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Abstract

A key challenge in video anomaly detection is the identification of rare abnor-

mal patterns in the positive instances as they exhibit only a small variation

compared to normal patterns, and they are largely biased by the dominant

negative instances. To address this issue, we propose a weakly supervised

video anomaly detection model called NTCN-ML - Novel Temporal Con-

volutional Network Multi-Instance Learning Model. The NTCN-ML model

extracts temporal representations of video data to construct a time-series pat-

tern to optimize the multi-instance learning process. The model examines

the correlation between positive and negative samples in the multi-instance

learning process to balance the feature association between rare positive

and negative instances. The video anomaly detection with the NTCN-ML

model achieved 95.3% and 85.1% accuracy for UCF-Crime and ShanghaiTech

datasets, respectively, and outperformed the baseline models.
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1. Introduction

Video anomaly detection is a significant problem yet an active research

area in which models observe patterns that deviate from normal behavior,

which serves a crucial role in industrial production and transportation. There

are still some challenges and problem complexities that require advanced ap-

proaches to model the patterns in complex video data to identify outliers.

One main challenge is the recognition of positive instances or rare abnor-

mal patterns as they manifest only small variations compared with normal

events. In addition, rare positive instances are largely biased by the dominant

negative instances.

In the literature, supervised learning strategies are mostly used for learn-

ing abnormal patterns and normal events, which require manually-annotated

labels as learning signals [1]. However, in practice, it is challenging to acquire

annotated data for all types of anomalous events, and therefore, supervised

learning suffers from several disadvantages [2] such as, i) The boundary be-

tween normal and abnormal patterns is blurred in many video scenes. Thus,

the same event can produce different consequences in different scenes result-

ing in different classifications. ii) Anomalous video events are featured with

temporal properties, but deep learning usually ignores such features in repre-

sentation learning. iii) Anomalous patterns cover a wide range of situations

and it is unrealistic to define all patterns of anomalous events in a single

scenario.
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Figure 1: A representation of the spatiotemporal dimension of anomalous events.

To this end, researchers have turned to explore unsupervised learning and

weakly supervised learning models for video anomaly detection. Unsuper-

vised methods solely rely on normal events for model training and anomalous

events are identified by learning representation features and intrinsic patterns

of normal events [3]. Compared to unsupervised algorithms, weakly super-

vised learning algorithms rely on training samples with both normal and

anomalous events. The core of weakly supervised algorithms is the Multi-

Instance Learning (MIL)[4]. One assumption in MIL is that the optimization

in each training process always targets the negative instance in the abnormal

data. However, this assumption is unrealistic as it does not always learn

the right patterns, because there is no guarantee that the ranking loss from

different scenarios (pairs of normal data and abnormal data) always occurs

on the negative instances of abnormal data.

As shown in Figure 2, the error between normal instances and normal

instances in abnormal videos is larger than that with abnormal instances,

which will cause the model to learn in the wrong direction after training.
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Figure 2: Feature similarity analysis of positive and negative instances: A means abnor-

mal data, N means normal data. A1 represents normal instances in abnormal data, A2

represents abnormal instances, and N1 represents instances in normal data, SF represents

similarity of features between two instances and PAb is the probability of an anomalous

instance.

To mitigate the above issues, this paper proposes to use TCN network

to calculate the correlation between positive and negative instances, so as to

enhance the temporal characteristics of the model. Inspired by the literature

[5][6], which introduced an effective combination of temporal convolution net-

works and graph neural networks. In this paper, we consider the temporal

and spatial features as equally important factors in video anomaly detection

and propose a new weakly supervised video anomaly detection model, NTCN-

ML (a New Temporal Convolution Network for Multi-Instance Learning).

The NTCN-ML model examines the correlation between positive and nega-

tive samples in the MIL process to enhance temporal patterns. Positive and

negative correlation helps to balance the feature association between posi-
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tive and negative instances, and then construct a novel temporal feature to

optimize the MIL process.

Two main contributions of this paper are: i) We successfully introduce

a novel temporal convolutional network in a weakly supervised learning for

video anomaly detection and propose a novel video anomaly detection model

NTCN-ML which has optimized the temporal feature extraction and ii) We

show that the NTCN-ML model proposed in this paper can effectively learn

the potential patterns between anomalous events and normal events. The

experimental results on two widely-used benchmark datasets; 1) UCF-Crime

dataset - 95.3% accuracy and 2) ShanghaiTech dataset - 85.1% accuracy,

show that the performance of NTCN-ML reached state-of-the-art.

