitoring, predictive
and prescriptive capabilities, and optimization. The Digital

1https://www.iso.org/standard/78743.html
2https://www.itu.int/rec/T-REC-Y.3090

Twin Consortium3 in collaboration with several industry part-
ners, proposed a six-layer architecture focused on modeling
and represents an attempt at standardization. Notably, these
architectures are often too generalized and require significant
adaptation when applied to smart cities. In addition, the
standardization organizations have also proposed architectures
such as ISO 23247-2 4 DT framework for the manufacturing
domain and the ITU-T Y.30905 standard reference architecture
for network DT. However, there is currently no standardized
DT architecture for smart cities provided by standardization
organizations.

There are research works that propose domain-specific
DT architectures mainly for industrial applications [3]–[8].
The 5C architecture is developed for cyber-physical systems
with layers of smart connections for data acquisition, infer-
ence, analytics, decision support, and resilience through self-
configuration and adaptation [3]. Alam and El Saddik [4]
proposed an architecture including cloud technologies and
integrating web services. Based on the 5C architecture a six-
layer architecture is developed depicting also the data and
information communication [5]. Abburu et al. [6] proposed a
five-layer architecture that addresses managing different mod-
els and the DT lifecycle. Aheleroff et al. [7] proposed a three-
dimensional DT architecture based on reference architectural
model industrie 4.0 [8]. However, the specificity of these
architectures for manufacturing hinders their usage in smart
city DT.

Some frameworks presented in the literature suggest the
requirements that software for smart city DTs should fulfill
but do not clearly define a corresponding software architecture.
For instance, frameworks reported in [10]–[12]. In this context,
FIWARE6 provides a framework, not specifically for DT, but
for a range of smart solutions, including smart cities. However,
it understates some key functions of DT such as behavior
modeling and simulation.

The existing software architectures mentioned above have
several limitations. Specifically, the architectures designed for
DT in manufacturing, including standardized ones, lack the
necessary generalization capability, limiting their use in the
context of smart cities. Furthermore, these architectures often
fail to address critical supporting functions needed during DT
operation, such as the provisioning of computing resources
and their management. Another significant limitation is the
lack of alignment with the software and tools. For instance
architecture proposed in [3], lacks thorough specifications
within their key segments, making it difficult for developers
to select appropriate software and tools. Conversely, some
architectures, like the one proposed in [7], lack modularity,
which hinders their practical implementation.

To overcome the aforementioned limitations, we propose
a modular DT software architecture specifically designed for
smart cities. The proposed architecture not only addresses

3https://www.digitaltwinconsortium.org/
4https://www.iso.org/standard/78743.html
5https://www.itu.int/rec/T-REC-Y.3090
6https://www.fiware.org/



the key requirements of DT but also integrates essential
supporting functions. It is composed of several well-defined
subsystems, each with clearly specified roles, which simplifies
the organization of software components. This streamlined
approach accelerates both the development and deployment
of DTs in the smart city context.

III. PROPOSED ARCHITECTURE

In this section, we describe the proposed software architec-
ture for smart city DT. As shown in Figure 1, the proposed
architecture consists of six primary subsystems: edge, data
management, digital twin, event management, resource man-
agement, and system management each with its constituent
components. An architectural view of the proposal and the
components involved in the different segments for smart city
traffic management is detailed below.

S
ys

te
m

 M
a

n
a

ge
m

e
n

t 
Su

b
sy

st
e

m E
ve

n
t M

a
n

a
g

e
m

e
n

t S
u

b
sy

ste
m

Digital Twin Subsystem

Edge Subsystem

AI Tools

Traffic Data 

Model

Prediction 

Model

Real-time 

plots

Context 

Broker

Injection 

Chain

Edge 

Orchestrator

Simulation

Analysis and 

Prediction

API

Data Management Subsystem
Resource Management 

Subsystem

Data Model for Conversion

Digital Twin Modeling

A
u

th
e

n
ti

ca
ti

o
n

 a
n

d
 

A
u

th
o

ri
za

ti
o

n
 

LSTM for training

Graphical Representation

External Application

Visualization & API

A
cc

e
ss

 t
o

 t
h

e
 M

o
d

e
l

R
e

q
u

e
st

e
d

 D
a

ta

R
e

q
u

e
st

R
e

sp
o

n
se

Inject Prediction

G
o

o
g

le
 A

P
I 

D
a

ta

Data consumption control 

Generic Services

Fig. 1: Smart City Digital Twin Architecture: Interactions in
respective architectural segments for Traffic Management

