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Abstract—Pruning, as a technique to reduce the complexity
and size of Transformer-based models, has gained significant
attention in recent years. While various models have been suc-
cessfully pruned, pruning BERT poses unique challenges due to
their fine-grained structure and overparameterization. However,
by carefully considering these factors, it is possible to prune
BERT without significantly degrading its pre-trained loss. In
this paper, we propose a Meta-learning-based pruning approach
that can adaptively identify and eliminate insignificant attention
weights. The performance of the proposed model is compared
with several baseline models, as well as the default fine-tuned
BERT model. The baseline pruning strategies employed low-level
pruning techniques, targeting the removal of only 20% of the
connections. The experimental results show that the proposed
model outperforms the other baseline models, in terms of lower
inference latency, higher MCC and lower loss. However, there is
no significant improvement observed in terms of average FLOPs
(floating-point operations per second). Furthermore, we conduct
a comparative evaluation of the baseline models and our proposed
model using two explainable (XAI) approaches. While other
models allocate reasonable attention to less significant words for
sentiment classification, our model assigns higher probabilities to
the most significant sentimental words.

Impact Statement—Efficient handling of inference time in
pre-trained language models (PLMs) and the preservation of
performance while reducing their size are important research
considerations. Model compression techniques, such as pruning,
are recognized as effective approaches for achieving memory-
efficient, energy-efficient, computation-efficient, and storage-
efficient PLMs. Pruning addresses the need to create compact
models without compromising their overall effectiveness. Exist-
ing pruning methods often rely on task and domain-specific
approaches and therefore, it is important to explore a domain-
independent pruning approach. We propose a new pruning strat-
egy called Meta-Controller-based Attention Pruning (MCAP)
for the BERT model targeting single-sentence prediction tasks.
MCAP optimization strategy eliminates insignificant attention
in the BERT by calculating their importance scores. The self-
supervised pruner in MCAP uses a meta-learning approach to
identify and eliminate these insignificant attentions before fine-
tuning. Our study compares MCAP with baseline models (both
structured and unstructured pruning) and compared it with
inference latency, MCC, and loss parameters. The results show
that MCAP outperforms the baseline models in terms of inference
latency, MCC, and loss. Explainable AI (XAI) techniques are
used to interpret the model’s decisions and predictions. MCAP
focuses on significant words in sentiment classification, ensuring
important model parameters are retained without a significant
impact on output.

Index Terms—attention, BERT, meta-learning, model compres-
sion, pruning, sentiment analysis, transfer learning, XAI
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I. INTRODUCTION

Over the last four years, pretrained language models such
as BERT and RoBERTa improved the performances of various
Natural Language Processing (NLP) tasks. Following this,
large language models become popular in many research
activities and their sheer size limits deploying them in pro-
duction experiencing higher inference time. Important factors
in achieving efficient inference include compact memory foot-
print (memory-efficient), less disk space (storage-efficient),
fewer computational measures (computation-efficient), low
inference latency (time-efficient) and less energy consumption
(energy-efficient) [5]. One solution to address these factors is
to reduce the model size without affecting its performance.

There have been many works on compressing a large model
into a lightweight model [1] [5]. Quantization is one approach
that can be used during training and inference, and many
previous quantization techniques focus on reducing inference
time while maintaining significant accuracy [2]. Knowledge
distillation is another technique which transfers knowledge
from a larger model (teacher) to a smaller one (student)
[3]. Pruning is another approach to reduce the pre-trained
model size by removing minimally affected neurons, weights
or any other parameter in the pre-trained model. Unlike
other compression approaches, pruning removes unnecessary
connections in the network, and the reduction of unnecessary
over-parameters helps to achieve memory-efficient, energy-
efficient, computation-efficient and also storage-efficient mod-
els. Hence, we propose a novel pruning strategy to achieve
efficient inference.

The identification of optimal parameters to prune is chal-
lenging, especially when dealing with over-parameterized
transformer-based language models [7] [8]. Any Pre-trained
language model (PLM) follows three steps: pre-training, fine-
tuning and inference and they can be pruned during fine-
tuning [9] or after fine-tuning [6]. The problem with these
approaches is that the model becomes progressively sparser
and weight values are predetermined by the end task. Few
attempts are available to compress a model before fine-tuning.
A major advantage over pruning before fine-tuning is that it
helps to reduce the computational overhead during both fine-
tuning and inference and can be generalized to multiple tasks
that use similar contextual representations. Previous studies
have shown that fine-tuning BERT on a specific task does not
enhance its ability to be pruned effectively [26]. In addition,
many pruning approaches are Task and domain-dependent
and therefore, implementing a domain-independent pruning
approach is also important to generalize the optimization
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procedure to any downstream task. By initializing the pruning
approach before fine-tuning, it becomes possible to generate
a domain-independent pruned model.

In this study, we propose the Meta-Controller-based At-
tention Pruning (MCAP) method that aims to prune the
BERT model specifically for single sentence prediction tasks,
where it can also adapt to sentence generation tasks as well.
MCAP employs a pruning optimization strategy to eliminate
insignificant attentions in the BERT transformer by calcu-
lating their importance scores and removing those deemed
insignificant. The self-supervised pruner in MCAP adopts a
meta-learning approach to effectively identify and eliminate
these insignificant attentions before fine-tuning. We compare
MCAP with several baseline models that utilize both structured
and unstructured pruning techniques. To evaluate the impact
of our proposed meta-learning paradigm on preserving text
representation, we utilize explainable AI (XAI) techniques to
interpret the model’s decisions and predictions. This allows
us to gain valuable insights into the inner workings of the
model, ensuring transparency in its decision-making process.
The experimental results demonstrate that MCAP exhibits
lower inference latency, higher MCC (Matthews Correlation
Coefficient), and lower loss in comparison to the other baseline
models. Nevertheless, the average FLOPs (Floating Point Op-
erations) improvement of MCAP has not shown any significant
advancements compared to the baseline models. Furthermore,
when conducting sentiment classification through XAI ap-
proaches (LIME and SHAP) on each model, MCAP assigns
higher probabilities to the most significant words that play
a crucial role in determining the overall sentiment of the
sentence, whereas other models give considerable attention to
the less sentimental words in the sentence. This approach guar-
antees to retain important model parameters without affecting
much on its output.