2. Background

Existing video anomaly detection models can be mainly divided into three

categories: supervised learning, unsupervised learning, weakly supervised

learning. Supervised models are limited by data collection, application sce-

narios, and low scalability[7]. Thus, unsupervised models and weakly super-

vised models have attracted more attention from researchers.

Unsupervised Learning Video Anomaly Detection

The core of unsupervised learning models is representation learning. Typ-

ically, representation learning and self-supervised learning utilize auxiliary

tasks to learn valuable features on their own. Future frame prediction and

reconstruction[8] are the most common auxiliary tasks. In 2018, Liu Wen et

al.[3] proposed an unsupervised video anomaly detection framework (encoder-

decoder structure) based on future frame prediction. In 2019, Dong Gong et
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al.[9] proposed a deep auto-encoding anomaly detection algorithm for mem-

ory storage aggregation, which proposed that due to the excellent representa-

tion ability of neural networks, the reconstruction error of anomalous events

is not always greater than the threshold. Their proposed model improves the

detection of abnormal events. In 2020, Hyunjong Park et al.[10] optimized on

the basis of anomaly detection tasks by combining with the U-Net network

to further limit the expressive ability of the neural network, and proposed

a video anomaly detection algorithm based on future frame prediction and

reconstruction. This method saves time and cost and further improves the

detection accuracy of abnormal events. In 2021 Zhian Liu et al.[11] proposed

HF2-VAD, a hybrid framework that seamlessly integrates stream reconstruc-

tion and frame prediction to handle video anomaly detection. Conditional

autoencoding and multi-layer memory modules are employed to learn and

store the intrinsic patterns of normal events. In 2022, Zaheer et al.[12] pro-

posed a novel unsupervised generative collaborative learning (GCL) method

for video anomaly detection, which exploits the low frequency of anomalies

to construct cross-supervision between the generator and the discriminator.

The method trains two branch networks simultaneously to promote overall

convergence. By learning to predict the missing frames of consecutive normal

frames, the model can effectively learn various normal patterns in the video.

Weakly Supervised Learning Anomaly Detection

During the training process of many weakly supervised learning video

anomaly detection algorithms, vanilla discriminators such as Convolutional

3D (C3D) [13] and Inflated 3D ConvNet (I3D) [14]), are used to extract

normal and anomalous samples from the video. A weakly supervised learning
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video anomaly detection model was proposed by Waqas Sultani et al. [15] in

2018, which first proposed to use C3D network to extract the video features

after clips and input the features into a MIL to calculate anomaly scores for

each instance.

In [16], authors proposed a weakly supervised learning scheme with an op-

timized loss function and adds the in-packet loss of the normal and anomaly

packets to the loss function. They initially used an ordinary temporal convo-

lutional network to optimize the input of the MIL. In [17], authors proposed

the first weakly supervised learning anomaly detection model for fusion graph

convolutional networks, which treats weakly supervised learning as denoising

and increases the weight of anomalous instances to improve the reliability of

the generated instance labels. Boyang Wan et al.[18] proposed a dynamic

MIL scheme, which selects only the k instances with the highest anomaly

scores to calculate the anomaly scores and reduces the distance of the in-

stance scores within the normal packet to improve the cohesiveness of nor-

mal events, thus improving the performance of the model. Didik Purwanto

et al.[19] introduced a temporal relationship network in a weakly supervised

learning anomaly detection algorithm to extend features to different scales

capturing both short-time dependencies and long-term dependencies. 2022

Huiyu Mu et al.[6] proposed a spatiotemporal mapping convolution-based

weak supervised learning anomaly detection model.

However, many previous models ignore the important influence of tempo-

ral features on video events. Even though some models try to combine tem-

poral convolution or graph convolution networks to improve the performance

of the model, they do not achieve considerable results. Hence, we propose
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a weakly supervised learning detection model combining a novel temporal

convolutional network, which is divided into two parts. The first part is a

temporal convolutional module, which inputs the vanilla features of the video

data and outputs a two-dimensional vector indicating its confidence rate of

belonging to two categories. Second, in the MIL module, the confidence rate

and vanilla features are simultaneously input to the MIL network. A novel

weakly supervised learning video anomaly detection model is constructed.

