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Abstract—In blockchain space, access control is a crucial
aspect of smart contract development, as it guarantees that only
authorized users can execute specific functions within a contract.
The growing interest in employing smart contracts for access
control mechanisms stems from their ability to provide reliable,
secure and efficient enforcement of access control policies. How-
ever, Solidity, the most popular smart contract language, was
not designed explicitly for writing access control policies, unlike
specialized languages such as Alfa or XACML. The differences
between these languages leads to a difficulty for those who wish
to use smart contracts as access control mechanisms but lack
the knowledge of Solidity or the ability to evaluate their code’s
security. To bridge this gap, we introduce ASAC, an Alfa to
Solidity transpiler that translates Alfa policies into secure Solidity
contracts. Our transpiler leverages the ANTLR (ANother Tool for
Language Recognition) parser generator and translate complex
Alfa policies into smart contracts. We showcase the effectiveness
of our transpiler through a set of case studies and offer an
evaluation of its performance.

Index Terms—Alfa, Solidity, transpiler, access control, smart
contracts.

I. INTRODUCTION

Smart contracts are self-executing programs that can au-
tomatically enforce the rules and regulations of a particular
contract. They are widely used in various domains, such as
finance, supply chain, and healthcare. Access control is an
essential aspect of smart contract development, as it guarantees
that only authorized users can perform certain actions within a
contract. Access control policies define who can perform what
actions on a resource. For example, in a supply chain contract,
only the manufacturer can update the product information, and
only the distributor can only read it.

Solidity is the most widely-used programming language
for developing smart contracts on the Ethereum blockchain.
Although Solidity provides built-in support for access control
through “modifiers”—special functions restricting access to
specific the contract functions —Solidity was not explicitly
designed for writing access control policies. In contrast, sev-
eral languages outside the blockchain space, such as XACML
and Alfa, have been developed specifically for this purpose.

Abbreviated Language For Authorization (ALFA) program-
ming language is a policy language designed for expressing
access control policies. It offers a high-level, declarative
approach that enables developers to specify access control
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policies in a concise, expressive, and readable manner. Alfa
policies are based on a set of rules that define who can
access which resources, under what conditions, and with what
actions. As a well-established and secure language, Alfa is
particularly suited for defining secure access control policies
for complex use cases. Despite the advantages of using Alfa
for specifying access control policies, a gap exists between
Alfa and Solidity. This disparity complicates the process of
specifying access control policies for Solidity contracts using
Alfa. Consequently, there is a need for a tool that can bridge
this gap and facilitate the integration of secure access control
policies within the smart contract development process.

In this paper, we propose an Alfa to Solidity transpiler,
which translates Alfa policies into secure access control
Solidity contracts. Our transpiler is based on the ANTLR
[1], [2] parser generator and can handle a fair number of
complex Alfa policies. We demonstrate the effectiveness of
our transpiler through a case study and provide an evaluation
of its performance.

II. BACKGROUND

Smart contracts are scripts with the terms of the agreement
between tow or multiple parties, directly written into lines of
code using a high-level programming language, like Solidity.
These code lines are executed upon calls once the conditions
specified in the contract are met. Smart contracts are typically
built on blockchain platforms, such as Ethereum [3], which
enables trustless execution of transactions and removes the
need for intermediaries. Access control is an important aspect
of smart contract development. Access control policies guar-
antee that only authorized users can interact with the contract
and execute the authorized functions. In the context of smart
contracts, access control policies identify users, using their
addresses, and authorize the execution of specific functions
and which data the users can access.

Solidity is a popular programming language used for writing
smart contracts on the Ethereum blockchain. It is an object-
oriented language with syntax similar to that of JavaScript.
Solidity provides a range of access control mechanisms, in-
cluding Role-Based Access Control (RBAC) [4] and Attribute-
Based Access Control (ABAC) [5]. RBAC defines access con-
trol policies based on roles, while ABAC defines policies based
on attributes. For example, in a simple Solidity smart contract
(1) that manages a token, an RBAC approach could define
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roles such as “owner”, “admin”, and “user”. The “owner” role
could have access to functions that allow them to mint new
tokens and burn existing tokens, while the “admin” role could
have access to functions that allow them to transfer tokens.
The “user” role would have read-only access to the contract.

pragma solidity ~0.8.0;

contract Token {
string public name;
string public symbol;
uint256 public totalSupply;
mapping (address => uint256) balances;
mapping (address => string) countries;
address public owner;// Define roles

mapping (address => bool) admins;
mapping (address => bool) users;
modifier onlyOwner () {
require (msg.sender == owner, "Only the
owner can perform this action.");
7
}
modifier onlyAdmin () {
require (admins[msg.sender], "Only

admins can perform this action.");
}
modifier onlyUser () {
require (users|[msg.sender],
can perform this action.");