II. BACKGROUND AND METHODOLOGY

In this section, we provide various cutting-edge approaches
for pruning language models, with a specific focus on BERT.
We then present our novel pruning optimization strategy,
which is based on a meta-controller-based approach.

A. Pruning Language Models

Pruning can be performed either in a structured or un-
structured way and, in each scenario, it is required to define
some criteria to remove connections by minimally affecting
the model performances. In unstructured pruning, optimization
approaches find and remove less salient connections in the
model, mainly by setting their weight connections to 0. The
main objective of unstructured pruning is to remove low-
magnitude weights from the weight matrix by selecting unim-
portant weights through various criteria. The main drawback
of this approach is that it produces sparse matrices after
pruning [28]. In contrast, structured pruning prunes away a
large part of the network such as neurons, attention heads,
layers and weight matrix blocks [4]. Hence, unstructured
pruning does not pay attention to any relationship between

pruning parameters while structured pruning focuses on prun-
ing parameters in groups. Structured pruning [29] requires
understanding the model parameters to remove some portion
of unit [7], [8]. Some research works focused on direct layer
droppings from the language models [27]. Language models
use different structured and unstructured pruning criteria such
as weight pruning [15], [18], movement pruning [10], block
pruning [28], heads pruning and layer pruning [27]. With these
approaches, pruning language models have yielded promising
results and State-of-the-art techniques have demonstrated sig-
nificant advancements and improvements.

B. Identifying important parameters for pruning
Deep model pipeline [12] involves a series of well-defined

steps in the creation, deployment, monitoring and improve-
ment of a model. Each step in the pipeline makes a specific
model output which is independent and can be optimized
through certain strategies. The final three stages, collectively
known as model inference, is a challenging task as it involves
utilizing real-time, unseen data to generate an output in a
production environment. Model inference uses a trained model
to infer output from unseen data and therefore, when the
number of connections in the model decreases, then by default,
we can observe faster model inference. Therefore, one of
the best approaches to speed up the inference process is
to identify the least salient connections and remove them
from the model. In this research, we use a novel model
pruning mechanism to identify the important features in the
BERT and to remove unimportant parameters to speed up
both inference and pre-training while developing an optimized
model. The meta-learning strategy helps to compress the pre-
trained Transformer-based language model before fine-tuning
by identifying important attention heads.

Unlike, many other pruning mechanisms proposed for stan-
dard supervised learning models, language models use weight
values that are predetermined by the original model and fine-
tuned for different downstream tasks. Hence, identifying the
salient connections before fine-tuning is useful as it overcomes
computational overhead during fine-tuning, and it helps to
build a task-independent pruned model. Our proposed ap-
proach uses a meta-learning paradigm to remove unnecessary
connections from BERT before fine-tuning and the pruning
strategy iterates only once. BERT-base uses 12 layers con-
taining 12 attention heads in each layer and model training
helps to project input embedding into different representation
subspaces in each layer. Our experiments are conducted on the
BERT encoder to evaluate the representations for each layer.

Mathematically, pruning calculates a matrix S of important
scores and then select the unimportant percentage (x) of
weights or attention or any other parameters by the importance,
as stated in Equation 1. The pruning criteria depend on
which parameters or blocks are considered in the optimization
strategy.

Topx(S)ij =

{
1, if Sij in top x%
0, otherwise

(1)

With the filtering strategies, we can effectively create a
sparse network by defining a mask M ∈ {0, 1}n∗n which
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uses during the forward pass with the provided input yi and
weight matrix W to generate attention score ai for each head.

ai = WMyi (2)

The pruning strategies proposed in the previous works are
mainly based on optimizing the weight matrix using different
criteria that are initialized randomly through defined pre-
trained criteria. However, these models are difficult to accel-
erate due to irregular sparsity, limited model parameterisation
and inference overhead [21]. Hence, our objective is to use
a structured pruning strategy to prune unused attentions that
reduce structured sparsity and overhead.

C. BERT Self-attention

In general, Transformer architecture consists of three atten-
tions: self-attention in the Encoder, Encoder-decoder attention
in the Decoder and self-attention in the Decoder [22]. Since
BERT use only the vanilla Transformer attention, it has only
the encoder attention and its operations can be represented
with three input parameters: Query (Q), Key (K) and Value
(V), where all these parameters are similar in their structure
and represent each word in the sequence by a vector. The self-
attention in the Encoder is fed with the positional encoding
and input embedding to produce and encode representation for
each word in the input sequence allowing to capture both the
positional and the contextual parameters of each word. Q, K
and V parameters in the self-attention produce an encoded rep-
resentation for each word in the input and generate an attention
score for each word. Each attention module adds its attention
score to each word’s representation through the Encoder stack.
In this work, we identify unimportant attention heads in BERT
before fine-tuning and evaluate model performances after fine-
tuning.

The term ’attention head’ in BERT refers to one of the
multiple self-attention mechanisms that are applied to the
input data. As shown in Figure 1, BERT-base consists of
12 attention heads in each layer, with each head having a
dimension of 768 (i.e., a total of 768 hidden units) and they
are responsible for computing a specific subset of the attention
weights between the input tokens which are then concatenated
and used to compute the final attention output. Through
visualization, patterns of attention can be observed, such as
attention heads focusing on irrelevant or noisy parts of the
input, or attention heads that exhibit similar behavior to other
heads. These observations can guide the selection of attention
heads for pruning, improving the model’s efficiency without
sacrificing its predictive power. Each attention head performs
a unique form of attention, and the collective contribution
of all heads enables the model to capture various types of
dependencies between the input sequence. Based on Q, K and
V parameters, the attention weights are calculated and reflect
how much attention the model should pay to each token when
predicting a given task.