3. Methodology

This section explains a weakly supervised learning video anomaly de-

tection model called NTCN-ML (a New Temporal Convolution Network for

Multi-Instance Learning). In general, in the training process of paired data,

when the model learns the features of sequential data, the positive and neg-

ative instance usually contain a large amount of similar content. Taking the

premise that there is a large amount of similar content between positive and

negative instance. In the negative samples, the spatio-temporal region where

the anomalous events occur only accounts for a very small portion of the

entire video, as exemplified by the 23rd video in the Vandalism subcategory

in the UCF-Crime dataset [15]. As shown in Figure 1, measured in the time

dimension (x-axis), the data unit Vandalism 23 for example, the video lasts

about 210 seconds, but the time of the anomalous event occurs lasts only

18 seconds. It is about 8.6% of the whole video. Second, compared to the

spatial dimension, the region where the anomaly occurs occupies only a very

small number of pixels of the video frame. Figure 1 illustrates that the distin-

guishing features of abnormal instances in negative samples are not distinctly
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prominent. Consequently, achieving accurate optimization of abnormal in-

stances during training becomes challenging. As a result, the optimization

of MIL may be steered in the wrong direction. Therefore, it is crucial to

enhance the discriminative characteristics of positive and negative instances

in the feature space by calculating the correlation between normal instances

and abnormal instances in negative samples.

3.1. Temporal Convolutional Networks

1. Design principles

Temporal Convolutional Networks are derived from Time Series Net-

works. Time series learning networks usually need to follow two principles

[20]: (1) The input and output structures of the network should be the same;

(2) The features of the current time node are not disturbed by the features

of the next time node. The former is used to ensure that in the process of

information mining, the sequence feature information will not be reduced

and guarantee to extract high-quality representation features. The latter is

to comply with objective facts. In the training process when using sequence

data, since the complete sequence data has been obtained, the learning model

can access the features after the current time node without obstacles. Dur-

ing the application process, the sequence data located after the current node

cannot be accessed. Therefore, when designing the learning network struc-

ture, we should proceed from practical problems. That is, during the training

phase, only the current node is provided with the features of its previous time

nodes.

2. Feasibility of retrofitting traditional temporal convolutional

networks
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In the traditional TCN(Temporal Convolutional Networks) structure, the

convolutional network serves as the basic structural unit for extracting tem-

poral features, and there is no aggregation mechanism or large memory

module. The traditional TCN model has one-dimensional full convolutional

structure[21], and the full convolutional structure ensures that the newly

introduced network structure follows the first principle of temporal convo-

lution, i.e., each hidden layer has the same length as the input layer and

only the same input and output lengths are satisfied. However, this struc-

ture cannot store valid antecedent information and the posterior information

may negatively affect the current features in the full convolutional network

structure. Therefore, a novel TCN conforming to the second principle is

proposed by Cheng et al[22], which consists of a fully convolutional network

and a cascaded network. (TCN = 1DFCN + CausalConvolutions). The

structure of this network implemented using cascading convolution, which

uses the features of the same position of the previous layer and the features

of its previous position to calculate the features of the current position. This

temporal convolutional network conforms to the second principle that the

features of the current time node are not disturbed by the features of the

next time node, and the model provides stronger theoretical support when

dealing with sequential data, such as text data, and video data.

However, this structure also has a major disadvantage, where the sequence

of a video data is long and the features of the next layer are being calculated.

If all the information before the node in the previous layer is considered as

a calculation factor, which will need a very deep network or a very large

filter. There is a possibility of parameter explosion, and information that is
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too old can also negatively affect the information of the current world nodes

and reduce the quality of the extracted features. The existing video detec-

tion models usually use graph convolution or LSTM to store the sequence

features (temporal features) of video data to complete the detection[23]. It

mainly obtains indirect temporal features by LSTM and graph convolution.

There is no strict definition and learning of temporal feature information of

sequences. Since the convolutional network has a greater ability to scale[24],

the performance of convolutional networks is improving in the learning task

of sequence models. Based on this, this work introduces the dilated cas-

cade technique into modern convolutional networks and implements a novel

temporal convolutional network.

3 The Proposed Novel Temporal Convolutional Network

The proposed TCN consists of Dilated Causal Convolutions (DCC) and

residual networks, and the cascaded dilated convolution layer is shown in

Figure 3.a. The DCC model was previously mainly used in the field of NLP

to increase the perceptual field of view and reduce the computational effort by

setting the dilation rate. The residual block network is composed of a series

of residual blocks, which is often used to solve the problem of decreasing

feature information and increasing training loss caused by the network depth

[25]. Its core function can be defined as XT+1 = XT + F (XT ), where XT

denotes the current feature value and F denotes the cascaded convolution

function.

Previous studies [26] have shown that TCN models outperform general-

purpose recurrent architectures such as LSTM and GRU, and shown that

the ”infinite memory” advantage of RNN is basically non-existent in practice.
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Compared to recurrent architectures, TCN exhibits longer memory and wider

convolutional horizons. In recurrent convolutional networks, many advanced

schemes for regularizing and optimizing LSTMs have been proposed [27].