A. Edge Subsystem

The edge infrastructure comprises edge servers, Jetson, and
Raspberry Pi that connect IoT devices and sensor nodes. The
Edge Subsystem represents the software and drivers required
for efficient data collection using IoT devices. This subsystem
connects, controls, and manages various heterogeneous IoT
device data that interact with the DT. In the scenario of smart
city traffic management, the IoT sensors collect time-series
data monitoring traffic flow intensity. Additionally, cameras
can be integrated as well [13]. In this paper, data collection is
simulated using the Google Distance Matrix API7.

7https://developers.google.com/maps/documentation/distance-matrix

B. Data Management Subsystem

The Data Management Subsystem comprises various tools
and processes needed to handle data from the edge and
other external sources, transform them using well-defined data
models, and store them. This is the source of data that the
DT functionalities will use to achieve their goals. The Data
Management Subsystem is essentially responsible for ensuring
data organization, effective management, and availability for
retrieval. The Injection Chain, with the help of the DT sub-
system, preprocesses and converts into predefined data models
before storing.

The incoming traffic data is preprocessed and normalized in
accordance with the guidelines provided by Alvi et al. [14].
The traffic intensity is classified into satisfactory (≥ 20 km/h),
moderate (15-20 km/h), heavy (11-15 km/h), and congested (<
11 km/h). As shown in Figure 1 and 2 data conversion is then
performed by the data models defined by the DT subsystem
that is capable of explicitly determining the structure of data
in the context of traffic.

These data are then sent to the Context Broker for stor-
age and retrieval. Persistent data storage and retrieval are
required, so a scalable and generalized storage mechanism is
essential. To accomplish this, we leveraged Stellio8, an open-
source Context Broker that works on linked-data principles
and adherence to the NGSI-LD standard [15]. Stellio offers a
standardized API, supporting data retrieval, entity querying,
and subscription mechanisms, while enabling compatibility
with various data models from different domains. This API
is a REST API that supports data retrieval and publishing
in NGSI-LD format. Depending on the total volume of data,
Context Broker federation is also supported by the architecture
to expand the storage and to provide distributed storage.

C. Digital Twin Subsystem

The DT subsystem is one of the key components of this
architecture and contains elements that are necessary to create
and manage a DT. It provides a set of functions, tools,
and mechanisms to drive the execution of the DTs and to
support the needs of user applications (traffic management and
prediction in this case). As can be observed in Figure 1, the DT
subsystem comprises two modules: i) Generic Services and ii)
Visualization and API. The generic services module comprises
the core functionalities of DT and the Visualization and API
module denotes visual representation and access to external
applications. The Generic Services module is composed of
several application-specific DT models. As depicted in Figure
1, there are two models in this context of traffic management,
that is, the Traffic Data Model, and the Prediction Model.
The Prediction Model is implemented using AI Tools that can
be used for Simulation. Similarly, the Visualization and API
module is composed of two primary components responsible
for graphical representation and API calls respectively.

Generic Services Module :

8https://stellio.readthedocs.io/en/latest/



1) Traffic Data Model: Selecting an appropriate data model
to accurately represent the physical system is crucial and de-
pends on the specific requirements of the application. The Data
Management Subsystem relies on these data models during
the data injection process. In our case, a data model capable
of representing time-series traffic information is required. A
transportation data model “Traffic Flow Observed” from the
smart data models9 that adheres with NGSI-LD principles
is used for this purpose. This data model includes attributes
such as date observed, intensity, location, and address that
can represent the date and time information, traffic intensity,
and geographical location in a smart city. It is provided for the
conversion as a reference in the Data Management Subsystem.