The size of a BERT attention head can be computed by
dividing the number of hidden units by the number of attention
heads. The number of hidden units refers to the neurons in the
hidden layer, while the number of attention heads corresponds

Fig. 1: Joint embedding space for Q-queries (in green) and K-
keys (in pink) in Self-attention in BERT. The 12 heads are rep-
resented by the columns, while the 12 layers are represented
by the rows. The scatterplot depicts each point representing the
query or key version of a word, denoted by the point color.
Attention head visualization helps in pruning by allowing the
identification of redundant or less informative attention heads
that can be pruned without significantly affecting the model’s
performance [30]. Heads with fewer clusters of search results
tend to demonstrate more semantic behavior, whereas heads
with dispersed results tend to focus more on token position.
Hence, pruning will mainly affect the heads that are not
capturing semantic and contextual representations as well as
heads that are not in the higher layers.

to the attention heads present in the model. For example, in
the case of BERT-Base, which has 768 hidden units and 12
attention heads, each attention head’s size is 64. This metric
gives the dimension of the attention weight vector which is
used to calculate the attention score, and this attention score
is used to determine the importance of different parts of the
input sequence in generating the output. The attention head
size is the dimension of the attention weight vector that is
used to calculate the attention score and the attention score
is used to determine the importance of different parts of the
input sequence in generating the output.

Given a sequence of n tokens, X ∈ Rn∗d with each token
represented by a d-dimensional feature vector, self-attention
aims to discover the correlations of all token pairs, where X
is first linearly projected into three de dimensional spaces and
generate Q, K and V as represented in Equation 3.

Q = XWq ∈ Rn×de

K = XWk ∈ Rn×de

V = XWv ∈ Rn×de

(3)
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Fig. 2: The MCAP Pruning architecture

where Wq , Wk and Wv ∈ Rn×deare learnable weight
matrices, and Q, K and V matrices are of size (batch size,
sequence length, de).

Self-attention can be expressed in a generic equation as in
Equation 4, where i, j ∈ 1, .., n index the tokens. The self-
attention function α : Rde × Rde → R is composed of a
nonlinear function β : R → R and a relation function γ :
Rde ×Rde → R as in Equation 5.

yi,: =

n∑
j=1

α(Qi,:,Kj,:) · Vj,: (4)

β(·) = softmax(·)

γ(Qi,:,Kj,:) =
1√
(de)

·QT
i,:Kj,:·

(5)

Therefore, as indicated in Equation 4, the attention weights
generated from α(Q · W ) are then used to weigh V in the
self-attention layer. Hence, the final output of the attention
head is a representation of the input sequence that has been
weighted by the attention scores. This representation captures
the most important relationships between the tokens in the
input sequence and thus, it helps the model to attend to
different aspects of input for different tasks.

D. Self-attention Map

Self-attention maps are graphical representations of at-
tention weights. They can be used to understand how the
model attends to different parts of the input sequence for
a given task. There are five frequently occurring patterns
of self-attention maps: vertical, diagonal, vertical+diagonal,
block and heterogeneous [31]. Except for vertical attention
maps, all other attention maps help to interpret linguistic
information. These attention maps have been employed in
image classification tasks to exploit spatial features within
CNNs to identify significant regions within an image and
amplify their influence [14]. Hence, we consider this as an
image classification task as shown in Figure 2. Therefore, in
the context of single-task prediction, CNNs can be leveraged
to extract attention pruning scores using attention maps, in
which trainable attention modules can be employed, taking
2D feature vector maps (intermediate representations of input
images) as inputs and generating relevance scores for each
map. These attention maps are integrated with standard CNN
architecture with 5 convolution layers. The CNN model is
trained to learn the spatial features in the attention maps
using 1000 images (400 from [31] and 600 from [14]). This
approach has proven effective in previous research, as the
learned attention maps effectively highlight regions of interest
while disregarding background noise in input images [31].
Inspired by this methodology, we adopt a similar technique
to examine the attention map to gain insights into how BERT
attends to different parts of the input and which tokens have
stronger connections or dependencies. The CNN takes these
attention maps as inputs and conducts the feature importance
analysis to identify important features in the attention maps
and extract attention pruning scores. The goal is to identify
salient attention scores to identify the most important attention
heads and prune the least important ones with hyperparameter
optimization. As shown in Equation 6, the importance score
δi is generated by passing the output of the CNN to a Sigmoid
activation function and concatenates with the matrix encoder
to produce a value between 0 and 1. This layer should have
the same number of outputs as the number of attention heads
in the BERT layers.

δi = (
1

1 + e−x
)CNN(yi,:) (6)

As shown in Figure 2, δi value is calculated for each
attention i to identify insignificant attentions and then generate
a new attention matrix ŷ which then will fine-tune for a
particular task focusing on the desired loss function. Once we
have the importance scores δi, as indicated in Figure 2, we
generate a new attention matrix by multiplying the original
attention matrix by the importance scores. This process gives
more importance to the attention heads with higher importance
scores.

E. Meta-learning based objective function

As explained, the CNN learns to identify important features
in the attention maps and extract attention pruning scores and
then, we use a meta-learning process to dynamically adjust
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attention weights across different tasks. Meta-learning aims
to train our attention pruning model to learn quickly and
efficiently on new tasks and the meta-controller is trained
on a set of synthetic mini datasets, to learn how to generate
attention masks that are task-specific. For each mini dataset,
the meta-controller is trained to produce attention masks that
maximize the performance of the pruned BERT model on that
task. Once the meta-controller is trained, it can be used to
generate attention masks for any new task, without the need
for further training. To do this, the meta-controller is simply
given the new task as input, and it produces a set of attention
masks that are tailored to that task.

Let X , Y and T be the input to the model, the output of
the model, and the task, respectively. Meta-controller takes the
input X from task T and generates attention masks M that
will lead to generating the new attention weights of the model.
We implemented the meta-controller as a Feed-forward Neural
Network, represented in Equation 7, with parameters Φ and θ.

Y = f(X, θ,M)

M = g(T,Φ)
(7)

The function g(T,Φ) represents the meta-controller’s ability
to generate attention masks based on the input task T and
its parameters Φ, where Φ represents the hyper-parameters
of the BERT model. The function f(X, θ,M) produce an
output Y , which is the pruning mask for the BERT model,
based on the input X , its parameters θ that represent the
parameters of the feed-forward layer in the meta-controller,
and the attention masks M . Train the meta-controller to
generate pruning masks that minimize the loss of the pruned
model on the training tasks by updating the meta-controller’s
parameters Φ to improve its ability to generate attention masks
that improve the performance of the model on the input task
T .