These schemes significantly improve the accuracy achieved by LSTM-based

architectures on certain datasets. However, in the past two years, before

the introduction of architectural elements such as dilated convolution and

residual connections, the performance of convolutional architectures did not

meet the needs of applications. Simple convolutional architectures are more

effective than recurrent architectures such as LSTMs in various sequence

modeling tasks. Due to the considerable clarity and simplicity of TCNs,

convolutional networks should be seen as a natural starting point and a

powerful toolkit for sequence modeling. Video data has sequence properties.

In theory, any sequence data can be used to extract temporal features using

the TCN model. The proposed TCN network [28] provides an important

technique for mining the feature information of video sequences.

3.2. Extraction of Temporal Features of Video Sequences

The proposed TCN network is used to extract the features of

the video sequence. This process is mainly divided into three steps: 1)

Train vanilla discriminator C3D or I3D to extract the action features of

the video data; 2) Input the features extracted by the vanilla discriminator

into the new TCN network to extract high-quality temporal features , the

steps of this process refer to Figure 3.b. The TCN network introduced in

this paper ensures the extraction of high-quality features through multi-layer

concatenation and single-layer convolution; 3) According to the final tempo-

ral characteristics of the video, set the activation function to identify the
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Figure 3: The structure of TCN and Application, (a) The proposed Temporal Convolu-

tional Network structure, under d = 2, k = 3, the input is X = x1, x2, x3. . . , xT , k = 3

means that three upper-layer neurons map a neuron of the current layer, d = 2 means that

the step size; (b) The novel TCN application in video processing. The red line represents

the feature of the current node to be extracted, the blue line represents the feature of

the previous node, and the red curve represents a 1x1 convolution unit that retains the

most original features of the current node, and the output of the TCN is z, which is the

probability value that the input node is an abnormal instance.

video, and calculate the confidence of normal events and abnormal events.

The formalization process and the Qualitative Analysis of the

NTCN-ML network:

Consider a video δ is divided into multiple segments δCi , where (i ∈

0, 1, 2, 3. . . I). The features extracted from the C3D network is represented

by: Xi = ϕvanilla(δ
C
i ). Consider all video clip features belonging to the same

data unit as a sequence of data X1, X2, X3, X4, ..., XI , where I represents the

number of clips used, the first layer of the hidden layer of the TCN is repre-

sented as X1, and the sequence is represented as X1 = X1
i |i = 1, 2, 3, . . . , I,
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the calculation process:

X1
i = F (

∏t=k−1
t=0 (Xi−td)) (1)

as shown in Figure 3.b, when k = 3, d = 1; then δ1i = F (δi·δ(i−1)·δ(i−2)),

where F represents the convolution function, k represents the kernel during

mapping The number, d represents the step size, that is, the distance between

two kernel units and so on for the rest of the nodes. The final output of the

network structure of the output unit:

Output = Activate[(δ1, δ2, . . . , δI) + F (δ1, δ2, . . . , δI)] (2)

Since the video is only divided into normal events and abnormal events,

we set the output unit to two node, namely Output = Z(z1, z2). z1 represents

the probability that the video unit belongs to normal video, and z2 represents

the probability that the video unit belongs to abnormal video. If the normal

video contains elements in some abnormal events, the value of z1 is more On

the contrary, if the abnormal video contains a large number of normal video

elements, the value of z2 is low. Use the formula X̂ = max(z1, z2) · Xi to

construct a new video sequence feature. For normal video δn, it belongs to

the probability of a positive sample ismax(zn1 , z
n
2 ), and for abnormal video δa

its probability belonging to a negative sample is max(za1 , z
a
2), then the new

feature of normal video X̂n = max(zn1 , z
n
2 ) ·Xn the new feature of abnormal

video is expressed as X̂n = max(za1 , z
a
2) ·Xa. The principle it follows is that

for any input video feature, only the possibility of max(z1, z2) belongs to

its true category, and the probability of min(z1, z2) will cause misjudgment.

There are many factors that cause misjudgment, such as feature entangle-
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ment between positive and negative samples, the limitation of neural network

learning ability, etc. Excluding uncontrollable factors (a perfect neural net-

work does not exist in practical applications), this work enhances the ability

to determine abnormality by improving the separation characteristics be-

tween positive and negative samples. Therefore, this work proposes to use

disentanglement to improve the performance of instance learning. The pro-

cess of MIL is a paired training process in which a normal video sample and

an abnormal video sample are included, and the probabilities of the normal

video and abnormal video belonging to positive and negative samples are

different. We have experimented with a variety of new feature calculation

methods, and the currently proposed feature calculation method shows a

stronger detection performance (here, za2 is not directly combined with neg-

ative samples, or zn1 is combined with positive samples, considering that the

TCN also exists in the case of misjudgment, we cannot obtain its specific

label in advance during the test).