2) Prediction Model and AI Tools: Data-driven techniques
are used to characterize physical systems and identify input-
output relationships from data. The ML methods play a greater
role here by facilitating knowledge extraction, forecasting,
reasoning, and consequently decision-making. The AI tools
are responsible for encompassing the necessary algorithms,
functions, and tools to support these processes. In this case,
we developed a Prediction Model using an AI tool comprising
a Long Short Term Memory (LSTM) network. LSTM is a type
of recurrent neural network architecture commonly used for
time-series prediction due to its ability to identify temporal
correlations in time-series data. The Prediction Model was
trained using seven months of data collected in Issy-les-
Moulineaux for specific configurations: 30 epochs and a batch
size of 32. To optimize the training process and prevent
overfitting, we employed the early stopping method. The data
are retrieved from the Context Broker API and processed by
the DT Subsystem for traffic prediction. The refined Prediction
Model’s output is then sent back to the Context Broker with
a prediction tag, making it available for further visualization
and analysis.

3) Simulation: Simulation is one of the fundamental re-
quirements in the life cycle of DT. In the design phase, it
is used to lay out the basic model components and in the
execution phase, it is a means to verify the behavior under
various situations. In our architecture Simulation module in-
cludes the tools and the plugins that can be used when creating
and verifying the model by executing what-if scenarios in
particular contexts to understand the physical system behavior.
The models can be simulated under various configurations to
understand the behavior of the traffic. One example scenario
of the significance of the Simulation module in the context of
traffic management is to analyze the spatial-temporal behavior
of traffic intensity change in situations of road closure and
accidents.

Visualization-API Module:
Visualization enables relevant stakeholders to gain insights

into smart city data effectively. The proposed architecture
includes a dedicated component for this purpose, which uses
mainly Context Broker data to provide information to the
users and stakeholders. Either visualization tools or graphical

9https://smartdatamodels.org/

representations can be used. With a visualization tool, data
can be filtered, grouped, and compared effectively. In our
use case, we used graphical representations to represent the
actual and predicted traffic values as shown in Figure 4. As
previously mentioned, since both the actual and predicted data
are available at the Context Broker, any visualization tool can
access this data via the Context Broker’s API.

Moreover, to enable external applications to access DT
models and data, we incorporate an API component in our
architecture. This API can be equipped with an API gateway
to facilitate access to various models. The Prediction Model
is integrated with an interface to communicate using HTTPS
protocol with external applications. We adopted the FastAPI10

library to provide a REST interface to the Prediction Model.
This setup allows the Prediction Model to return predicted
values to an external application when a prediction request
is made. This facilitates the expansion of the use of models
developed within the architecture for other applications in the
smart city domain.

Fig. 2: Smart City Traffic Management DT Software Compo-
nents

D. Event Management Subsystem

A mechanism is required for data exchange and control
between subsystems, as well as for transmitting commands to
physical systems. The Event Management Subsystem ensures
the smooth flow of data, making the right information available
at the right place, time, and frequency. Our architecture
introduces an event broker to capture the data from the data
sources, making it accessible to consumer modules, while also
storing, manipulating, and processing event streams in real-
time and retrospectively. Additionally, it facilitates seamless
connectivity by managing communication with external IoT
devices.

The event broker is used to input the data from the Con-
text Broker to the Prediction Model in different sampling
frequencies as per the application requirement. This setup
aims to find the optimal data collection frequency for the
Prediction Model to find the right balance between prediction

10https://fastapi.tiangolo.com/



performance and resource requirement. Apache Kafka11 is
used for implementing the Event Management Subsystem in
this work. As presented in the results demonstrated in Section
IV, this subsystem allows dynamic adjustment of IoT data
sampling frequency to cater to performance needs and effective
utilization of network bandwidth and energy.

E. Resource Management Subsystem

Our architecture encourages using the container images
[16] that applications and their dependencies are packaged
into lightweight, portable units for the utilized software. This
approach offers unique advantages, such as flexibility, scal-
ability, and ease of deployment. The Resource Management
Subsystem is one of the supporting functions offered in the ar-
chitecture to manage computing resources to run these contain-
ers based on system and user requirements. The architecture
promotes the utilization of computing resources distributed
across both edge and cloud resources. By leveraging edge
resources such as Jetsons and Raspberry Pis, processing can
occur at an early stage. This allows the cloud to focus on
computing expensive operations rather than relying solely on
the cloud for all computing needs [17].