In this paper, we mainly focus on single-sentence prediction
tasks, but the same procedure can be applied to language
generation tasks as well. The meta-controller is trained using
two single-sentence prediction datasets in GLUE, namely,
SST-2 and CoLA. We split the original training dataset into a
9:1 ratio to generate train and validation datasets. The meta-
controller, through meta-learning, learns to produce attention
masks that are task-specific. These masks are then used
to modify the attention weights obtained from the feature
importance analysis. The process begins with pruning applied
to subsets (k-instances) of the training instances and then
continues iteratively until all instances have been considered.
The number of training instances per episode in the meta-
controller is set to k=60. In our experiments, we observed the
performance of the meta-controller for k=10,20, 30, 60 and
120. Based on the loss and the accuracy of the model, we
set the k=60 in our final experiments. The model contains a
feed-forward layer with a SGD optimizer and it updates every
8 episodes. Once the importance score for all attentions in
each batch has been calculated, we use the Gumbel-softmax to
generate a vector representation, which ensures that the mod-
ification in attention weights maintains the similarity between
the original and pruned models. By taking the task as input,

the meta-controller produces a set of new attention masks M
that modify the attention weights of the model identifying
important scores for each attention to prune the model. It is
important to keep the representation of each instance without
modifying significantly where the representation before and
after pruning should be closer to each other. The representation
similarity before and after pruning is based on the internal
representation learned by the model. The Equation 8 and 9
represent how to identify the similarity of instances x1, x2,
and x3 before and after pruning a BERT model.

Similarity(x1, x2) = f(x1, x2,W )
Similarity(x1, x3) = f(x1, x3,W )

(8)

where, x1, x2, and x3 represent the instances being compared,
f is the function that calculates the representation similarity,
W represents the weights of the model, which include the
attention weights. The scale of these instances is related to
the length of the input sequences, measured in terms of the
number of tokens and therefore length of x1, x2, and x3 are
128 tokens. After pruning the BERT model, the equation for
the representation similarity of instances x1, x2, and x3 can
be represented as follows, where W ′ represents the pruned
weights of the model.

Similarity(x1, x2) = f(x1, x2,W ′)
Similarity(x1, x3) = f(x1, x3,W ′)

(9)

Equation 8 and 9 represents how the representation similar-
ity of instances x1, x2, and x3 is calculated using the same
function before and after pruning the BERT model, but the
weights used in the calculation are different.

Therefore, our objective function focuses on the relative
representation distribution of instances or the normalized
distance between one instance with the other instances. The
relative distribution of instances in a BERT model using cosine
similarity can be represented by Equation 10.

CS(x1, x2) =
x1.x2

||x1|| ∗ ||x2||
(10)

where, CS represents the Cosine Similarity, x1 and x2
represent the instances being compared, x1.x2 represents the
dot product of the instances, ||x1|| and ||x2|| represent the L2-
norm of the instances. The cosine similarity captures the sim-
ilarity between x1 and x2, instances by evaluating the cosine
of the angle between them in an N-dimensional space, where
N corresponds to the number of dimensions in the BERT
model by comparing the cosine similarity of the instances’
representations learned by the model. In a nutshell, it provides
a measure of the similarity between the two instances. Cosine
similarity returns a value between -1 and 1, where 1 indicates
if both instances are identical, 0 indicates if both instances are
orthogonal and -1 indicates if both instances are diametrically
opposite. The model examines how the cosine similarity values
correspond to the distances between instances and when the
cosine similarity between two instances is high, it indicates
that they are similar or closely related, while a low cosine
similarity suggests dissimilarity.

Consider instance Xn represented as N-dimensional nor-
malized vector rn, whose ith entry is the relative distance
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between Xn and Xi:

rni =
Distance(hn, hi)

ΣN
j=1Distance(hn, hj)

(11)

The relative distance rni distribution tends to have a smaller
distance with the presence of the instances with high cosine
similarity, which suggests that the instances in the dataset are
well-clustered, and similar instances are grouped closely to-
gether. Conversely, if the instances with high cosine similarity
exhibit larger distances, it indicates a more scattered or diverse
distribution of similar instances.

F. Meta-Controller based Attention Head Pruning - MCAP

We consider our meta-controller-based attention head prun-
ing (MCAP) as an optimization approach. The objective of the
MCAP algorithm is to minimize the relative distance rni distri-
bution between before and after pruning. A common objective
function is to minimize the Kullback-Leibler (KL) divergence
[11] between the relative distance distributions associated with
the original and pruned model. KL divergence measures the
difference between the real distribution and the predicted
distribution. If we assume that the vector representation before
and after pruning denote as V and V̂ , then the KL divergence
DKL from the true matrix-V to the predictive matrix-V̂ can
be computed for some instances X as follows.

DKL(V | V̂ ) = EX∼V̂ log

[
V (X)

V̂ (X)

]
(12)

DKL(V | V̂ ) = EX∼V̂ [−logV (X)]−H(V̂ (X)) (13)

fObjective = −DKL(poriginal||ppruned) (14)

We can simplify DKL in terms of cross entropy between
V and V̂ - EX∼V̂ [−logV (X)] and also the entropy of V -
H(V̂ (X)) similar to the above equation. Hence our objective
loss function is to minimize the KL Divergence ( DKL) to have
fewer variations in their relative distribution. The summation
over all instances X in the set of instances is considered to
calculate the KL divergence between the relative distance dis-
tributions associated between the instance and other instances
in a set of instances )Batch. KL divergence is a measure
of the dissimilarity between two probability distributions,
and it is non-negative where a value of 0 means the two
distributions are identical. In contrast, a larger value means
they are more dissimilar. Based on our objective function
fObjective, by minimizing the negative KL divergence, we
make the relative distance distribution of the pruned model
as close as possible to the original model’s relative distance
distribution considering each batch. Algorithm 1 represents the
procedure of using the optimization strategy with MCAP.