"Only users

—r

}

constructor (string memory _name, string

memory _symbol, uint256 _totalSupply) {
name = _name;
symbol = _symbol;
totalSupply = _totalSupply;
balances[msg.sender] = totalSupply;
owner = msg.sender;// Set owner
admins[0x123...] = true;// Set admin
users[0x789...] = true;// Set user

}

function mint (address to,

public onlyOwner {
balances[to] += amount;
totalSupply += amount;

uint256 amount)

}

function burn (address from,

) public onlyOwner ({
require (balances[from]

uint256 amount

>= amount, "

Insufficient balance.");
balances[from] —-= amount;
totalSupply —= amount;

}

function transfer (address to,

amount) public onlyAdmin {
require (amount <= balances[msg.sender

], "Insufficient balance.");
balances[msg.sender] -=
balances[to] += amount;

uint256

amount;

}
function balanceOf (address account) public
view onlyUser returns (uint256) {

return balances[account];

}
//ABAC policy
function checkCountry (address _from,
address _to) private view returns (bool) {
// check if transfer is allowed based on
policy defined using country attribute
return keccak256 (bytes (countries|[_from
1)) == keccak256 (bytes (countries[_tol));
+}

Listing 1: Example of a Solidity smart contract for managing
a token with RBAC roles

On the other hand, an ABAC approach could define policies
based on attributes such as the “country” of the token holder.
In this case, the smart contract could allow access to certain
functions only if the user is authorized based on their country
attribute. For instance, the smart contract could allow access
to a transfer function only if the recipient country matches the
sender’s country. Similarly, the smart contract could restrict
access to a specific function based on the country attribute of
the user.

Alfa is a domain-specific language used for formulating
access-control policies in the context of information security.
It is a simplified version of XACML (eXtensible Access
Control Markup Language) the well-known policy language,
developed to make policy definition easier for non-expert
users. Alfa allows the creation of policies that are easy to read
and understand(2), while also being flexible and adaptable to
different environments. Alfa has become a popular choice for
defining access-control policies due to its interoperability with
different platforms and systems.

In the past few years, there has been a noticeable increase in
attention towards implementing access control systems similar
to XACML or Alfa in blockchain technology [6] [7] [8]. Alfa
provides a declarative language for expressing access control
policies in a natural language-like syntax, making it easier to
write and maintain policies. Moreover, Alfa policies can be
easily translated into code and integrated into smart contracts,
making them more practical for use in blockchain systems.

policy project_manager {

target clause action == "view" and
resource.type == "project"
apply firstApplicable
rule allow_access {
target clause role == "manager"

permit

b}

Listing 2: Example of an alfa access control policy defining
permissions for a “manager” role on a “’project” resource

Despite the benefits of Alfa, there are still challenges in
integrating it with smart contracts. One of the main challenges
is that smart contracts are often written in Solidity, a limited
programming language that is different from Alfa. This dif-
ference makes it difficult to intuitively translate Alfa policies
into secure Solidity code.

In this paper, we propose a solution to this challenge by
developing a transpiler that can translate Alfa policies into




Solidity code. Our transpiler uses ANTLR, a popular parser
generator tool, to parse and analyze Alfa policies and generate
secure Solidity code that implements the policy. The resulting
Solidity code can be integrated into existing smart contracts or
as standalone contracts used to regulate access to resources.

The rest of this paper is organized as follows. Section III
provides an overview of related works. Section V describes our
proposed transpiler and its implementation details. Section VI
presents experimental results that demonstrate the effective-
ness of our transpiler. Section VII concludes the paper and
outlines future research directions.

III. RELATED WORK

This section presents a review of related work, focusing
on access control frameworks using smart contracts and tran-
spilers that facilitate the translation of access control policies
to smart contracts.

Access Control Frameworks Using Smart Contracts

Several studies have explored the use of smart contracts
for access control enforcement in decentralized systems. Some
researchers have proposed the integration of traditional access
control models, such as attribute-based access control (ABAC)
[5] and role-based access control (RBAC) [4], into blockchain-
based platforms. These approaches aim to leverage the inher-
ent security and immutability of blockchain technology while
using well-established access control models.

Other works have focused on designing novel access con-
trol frameworks specifically tailored for smart contracts and
blockchain systems. For instance, decentralized access control
systems [9] [10] [6], secure data sharing [11], and healthcare
applications [12] have been proposed, showcasing the potential
of combining access control and blockchain technology.