We propose three orchestration strategies: 1. A single or-
chestrator for both cloud and edge, 2. Two separate orches-
trators for the two environments, 3. A federated orchestrator
with cloud and edge orchestrators. The first strategy is suitable
for small-scale systems, while the other two strategies are
for large-scale systems due to their greater autonomy. In our
implementation, we converted our Prediction Model into a
container image, and the existing container images of the
Context Broker, authentication and authorization application,
and event broker are used. Due to the system’s moderate
scale, we adopted the orchestration strategy of separate but
interworking orchestrators for edge and cloud which allows
orchestrating the edge and cloud computing resources. The
Context Broker runs at an edge server and the others are run
at the Jetsons and Raspberry Pis by considering the operational
simplicity, using K3S12 orchestrator.

F. System Management Subsystem

The System Management Subsystem is responsible for
maintaining the overall security, reliability, and performance
of the system. We have incorporated this subsystem into the
architecture to emphasize the need for addressing various
security requirements. This subsystem addresses four key
aspects: security management to handle security policies and
protocols for data protection; configuration management to
oversee configuration information for system components;
monitoring manager to track faults and system performance;
and authentication and authorization management to control
access permissions.

Further, to uphold security requirements, all communication
utilizes the HTTPS protocol, and access to the data stored in
the Data Management Subsystem is restricted to authorized

11https://kafka.apache.org/
12https://k3s.io/

personnel through appropriate control mechanisms. In our im-
plementation, Keycloak13, an authentication and authorization
manager, is employed to secure access to the context broker
by providing basic rules and functions when accessing the
Context Broker.

In comparison with the existing DT architectures, the pro-
posed architecture detailed above provides a clear perspective
on the constituent components in each segment. This makes
it easy for developers to select appropriate software and tools
for each segment. This modular architecture places a greater
focus on DT modeling by incorporating data models, which
focus on data representation, and behavior models, which
focus on behavior and dynamics. This architecture addresses
the supporting functions required for DT operation for system
management, resource management, and event management,
by assigning individual modules to each of these.

IV. EXPERIMENTS AND RESULTS

The proposed DT architectural framework has been eval-
uated for traffic data collected for the city of Issy-les-
Moulineaux (a commune located in Paris). The data collection
spanned from December 2022 to June 2023. The details of the
Deep Learning models used, including the hyperparameters
and architectural specifications, are tabulated in Table I.

Note that the learning models for traffic prediction are
implemented using the Generic Service Module of the Digital
Twin Subsystem explained in the proposed architecture. The
data collected using the IoT traffic sensors and devices in
the edge infrastructure are stored and processed in the Data
Management Subsystem, which is used for continuous training
of the learning models of the DT Subsystem. The authen-
tication and authorization are taken care of by the System
Management Subsystem, while any event that calls for any
change or update (such as sampling frequency update) in the
functioning of these subsystems is handled using the Event
Management Subsystem.

TABLE I: Specifications of the Learning Model and Hyper-
parameters

Hyperparameters Value
LSTM Layers 2
Epochs 30
Batch size 32
Activation function ReLU
Optimizer Adam
Loss function Mean Squared Error

The experiments mainly focused on analyzing the trade-
off between prediction performance and the communication
bandwidth cost. To that end, experiments were conducted
for different sampling frequencies at which the data was
collected by the traffic sensors and uploaded. The comparison
of the predicted traffic intensity and the true traffic intensity
is demonstrated in Figure 4. The general observation here is
that with the increase in the sampling frequency, the predicted
traffic flow becomes closer and closer to the ground truth.

13https://stellio.readthedocs.io/en/latest/admin/keycloak integration.html



TABLE II: Prediction performance for different sampling
frequencies

Sampling
Frequency

Error Values Change compared to 1 hr
MAE MSE RMSE MAE MSE RMSE

1 hour 0.154 0.049 0.221 - - -
2 hours 0.226 0.084 0.290 0.072 0.035 0.069
3 hours 0.471 0.393 0.627 0.317 0.345 0.406
5 hours 0.627 0.513 0.716 0.473 0.464 0.495
6 hours 0.744 0.733 0.856 0.590 0.684 0.635