Algorithm 1 Self-Supervised Objective Function

Require:
1: θ - Original attention maps, β - Pruned attention maps, Γ

- Cosine Similarity, RDD -Relative Distance Distribution,
BERT, Pruned BERT

2: procedure MCAP(cnn classifier, meta controller)
3: θ ← BERT.get attention maps()
4: β ← Pruned BERT.get attention maps()
5: RDD ← Γ(θ, β)
6: kl divergence← KL divergence(RDD)
7: cnn loss← cnn classifier.loss(pruned BERT)
8: objective loss← kl divergence+ cnn loss
9: meta controller.update parameters(objective loss)

10: return objective loss
11: end procedure

III. EXPERIMENTS

A. Datasets

Since our meta-controller-based pruning model focuses on
single-task predictions, we use two datasets from GLUE: the
SST-2 (The Stanford Sentiment Treebank ) and the CoLA (The
Corpus of Linguistic Acceptability) dataset [15]. The SST-
2 dataset comprises sentences extracted from movie reviews
along with human annotations indicating their sentiment. The
objective is to anticipate the sentiment of a given sentence
for binary classification. The SST-2 dataset consists of 67K
training instances and 1.8K testing instances. The CoLA
dataset comprises judgments on the acceptability of English
sentences taken from books and articles. Each instance con-
tains a sequence of words labelled, indicating whether it con-
stitutes a grammatically correct English sentence. The standard
test set, which includes both in-domain and out-of-domain
sections, has been privately labelled. A single performance
score is reported for the combined in-domain and out-of-
domain sections of the test set. The CoLA dataset consists
of 8.5K training instances and 1K testing instances.

B. Pruning strategies

To evaluate our pruning method, we ran six baseline models
as explained below including both magnitude pruning and head
pruning techniques.

1) Iterative Magnitude Pruning: Iterative Magnitude Prun-
ing is a common approach to start with training a dense
network and subsequently removing weights based on a spe-
cific criterion, such as magnitude (absolute value) [16]. For
optimal results, this process is typically repeated iteratively by
alternating between weight pruning and network retraining. In
each iteration, the weights with the smallest magnitudes are
pruned, which can lead to increased sparsity in the network.
The network is then retrained using the remaining weights
to recover the lost accuracy due to pruning. This process is
repeated for a fixed number of iterations or until a desired level
of sparsity is achieved. IMP is an effective method for reducing
the size of neural networks and improving their efficiency
without significant loss of accuracy. IMP has been used to
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TABLE I: Performance comparisons of MCAP pruning model with the baseline models. HeadIMP stands for Head Importance
score and Avg FLOPs refer to average Floating Point Operations. The latency indicates the inference latency and loss refers
to the cross-entropy loss during the validation.

SST2 COLA

Pruning technique Latency
(ms)

FLOPs
(Avg) MCC Loss Latency

(ms)
FLOPs
(Avg) MCC Loss

1. Iterative magnitude pruning 1100 81.41 0.6314 0.4501 631 141.69 0.3623 0.5952
2. L1 unstructured pruning 1520 69.37 0.6204 0.2781 258 345.72 0.3737 0.6608
3. Random magnitude pruning 1520 58.94 0.7524 0.3511 480 137.71 0.2621 0.6797
4. HeadImp: Avg attention to the [SEP] token 373 162.56 0.7145 0.4085 392 154.34 0.2591 0.6327
5. HeadImp: attention entropy 175 346.39 0.6641 0.4948 817 74.24 0.3251 0.6306
6. Random head pruning 191 317.54 0.6367 0.4541 544 112.48 0.3431 0.6168
7. MCAP (Ours) 124 243.69 0.7252 0.2103 254 152.08 0.3869 0.5041
8. BERT fine-tuning 1190 75.01 0.8604 0.2357 1500 59.58 0.5869 0.5123

prune LLMs as well [16], but there are a few limitations
such as re-training overhead, dense connections and structural
redundancy in the transformer architecture.

2) L1 Unstructured Pruning: L1 unstructured pruning eval-
uates the magnitude of each parameter in the model based
on the absolute values in which the parameters with the
lowest magnitudes are considered less influential and removed
from the model. This pruning process is usually performed
iteratively, gradually increasing the pruning intensity until the
desired level of sparsity is achieved. L1 unstructured pruning
is based on L1 regularization, which adds a penalty term to
the network’s loss function that is proportional to the sum
of the absolute values of the weights. This encourages the
network to learn sparse weight values, with many of them
being close to zero. By pruning weights with the smallest
magnitude, L1 unstructured pruning can further increase the
sparsity of the network and reduce its size, which can lead to
faster inference and lower memory requirements. Compared to
other pruning methods, L1 unstructured pruning is relatively
simple to implement and is effective in reducing the size of
neural networks while maintaining high accuracy on various
tasks [17]. However, unstructured pruning techniques like L1
pruning do not take into account the inherent structure and
dependencies within language models and pruning such a
model is computationally expensive.

3) Random Magnitude Pruning: Random Magnitude Prun-
ing is an unstructured pruning technique used for reducing the
size of transformer models by randomly removing a certain
percentage of weights or connections from the model. Unlike
structured pruning, random pruning involves randomly select-
ing weights or connections to prune without any specific con-
sideration of their magnitude or importance. Random pruning
can be used in combination with other compression techniques,
such as quantization or knowledge distillation, to further
reduce the model size and improve its efficiency. Recent
studies have shown that random pruning is effective without
significant loss of performance and Liu et al. [18] show that
random pruning can achieve comparable compression rates to
structured pruning methods while maintaining high accuracy.
Due to its computational inefficiency and lack of fine-grained
control over the pruning process (i.e., not considering the
significance of individual parameters), random pruning is
not as effective as Structured pruning and magnitude-based
pruning with adaptive thresholds.

4) Heads important score: attention paid to the SEP token:
In some studies, head pruning is often considered better than
weight pruning for several reasons, including, reduced overfit-
ting, computational efficiency and preservation of the structure
of the model [23]. One popular strategy for head pruning is
to compute the head importance score relevant to the average
attention paid to the SEP token and based on that prune the
heads in decreasing order of the attention head importance
score. First, it computes the average attention weight of each
head to the SEP token over the entire training dataset by
extracting the attention weights of each head during training
or fine-tuning the model. Next, the attention heads are ranked
based on their average attention weight to the SEP token,
placing the head that exhibits the highest attention towards
the SEP token at the top of the ranking. Then, determine
a threshold representing the desired percentage of attention
heads to be pruned from the model, considering factors such
as the desired level of sparsity or available computational
resources. Proceed to remove the attention heads with the
lowest average attention weight to the SEP token iteratively
until the desired level of sparsity is attained. In the final step,
fine-tune the pruned model to recover the lost accuracy due to
pruning. However, this pruning strategy has some limitations
as it does not necessarily capture the overall importance of
the heads in the model because some heads are capable of
capturing important linguistic information that is not directly
related to the SEP token. Another drawback of pruning heads
based on the average attention to the SEP token is that all
downstream applications do not rely equally on the SEP token
and different tasks can have diverse dependencies on various
parts of the input sequence.