Meanwhile, several tools have been proposed for specifying
access control policies for smart contracts. For example,
the Solidity compiler provides built-in support for modifiers,
which can be used to restrict access to certain functions within
a contract. Additionally, several libraries, such as L provide
pre-built access control contracts that can be used to enforce
RBAC and ABAC policies in Solidity smart contracts.

Transpilers for Access Control Policies to Smart Contracts

While there are limited examples of transpilers specifi-
cally designed for converting access control policies to smart
contracts, some relevant research has been conducted in the
broader context of translating domain-specific languages to
smart contracts. For example, the development of a transpiler
for translating Business Process Model and Notation (BPMN)
models to Solidity smart contracts has been proposed in
[13]. Such transpilers aim to bridge the gap between high-
level languages or models and low-level blockchain languages,
enabling developers with limited knowledge of smart contract
programming to benefit from the blockchain technology.

The ASAC transpiler, proposed in this paper, builds upon
these previous efforts by providing a specialized solution for

Thttps://docs.openzeppelin.com/contracts/4.x/access-control

translating the well-established Alfa access control language
into Solidity smart contracts. This transpiler not only simplifies
the process of specifying access control policies for smart
contracts but also ensures that the generated contracts are
secure and efficient. It reduces the development overhead and
improve the security of smart contracts by ensuring that access
control policies are enforced correctly.

IV. METHODOLOGY

Here, we describe the overall process adopted for generating
Solidity code from Alfa policies. The transpiler is implemented
in C++ and uses ANTLR4 which is a powerful parser genera-
tor for reading, processing, executing, or translating structured
text or binary files. It is widely used to build languages,
tools, and frameworks. ANTLR is used to parse the input
Alfa code, build an Abstract Syntax Tree (AST), and generate
the corresponding Solidity code. The transpilation process
involves several steps, here’s a high-level overview of the
process is given below:

o Grammar definition stage: To begin, we create a formal
grammar file that describes the syntax of both the original
language (Alfa) and the target language (Solidity). The
grammar file will contain lexer rules for tokenizing the
input, and parser rules for generating the AST. This stage
is crucial to guide the parser in accurately processing the
input code and thereby ensure a correct AST represen-
tation. The grammar definition (3) which specifies the
formal rules for the syntax of a programming language,
needs to be created once and can be reused for multiple
transpilation processes. This definition guides the parser
in identifying and organizing the tokens in the input
code into a structured AST that represents the code’s
semantics.

policyDefinition

NEWLINE*
POLICY

(
WORD NEWLINEx

éEWLINE*

%ORD NEWLINE *
%ORD ASSIGN STRING NEWLINEx*
RIGHTCBRACKE;
policyDefinition]

(namespaceDefinition |
ruleDefinition
\
conditionDefinition | targetDefinition
| combiningAlgorithm
| onBlock ) =*
LEFTCBRACKET
)
NEWLINE %

r

Listing 3: Excerpt of a grammar file that defines a policy
structure.



« Parsing stage: We use a parser, such as one generated by
ANTLR or another parsing tool, to extract an Abstract
Syntax Tree (AST) from the source code written in the
original language (alfa). The parser will tokenize the input
code, identify syntax elements according to the defined
grammar, and create an AST representing the structure
of the Alfa policy.

o Transformation stage: In one or more steps, we transform
the AST of the original language into the corresponding
AST for the target language (Solidity). This stage in-
volves traversing the original AST and mapping (I) each
Alfa policy element, such as rules, conditions, and targets,
to corresponding Solidity constructs like function calls
and access modifiers. Depending on the complexity of
the transformation, we may employ a listener or visitor
pattern to process the AST nodes.

o Generation stage: Upon obtaining the AST for the target
language, we generate the corresponding target code
(Solidity) from it. This stage will involve creating Solid-
ity function definitions, access modifiers, and additional
logic needed for implementing the policy in Solidity. We
also need to manage code indentation, formatting, and
any necessary boilerplate code to produce a complete and
executable Solidity contract.

V. ARCHITECTURE

In this section, we will discuss the architecture and design
of the ASAC transpiler. The transpiler is designed to translate
Alfa policies to Solidity smart contracts that can be deployed
on the Ethereum blockchain. Figure [1] illustrates a high-level
overview of the process.

A. Lexer

A lexer is responsible for breaking the input Alfa code into
individual tokens based on the defined grammar.