This is because of the fact that with an increase in data,
the model sees a better representation of the variability and
diversity in the data (such as noise, different distributions, and
anomalies). This helps the model learn to handle different sce-
narios, reducing prediction errors. The prediction models can
learn intricate and hierarchical feature representations more
effectively with more training examples obtained by sampling
data at a higher frequency. The prediction errors, in terms of
MAE, MSE, and RMSE, for different sampling frequencies
are reported in Table II and Figure 3. The observation reported
above, that is, performance improvement with an increase in
sampling frequency, can also be visualized here. Specifically,
the following points can be noted: (1) the sampling frequency
of 1 hour is consistently superior to the others, in terms of
prediction error, as compared to the frequency of 2 hours
0.072, 0.035, and 0.069 reductions in MAE, MSE, and RMSE.
However, the prediction errors with 2-hours data sampling
frequency are in the same ballpark as that of the 1-hour
sampling frequency. (2) The change of error between the
frequency of 3 hours and 2 hours is quite significant. The
MAE doubles when the sampling frequency changes to 3-
hourly update. (3) The prediction errors gradually increase
from the frequencies of 3 hours to 6 hours and are not suitable
for prediction performance.

Fig. 3: Comparison of Error Metrics for different sampling
frequencies

Note that with an increase in the sampling frequency (like
1 hour and 2 hours), although better prediction performance
is achieved, however, this comes at a higher communication
cost. In other words, with the increase in sampling frequency,

Fig. 4: Actual and prediction (dashed lines) values for the
different sampling frequencies.

Fig. 5: Comparison of Error Metrics for Different Sampling
Frequencies

there is higher bandwidth usage for uploading the data to
the cloud. This is demonstrated in Figure 5, which denotes
a clear trade-off between performance and bandwidth usage.
It can be observed that the bandwidth cost decreases while
the error metrics increase with the frequency. There is a
significant decrease in bandwidth cost when the sampling
frequency decreases from 1 to 2 hourly updates, however, the
prediction error is still under control. Based on the available
bandwidth and application-specific performance requirements,
the suitable sampling frequency can be selected by the Event
Management Subsystem which would help to save resources
while maintaining the error margins.

Adjusting the sampling frequency dynamically by the Event
Management Subsystem to find a suitable balance between
performance and communication cost is demonstrated in Fig-
ure 6. It is observed that depending on the resource (band-
width/energy) availability, the sampling frequency of the IoT



Fig. 6: Effect of Sampling Frequency Transition on Prediction

traffic sensors can be adjusted by the Event Management
Subsystem to suit application-specific performance needs. For
example, when the resource is very limited (in terms of
energy-bandwidth availability), then the Event Management
Subsystem would select a low sampling frequency so that the
networking resource is meticulously managed. On the other
extreme, in the scenario of no constraints on resources, the
only goal should be to focus on the prediction performance
improvement.

V. CONCLUSION AND FUTURE WORK

This paper presented a modular Digital Twin software
architecture specifically designed for smart cities, leveraging
the Edge-Cloud Continuum to support the deployment of
DT-based solutions. The proposed architecture addresses the
limitations of existing DT frameworks, which are often too
generalized and lack modularity. It then introduces a more
adaptable approach that incorporates key functionalities such
as real-time data acquisition, processing, storage, and decision-
making. The application of this architecture was demonstrated
in the context of autonomous traffic management for the
city of Issy-les-Moulineaux, showcasing its ability to collect
and analyze real-time data from IoT devices, predict traffic
patterns, and optimize resource allocation.

The results of the experiments indicate that increasing the
sampling frequency of traffic data collection improves the
prediction accuracy of traffic models, as the models benefit
from a more detailed representation of data variability and di-
versity. However, this performance improvement comes at the
cost of higher communication bandwidth usage, highlighting a
trade-off between prediction accuracy and resource usage. The
proposed Event Management Subsystem in the architecture
provides a mechanism to adjust the sampling frequency based
on available resources and application-specific requirements,
ensuring optimal performance while minimizing communica-
tion and computation costs.

The proposed modular architecture offers a flexible and
scalable framework for implementing Digital Twins in smart

cities, accommodating diverse urban management needs such
as traffic control, energy optimization, and disaster response.
Future works will focus on validating the architecture for other
application areas of smart city digital twin, such as healthcare,
energy, pollution management, climate change management,
etc.

ACKNOWLEDGMENT

This research work is supported by Project CLOUD CON-
TINUUM SOUVERAIN ET JUMEAUX NUMÉRIQUES
under Grant AMI CLOUD-1 C2JN (DOS0179613/00,
DOS0179612/00).