5) Heads important score: Attention entropy: Calculating
head importance using attention entropy is a common ap-
proach that measures the variability of attention weights across
different positions in the input sequence. The higher the
entropy, the more evenly distributed the attention weights are,
indicating a more important and informative head. Pruning
based on attention head importance score is a structured
pruning technique that computes the importance score for
each attention head using an attention entropy by normalising
the attention weights for each position and dividing them by
the sum of attention weights at that position. Then, calculate
the entropy for each position by multiplying the normalized
attention weights by their logarithm and summing them up.
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Next, the average attention entropy across all positions is
calculated for each attention head to measure the head’s at-
tention distribution variability. With attention entropy, we can
quantitatively assess the importance of attention heads based
on the diversity and distribution of their attention weights.
Heads with higher entropy values are likely to capture more
informative and relevant patterns in the input sequence [24].

6) Random head pruning: Random head pruning com-
pletely ignored the notion of calculating and identifying im-
portant heads. We can modify random sampling to experiment
with different numbers of heads to be pruned and previous
studies showed that half of the attention heads of BERT can be
randomly pruned without affecting much on the performance
[25]. Random pruning can be executed by removing n number
of heads in each layer and followed by the fine-tuning of the
model with different seeds. In general random head pruning
is faster than other pruning strategies since it does not need to
conduct any search strategies to select what heads to prune. A
major drawback of this pruning strategy is that it can remove
important heads that capture specific patterns or dependencies
in the input data.

C. Experimental results

The evaluations are performed on Google Colab Pro+. As
explained in the previous sections, we use six different pruning
strategies and BERT fine-tuning as baseline models to compare
our MCAP pruning model. The baseline pruning strategies
employed low-level pruning techniques, targeting the removal
of only 20% of the connections. We chose low-level pruning as
it is the most widely used approach that does not affect much
on the pre-training loss [26]. We fine-tune a separate model on
SST2 and COLA tasks for three epochs and try four learning
rates: [2, 3, 4, 5] × 10-5. The best evaluation accuracies
are averaged and the most suitable hyperparameters for each
pruned model. We observed that pruning 20% of the attention
heads speeds up fine-tuning by more than 22% and reduces the
memory overhead per instance by around 18%. We trained the
model by pruning 50% of the attention heads, which reduced
the overhead, but model classification performances are not as
good as 0% pruning, or standard fine-tuning.

To evaluate the performances of each pruning strategy and
to compare with MCAP we provide insights about average
FLOPs (Floating Point Operations) and latency as quantitative
measures to understand runtime characteristics and computa-
tional measures. FLOPs compare the computational require-
ments of different models to estimate the computational cost
of running a model on different platforms, representing the
number of floating-point operations performed during infer-
ence. On the other hand, latency assesses the responsiveness of
a model through the time it takes for a model to process a given
input and produce the required output during the validation.

As shown in Table I, both SST2 and CoLA it is not arguably
perform better in terms of the average FLOPs value. It is
important to note that a low FLOP value does not necessarily
indicate a better-performing model, as it does not directly
correlate with model performance, while high FLOPs indicate
a large computational load, which may increase the overall

computational cost. However, lower latency is generally de-
sirable as it implies quicker model predictions. In general,
there is a positive correlation between latency and FLOPs.
This is because more FLOPs typically lead to more complex
computations, which can increase the processing time. Our
proposed MCAP method achieved low latency while having
relatively high FLOPs. This is mainly due to the specific focus
of the MCAP being on optimizing the inference latency by
reducing the number of computations and parameters required
for each layer, while still maintaining sufficient accuracy. This
results in a higher FLOP count compared to methods that focus
more on accuracy-efficiency trade-offs.

To comprehensively evaluate the model, we considered
other parameters such as MCC (Matthews Correlation Coeffi-
cient), average loss and also model’s latency. These additional
metrics provide more meaningful insights into the model’s
performance. MCC measures the quality of binary classifi-
cations, while model loss reflects the discrepancy between
predicted and actual values. By considering these factors,
we obtained a more comprehensive understanding of the
model’s overall performance compared to the baseline models.
Table I demonstrates that MCAP outperformed other pruning
strategies across both the SST2 and CoLA datasets in terms
of lower inference latency, higher MCC, and lower average
loss compared to other pruning techniques considered in our
analysis.

To further investigate the comparative performance of
MCAP, we constructed a Figure 3 that visually depicts the
relationship between model accuracy and loss. This figure
provides a comprehensive understanding of how the model’s
accuracy varies with the corresponding loss values. For this
experiment, we executed each model for 10 epochs. The figure
vividly demonstrates that MCAP initiates with a lower loss
value even during the first epoch, surpassing the performance
of the baseline models. As training progresses, MCAP contin-
ues to reduce the loss while simultaneously improving accu-
racy. Interestingly, by the third epoch, MCAP demonstrates
notably higher accuracy compared to all other models in
the comparison. Since the validation accuracy continues to
improve while the validation error decreases, it indicates that
the MCAP-based model is generalizing well to unseen data.

IV. EXPLAINABILITY OF THE MCAP

To provide more explanation on the MCAP model and to
understand the reason behind the efficient predictions, we
interpret and explain the model for a set of given textual
content. Model explainability provides the shreds of evidence
to trust the model, especially in crucial real-life scenarios and
enables us to understand models comprehensively helping for
debugging and bias mitigation. Hence, we adopted two main
Explainable artificial intelligence (XAI) [19] techniques, as
explained in the following sections, to understand our model
predictions for a given text.

A. Preliminaries

1) Local Interpretable Model—Agnostic Explanations
(LIME): LIME [20] stands as a model-agnostic method that
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Fig. 3: The relationship between model validation accuracy
and validation error. Validation accuracy represents the propor-
tion of correctly predicted instances in the validation dataset,
while validation error quantifies the discrepancy between the
model’s predictions and true labels in the validation dataset.

offers comprehensibility and operates independently of any
specific model. It provides an intuitive understanding of the
model’s behaviour by focusing on local fidelity, ensuring
an accurate reflection of its behaviour in the vicinity of a
given sample. LIME is one of the first single prediction
explainability approaches which selects instances around
predictions being explained and modifies them to build a
linear model that is inherently interpretable. In the author’s
original paper [20], the mathematical model has been clearly
explained and the following equation provides an abstract
view of their model.