Example:

Consider the following Alfa rule:

STRING ("medical_record")
SUBJECT

DOT

IDENTIFIER ("id")

EQ

RESOURCE

DOT

IDENTIFIER ("patient_id")
RIGHTCBRACKET

Listing 5: Tokens Generated by the Lexer

The parser then uses these tokens to recognize and process the
structure of the Alfa policy.

B. Parser

The parser is responsible for reading the Alfa access control
policy and generating an AST that represents the structure of
the policy. The parser uses a grammar defined for the Alfa
language to identify rules, conditions, and attributes.

The parser will generate from the considered Alfa policy,
an AST with the following structure:

Rule (
name="patient_view_own_records",effect="permit

n

4
conditions=[Condition (subject="subject.role",

operator="==", value="patient"), Condition

(subject="resource.type",
operator="==",value="medical_record"),
Condition (subject="subject.id", operator="==",

value="resource.patient_id"),])

rule patient_view_own_records {permit

subject.role == "patient"
resource.type == "medical_record"
subject.id == resource.patient_id

}

Listing 6: AST Generated by ANTLR Parser

C. AST Transformer

The AST Transformer processes the AST generated by the
parser and maps Alfa rules and conditions to an intermediate
representation suitable for translation to Solidity.

Example:

For the above example, the AST Transformer would gener-
ate an intermediate representation similar to the following:

Listing 4: Input Alfa policy

The lexer will generate the following tokens :

RULE

IDENTIFIER ("patient_view_own_records")
LEFTCBRACKET
PERMIT

SUBJECT

DOT

IDENTIFIER ("role")
EQ

STRING ("patient")
RESOURCE

DOT

IDENTIFIER ("type")
EQ

SolidityRule (

name="patient_view_own_records",effect="permit
"I

conditions=][

SolidityCondition (subject="msg.sender",

operator="==",

value="patient"), SolidityCondition (subject=

"mdicalRcord.owner", operator="==",

value="msg.sender"), ]

)

Listing 7: Intermediate Representation Generated by AST
Transformer

The AST Transformer component is responsible for travers-
ing the original AST generated from the input Alfa code and
creating a new AST representing the target language (Solidity).

During the traversal, the AST Transformer maps each Alfa
policy element, such as rules, conditions, and targets, to
corresponding Solidity constructs like function calls, access
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Fig. 1: Process of the transpilation in ASAC

modifiers, and control structures. This mapping process en-
sures that the access control policies defined in Alfa are
accurately represented and enforced in the resulting Solidity
smart contract. The table I presents a part of the mapping
between Alfa policy elements and corresponding Solidity
constructs.

TABLE I: Example of the used mapping between Solidity

contract MedicalRecordAccessControl is Ownable
{
struct MedicalRecord {
address owner;
}
mapping (uint => MedicalRecord) public
medicalRecords;
function canViewOwnRecords (uint recordId)

constructs and Alfa policy elements public view returns (bool) {
i __ MedicalRecord memory record = medicalRecords|[
Alfa Policy Element Solidity Construct recordId];
Namespace Contract Name if (msg.sender == record.owner) {
Attribute State Variable Struct Member .
PolicySet Contract or Library return true;
Policy Contract or Library }
Rule Function return false;
Target Clause Function Argument Condition in Function b
Boolecal(r)lng):g;;sion Cosgg::; 18;‘;;?;0“ Listing 8: Solidity Code Generated by Code Generator Using
Permit Return True Openzeppelin
Deny Return False

D. Code Generator

The Code Generator takes the intermediate representation
generated by the AST Transformer and produces the corre-
sponding Solidity smart contract code. In this step, the mapped
access control elements are used to generate Solidity code that
implements the access control policy. This involves generating
functions that enforce the access control policy by checking
the conditions associated with each access control element.
To ensure that security best practices are implemented in the
generated smart contract, the code generator incorporates the
OpenZeppelin library? for access control mechanisms. This
involves importing the relevant contracts from the library, such
as Ownable.sol or AccessControl.sol, and integrat-
ing them into the generated Solidity code.

Example:

For the intermediate representation generated in the previous
step, the Code Generator would produce the following Solidity
code while ussing Ownable contract from openzepplin:

pragma solidity ~0.8.0;
import "Qopenzeppelin/contracts/access/Ownable
.sol";

Zhttps://docs.openzeppelin.com/contracts/4.x/access-control

E. Limitations and Unsupported Features

The current implementation of the ASAC transpiler has few
limitations and does not support the full range of features
available in the Alfa language. Unsupported features include:

o Complex data types and nested conditions

o Functions in conditions and advanced features of condi-
tions

o User-defined roles and attributes

VI. EXPERIMENTAL RESULTS

This section discusses the experimental setup, test scenarios,
and results obtained from using the ASAC transpiler. The
experiments aim to evaluate the correctness, efficiency, and
usability of the generated Solidity smart contracts, as well as
the limitations of the transpiler. The source code of the ASAC
transpiler source code is shared on GitHub 3