REFERENCES

[1] R. Minerva, G. M. Lee, and N. Crespi, “Digital twin in the iot context:
A survey on technical features, scenarios, and architectural models,”
Proceedings of the IEEE, vol. 108, no. 10, pp. 1785–1824, 2020.

[2] K. Josifovska, E. Yigitbas, and G. Engels, “Reference framework for
digital twins within cyber-physical systems,” in 2019 IEEE/ACM 5th
International Workshop on Software Engineering for Smart Cyber-
Physical Systems (SEsCPS). IEEE, 2019, pp. 25–31.

[3] J. Lee, B. Bagheri, and H.-A. Kao, “A cyber-physical systems archi-
tecture for industry 4.0-based manufacturing systems,” Manufacturing
letters, vol. 3, pp. 18–23, 2015.

[4] K. M. Alam and A. El Saddik, “C2ps: A digital twin architecture
reference model for the cloud-based cyber-physical systems,” IEEE
access, vol. 5, pp. 2050–2062, 2017.

[5] A. Redelinghuys, A. H. Basson, and K. Kruger, “A six-layer architec-
ture for the digital twin: a manufacturing case study implementation,”
Journal of Intelligent Manufacturing, vol. 31, pp. 1383–1402, 2020.

[6] S. Abburu, A. J. Berre, M. Jacoby, D. Roman, L. Stojanovic, and
N. Stojanovic, “Cognitwin–hybrid and cognitive digital twins for the
process industry,” in 2020 IEEE International Conference on Engineer-
ing, Technology and Innovation (ICE/ITMC). IEEE, 2020, pp. 1–8.

[7] S. Aheleroff, X. Xu, R. Y. Zhong, and Y. Lu, “Digital twin as a service
(dtaas) in industry 4.0: An architecture reference model,” Advanced
Engineering Informatics, vol. 47, p. 101225, 2021.

[8] M. A. Pisching, M. A. Pessoa, F. Junqueira, D. J. dos Santos Filho, and
P. E. Miyagi, “An architecture based on rami 4.0 to discover equipment
to process operations required by products,” Computers & Industrial
Engineering, vol. 125, pp. 574–591, 2018.

[9] C. Nwogu, G. Lugaresi, A. Anagnostou, A. Matta, and S. J. Taylor, “To-
wards a requirement-driven digital twin architecture,” Procedia CIRP,
vol. 107, pp. 758–763, 2022.

[10] L. Deren, Y. Wenbo, and S. Zhenfeng, “Smart city based on digital
twins,” Computational Urban Science, vol. 1, pp. 1–11, 2021.

[11] G. Castelli, A. Cesta, M. Diez, M. Padula, P. Ravazzani, G. Rinaldi,
S. Savazzi, M. Spagnuolo, L. Strambini, G. Tognola et al., “Urban
intelligence: a modular, fully integrated, and evolving model for cities
digital twinning,” in 2019 IEEE 16th International Conference on Smart
Cities: Improving Quality of Life Using ICT & IoT and AI (HONET-
ICT). IEEE, 2019, pp. 033–037.

[12] G. White, A. Zink, L. Codecá, and S. Clarke, “A digital twin smart city
for citizen feedback,” Cities, vol. 110, p. 103064, 2021.

[13] A. K. Myat, R. Minerva, A. Taparugssanagorn, P. Rajapaksha, and
N. Crespi, “Traffic intensity detection using general-purpose sensing,”
IEEE Sensors Letters, 2023.

[14] M. Alvi, R. Minerva, P. Rajapaksha, N. Crespi, and U. Alvi, “Traffic
flow prediction in sensor-limited areas through synthetic sensing and
data fusion,” IEEE Sensors Letters, 2024.

[15] ETSI. (2024) Gs cim 009 - v1.5.1 - context infor-
mation management (cim); ngsi-ld api. [Online]. Available:
https://www.etsi.org/deliver/etsi gs/CIM/001 099/009/01.08.01 60/gs
CIM009v010801p.pdf

[16] D. Merkel et al., “Docker: lightweight linux containers for consistent
development and deployment,” Linux j, vol. 239, no. 2, p. 2, 2014.

[17] S. M. Raza, R. Minerva, B. Martini, and N. Crespi, “Empowering
microservices: A deep dive into intelligent application component place-
ment for optimal response time,” Journal of Network and Systems
Management, vol. 32, no. 4, p. 84, 2024.