Let G be the class of potential explainable models, g ∈ G
which is a model that will be explained to the user Ω(g)
measures the complexity of the model. The locally weighted
square loss L is defined as in the following equation, where
πx(z) is an exponential kernel defined on a considered dis-
tance function.

L(f, g, πx) = Σz,z′∈Zπx(z)(f(z)− g(z
′
))2 (15)

The locally weighted square loss L(f, g, πx) quantifies how
g is in approximating the explained model f in the proximity
measure between both instances z and sample x. The objective
is the minimize L(f, g, πx) and keep the Ω(g) in a human-
understandable manner. Hence, the explanation ξ with LIME
can be interpreted as follows.

ξ(x) = argmin
g∈G

L(f, g, πx) + Ω(g) (16)

The LIME pseudocode is given Algorithm 2. In the text
classification task, the interpretable representation is a bag of
words with a limited number of K words, in which K can be
denoted with different values based on various instances that
can be handled by the user.

Algorithm 2 Sparse Linear Explanations tuning LIME [20]

Require: Classifier f Number of samples N
Require: Instance x, and its interpretable version x

′

Require: Similarity kernel πx, Length of explanation K
1: Z ← {} i ∈ {1, 2, 3, ...N}
2: z

′

i ← sample around(x
′
)

3: Z ← Z ∪ ⟨z′

i, f(zi, πx(zi))⟩
4:
5: w ← KLasso(Z,K)
6: return w

The LIME explainer, model-agnostic explainability ap-
proach, is capable of explaining any black-box classifier with
two or more classes, that take in raw text and generate a
probability for each class as an output. To simply understand
the workings of LIME, initially, it hides a specific word
within a sentence (MASK token) and observes the resulting
changes in predictions. The perturbed outputs are subsequently
assigned weights based on their similarity to the example being
explained. By applying this weighting scheme, LIME provide
a streamlined understanding of the relationship between per-
turbed inputs and corresponding predictions.

2) Shapley Additive exPlanations (SHAP): Shapley values
are primarily utilized in the literature in conjunction with game
theory methodologies that exhibit desirable characteristics1.
Shapley values have been used in regression models, decision
trees, and correlation analysis in the past. More recently, they
have also been employed with Transformer-based models as
well. To use game theory concepts with SHAP in our analyses,
we assume that the final result is the model’s predictions in
which input words serve as the players involved. As the players
likely made varying contributions to the outcome, their payout
should reflect their impact.

SHAP is similar to LIME in terms of perturbation strategies,
but it calculates the individual contributions that each feature
makes to the model’s prediction. However, similar to the power
set in mathematics, it should determine the importance of
a single feature by considering all possible combinations of
features. As a result, SHAP approximates all potential models
using the provided dataset, which encompasses the input
provided in a specific explanation. By considering all possible
combinations, SHAP takes into account the cumulative impact
of each feature by considering their marginal contributions.

Consider that in a given classifier f and M features, the
shapely value for each feature i is generated independently
and can be represented as the weighted average of the relative
outcome differences across all the features subsets S ⊆M\{i}
as in the following equation.

f(S ∪ {i})− f(S) (17)

Together we can identify 2∥M∥ possible choices for S,
but computing exact Shapley values is a task of exponential
complexity. The SHAP framework gives several strategies to
approximate efficiently and the model we used in our analysis
is DeepSHAP.

1https://shorturl.at/awxLR
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TABLE II: Textual data used for the intepretable analysis.

Text Actual
Sentiment

Model
Prediction

T1 Loving the first days of summer! <3 Positive Positive
T2 I hate when people put lol when we are having a serious talk. Negative Negative

T3 People are complaining about lack of talent. Takes a lot of talent
to ignore objectification and degradation #MissAmerica Neutral Negative

Fig. 4: Visualization of SHAP Representations: Force Plot for Sentiment Analysis Model (Fine-tuned with GLUE SST-2).

B. Explainability with LIME and SHAP

We conduct experiments with LIME and SHAP using our
MCAP model to fine-tune with SST2 data. To conduct the
analysis, as given in Table II, we selected three distinct texts
(T1, T2 and T3) that effectively represent positive, negative,
and neutral sentiments. These texts were carefully chosen
to provide a comprehensive representation of the various
sentiment categories to analyze sentiment classification per-
formance with the BERT model fine-tuned on SST2.

Figure 4 depicts the force plot for SHAP representations for
each input T1, T2 and T3. For SHAP analysis, it is necessary
to have tensor outputs from the classifier, and explanations are
most effective when working in additive spaces. Therefore,
we convert the probabilities into logit values (information
values) to facilitate the process. Hence, Figure 4 is generated
with the obtained logit values for three instances which is
specifically crafted to show a comprehensive view of how
all the components of the text interact and contribute to the
model’s output. The base value denotes the average prediction
of the model across the entire dataset, while f(x) represents
the output probability of the model for the specific instance be-
ing analyzed. Red attributes influence the predictions towards
class 1 (indicating a positive review), while blue attributes
influence the predictions towards class 0 (indicating a negative
review). The positive red features exert an upward ’push’
on the model’s output, while negative blue features exert a
downward ’push’ on the model’s output.

Figure 4 depicts that individual words have a significant
impact on model predictions, making word-level contributions
a key indicator for detecting sentiments. This is particularly
evident in the case of the neutral sentiment text T3, which
highlights this aspect even more clearly. The original T1
sample is classified as positive with high confidence, whereas

Fig. 5: Visualization of Prediction Explanation using LIME
for T2 Model Fine-tuned on GLUE SST-2.

neutral sentiment for T3 is predicted as negative based on the
word-level contributions.