A. Experimental Setup

The experiments were conducted on a machine with the
following specifications:

e Processor: Intel Core i7-7700K @ 4.20GHz

e Memory: 16GB DDR4

3https://github.com/bellaj1/ASACtranspiler




TABLE II: Evaluation Results for ASAC Transpiler

Test Description Correctness | Efficiency (Gas Consumption in Wei)
Policy 1 Simple Policy: A single rule allowing access for a specific role to a resource 1 1200
Policy 2 | Multiple Rules: Policy with multiple rules for different user roles and a specific resource 0.9 1500
Policy 3 Complex Conditions: Policy with rules containing complex conditions and logic 0.6 1300
Policy 4 Nested Policies: Policy with nested policy sets and multiple rules 0.65 1400
Policy 5 Large Policy: Policy with a large number of rules and different resource types 1 1200
Policy 6 Hierarchical Roles: Policy with rules addressing hierarchical role relationships 0.85 1600
Policy 7 Time-Based Rules: Policy with rules that consider time-based constraints 1 1200
Policy 8 | Attribute-Based Rules: Policy with rules that use multiple attributes for decision-making 1 1300
Policy 9 Deny Rules: Policy with rules that explicitly deny access based on certain conditions 0.90 1400
Average 0.87 1330

¢ Operating System: Ubuntu 20.04 LTS
o Solidity Compiler: Version 0.8.7
o Ethereum Node: Ganache CLI v6.12.2

B. Test Scenarios

To evaluate the performance and accuracy of the ASAC
transpiler, we have created several test scenarios representing
common access control policies. These scenarios include,
Basic access control with only permit/deny rules, Role-based
access control with user-defined roles, Attribute-based access
control with multiple attributes and others as represented in
table II

C. Evaluation Metrics

The following metrics are used to evaluate the performance
and accuracy of the transpiler:

o Correctness: The percentage of test scenarios in which
the generated Solidity smart contract correctly enforces
the access control policy defined in Alfa.

« Efficiency: The average gas consumption of the generated
Solidity smart contracts for different test scenarios.

The formula for calculating the correctness metric can be

expressed as:

NCO’I"”’EC
Correctness = —2"L % 100 (D
total

where Niopreet 18 the number of test scenarios in which the
generated Solidity smart contract correctly enforces the access
control policy defined in Alfa, and Ny, is the total number
of test scenarios.

D. Results

As shown in table II, the ASAC transpiler was able to
correctly translate most of the Alfa policies in the test sce-
narios, achieving a correctness rate of 0.87. However, certain
limitations were observed, such as the lack of support for
complex data types, nested conditions, and advanced features
of conditions and this is due to Solidity limitation structure.
The average gas consumption for the generated Solidity smart
contracts was found to be within acceptable limits (below 2000
gas), allowing for efficient deployment and execution on the
Ethereum blockchain.

The usability of the generated Solidity smart contracts was
found to be satisfactory, with well-structured code and clear
function naming conventions that facilitated their extension.

E. Discussion

The experimental results indicate that the ASAC transpiler is
effective in generating Solidity smart contracts for a majority
of access control policies. However, further development is re-
quired to support more advanced features of the Alfa language,
as well as optimize the gas consumption of the generated smart
contracts.

Future work could focus on extending the transpiler to
support complex data types, nested conditions, and advanced
features of conditions, as well as improving the efficiency and
usability of the generated Solidity smart contracts. In addition,
it would be worthwhile to investigate transforming access
control policies written in XACML, a complex language
commonly used for defining access control policies in various
settings, such as web services and cloud computing.

VII. CONCLUSION

We have presented the design, implementation, and eval-
uation of the ASAC transpiler, a tool for translating Alfa
access control policies into Solidity smart contracts. This tool
is especially important for individuals who have limited or no
knowledge of Solidity, as it enables them to express access
control policies in a familiar and user-friendly language while
still benefiting from the security and decentralization features
offered by blockchain technology.

Our experiments show that the transpiler is effective in
generating smart contracts that correctly enforce access control
policies for a majority of scenarios. The generated Solidity
smart contracts exhibit satisfactory efficiency in terms of gas
consumption and secure level of implementation. This research
represents an important step towards leveraging the power of
blockchain technology for secure and efficient access control
enforcement in distributed systems, bridging the gap between
non-expert users and the complex world of smart contract
development.
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