Compared with the SHAP model, LIME generates a Lasso
tree providing more human-friendly explanations. This enables
us to grasp unfamiliar word embedding notations in a more
interpretable manner. The explanatory process using LIME for
T2 is illustrated in Figure 5. The figure demonstrates that
the LIME explainer assigns weights to individual words in
the text, indicating their significance in the overall decision-
making process. Among the words analyzed, the term hate
possessed the highest weight (approximately 0.20), signifying
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Model PP ω1 ω2 ω4 ω5 ω3 ω11
BERT Fine-tuning 0.99 (-) 0.52 (-) 0.16 (-) 0.11 (-) 0.08 (-) 0.06 (+) 0.04
Iterative magnitude pruning 0.89 (-) 0.28 (-) 0.26 (-) 0.02 (-) 0.03 (-) 0.01 (+) 0.01
L1 unstructured pruning 0.99 (-) 0.43 (-) 0.25 (-) 0.07 (-) 0.08 (-) 0.05 (+) 0.10
Random magnitude pruning 0.92 (-) 0.30 (-) 0.08 (-) 0.19 (-) 0.10 (+) 0.04 (+) 0.06
HeadImp: Avg attention to [SEP] token 0.96 (-) 0.48 (-) 0.09 (-) 0.02 (-) 0.02 (-) 0.03 (+) 0.08
HeadImp: Attention entropy 0.96 (-) 0.44 (-) 0.09 (-) 0.05 (-) 0.04 (-) 0.03 (+) 0.15
Random head pruning 0.99 (-) 0.38 (-) 0.14 (-) 0.05 (-) 0.10 (-) 0.04 (+) 0.08
MCAP (Ours) 0.97 (-) 0.48 (-) 0.08 (-) 0.04 (-) 0.07 (+) 0.01 (+) 0.03

TABLE III: The LIME predictions and the most influential word-level contributions to the sentiment prediction probabilities for
T2. PP stands for prediction probability. The symbol (-) indicates word-level contribution probabilities for predicting towards
negative sentiments, while (+) represents positive contribution probabilities for predicting towards positive sentiments.

its substantial contribution to the overall sentiment of the text.
Surprisingly, the presence of the word when increased the
prediction probability by 0.16 for negative sentiment, despite
not providing any additional contextual information related to
the negative sentiment. The overall sentiment level of the T2
was 99% and classified as negative.

C. Explainability of pruning methods

We analyzed the explainability of each pruned model to gain
a deeper understanding of its inner workings. By examining
the explainability of these models, we aimed to shed light
on the factors and features that contribute most significantly
to their predictions. As shown in the previous section, LIME
and SHAP are inherently better than the other for explaining
BERT. While SHAP offers global interpretability of the model,
it does not yield significant variations in the prediction proba-
bilities. LIME is a model-agnostic, simple and faster algorithm
that can provide intuitive explanations for BERT’s predictions
for textual data. Hence, we use the results generated through
LIME for the following comparisons.

In this set of experiments we focus on the results generated
for ’T2’ and for ease of understanding, we assigned repre-
sentations from ω0 to ω12 for each word in the sentence, ’I
hate when people put lol when we are having a serious talk.’.
The prediction probabilities for each model considered in our
experiments, including our own, are presented in Table III.

By examining Table III, we observe that the word hate-
ω1 makes the most significant contribution to the sentiment
classification of the input sentence. However, it is noteworthy
that the probabilities associated with this contribution vary
across different models. Furthermore, words like when-ω2
are not influential when it comes to sentiment detection.
However, it is interesting to note that models like Iterative
Pruning and L1 Unstructured Pruning assign a higher level
of contribution to such words. In contrast, MCAP assigns
less significance to those words and instead prioritizes other
words that contribute more effectively to better predictions. We
conducted experiments using considerably longer sentences,
and the results demonstrate that MCAP focuses on prioritiz-
ing the most crucial words for sentiment analysis, resulting
in slightly improved predictions compared to other pruning
models. When considering the overall LIME probability pre-
dictions, it is evident that the fine-tuned model outperformed
the others. However, interestingly, the explainability analysis

reveals that less influential words receive higher priorities in
influencing the predictions.

V. CONCLUSION AND FUTURE WORKS

The study introduces a model called Meta-Controller-based
Attention Pruning (MCAP) that aims to prune the BERT
model specifically for single sentence prediction tasks, with
potential application to sentence generation tasks. MCAP uti-
lizes a pruning optimization strategy to eliminate insignificant
attention heads in the BERT transformer by calculating their
importance scores and removing those deemed insignificant.
The self-supervised pruner in MCAP adopts a meta-learning
approach to effectively identify and eliminate these insignif-
icant heads before fine-tuning. The study compares MCAP
with several baseline models that employ structured and un-
structured pruning techniques. By employing explainable AI
techniques to interpret the model’s decisions and predictions,
we ensure transparency in the decision-making process. Ex-
perimental results demonstrate that MCAP outperforms the
baseline models in terms of lower inference latency, higher
Matthews Correlation Coefficient (MCC), and lower loss. The
primary objective of MCAP is to prune the BERT model for
single-sentence prediction tasks while preserving important
text representations. The meta-learning paradigm employed by
MCAP ensures the removal of insignificant attention, while
explainable AI techniques provide insights into the model’s
decision-making process. Although the average FLOPs im-
provement of MCAP compared to baseline models is not
significant, MCAP assigns higher probabilities to the most
significant words in sentiment classification tasks, thereby
ensuring the retention of important model parameters without
significantly affecting the model’s output. Overall, MCAP
presents a promising approach for pruning BERT models,
improving efficiency, and maintaining performance in single-
sentence prediction tasks.

Based on the findings and conclusions of the study, there
are several potential future directions for further research and
improvement. We aim to generalize the same strategy for
language generation tasks as well. Generalizing the approach
to a wider range of NLP tasks could provide insights into its
effectiveness and potential benefits. While MCAP effectively
prunes insignificant attention heads before fine-tuning, explor-
ing different fine-tuning strategies could potentially enhance
the performance further. Thereby, we will use a variety of
hyperparameters to train our model and compare it with base-
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lines by evaluating through large datasets. Efficiency optimiza-
tion: Although MCAP demonstrates lower inference latency
compared to baseline models, further research can be done to
optimize its efficiency even more. Investigating techniques like
model compression, quantization, or knowledge distillation
could potentially reduce the computational resources required
by MCAP without sacrificing its performance. By employ-
ing attention head visualization techniques, we will conduct
further research to identify the most important parameters.
Subsequently, our focus will shift towards directly pruning
these parameters, eliminating the need for iterative analysis
over the entire model.
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