3.3. The NTCN-ML Based on Temporal Convolutional Network Guidance

3.3.1. The proposed NTCN-ML model

A weakly supervised video anomaly detection model based on tempo-

ral convolutional network guidance is proposed in this paper. The model

uses a novel temporal convolutional network to extract the temporal fea-

tures of video data and calculates the confidence of the samples. The overall

framework is shown in Figure 3. The model also uses the classic vanilla dis-

criminator (C3D - Convolutional 3D, I3D - Inflated 3D ConvNet) to extract

the features of the video and combines the obtained confidence with C3D or

I3D features to form new input features. Then through the MIL network,
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Figure 4: The NTCN-ML framework: The model training process is divided into two

phases. The first phase is composed of a vanilla discriminator and novel TCN. The training

purpose of this phase is to extract temporal features; the second phase is composed of a

vanilla discriminator and TCN. The MIL training is composed of the MIL network, and

the novel TCN, this stage is to improve the classification ability of the MIL network.

the final abnormal probability of each instance is calculated; according to the

abnormal probability, a loss function is constructed to train the parameters

of the MIL. At the same time, the confidence of the video is also involved in

the calculation of the abnormal score during the testing process. The NTCN-

ML model proposed extracts temporal features through a novel TCN model

and enhances the ability of MIL to learn instance labels. Compared with the

mainstream algorithms, the NTCN-ML model has a more scientific and effec-

tive consideration of temporal features and has stronger robustness. Figure

3 shows the data processing flow of the proposed NTCN-ML model. We dis-

cuss model training, loss function, model testing, and algorithm complexity

analysis during operation in the following sections.
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3.3.2. The Training Phase

The training process is divided into two parts. One is to train the tem-

poral convolutional network. The second is to train a MIL network. The

function of the testing phase is to calculate the anomaly score of each in-

stance in the video and locate the time area where the anomaly occurs.

Training the temporal convolutional network is divided into three

steps, 1. Input the video clips into the vanilla discriminator to extract fea-

tures; 2. Input the extracted features into the designed temporal convolu-

tional network (usually select more than 32 clips); 3. Output A 2D array

predicting video classification. This two-dimensional array represents the

probability that the video belongs to normal events and abnormal events.

The formalization process is as follows: X represents a video, which is

divided into multiple segments Xi, (i ∈ 0, 1, 2, 3...I). Each video segment

is called an instance, because sets 16 frames is a segment, so I = Fn/16,

Fn is the total number of frames in the video. χ is extracts the features

of the video segment XC
i by vanilla discriminator ϕvanilla vanilla is belongs

I3C,C3D. The TCN function is denoted by fTCN . The final output is

represented as:

z = fTCN

I∑
i=0

χ = fTCN

I∑
i=0

ϕvanilla(Xi) (3)

z represents a two-dimensional vector, where z1 represents the probability

that the video belongs to a normal video, z2 represents the probability that

the video belongs to an abnormal video, the label of the video is ℏ, the label

of normal video is 0, and the label of abnormal video is 1, If the video is a

normal video, its label is (0, 1), otherwise it is (1, 0) at the phase of TCN
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training. So the loss of TCN is:

lossTCN = Z − ℏ,

 normal ℏ = (0, 1)

abnormal ℏ = (1, 0)

(4)

The training of the multi-instance anomaly detection algorithms

is divided into four steps. 1. Use the vanilla discriminator to extract video

features; 2. The extracted features are input into the pre-trained temporal

convolutional network and output a two-dimensional tensor vector; 3. The

inner product of the large value and the video feature matrix constructs new

video features; 4. The new video features are input into the MIL network,

and the abnormal probability of each instance is calculated.

The formalization process is as follows: randomly select the extracted

C3D feature χ = ϕvanilla(Xi) of a fixed length T (fixed number of instances)

and the largest value dot product in the output z of the TCN trained in the

first phase. Get new video features:

χ̂ = z · χ = fTCN(
I∑

i=0

ϕvanilla(Xi)) · χ (5)

During the learning process of the multi-instance algorithm, normal videos

and abnormal videos are input to the neural network in pairs. We use χn n to

denote the features of normal videos, χa to denote the features of abnormal

videos and the MIL is denoted as fMIL.

Y = FMIL(χ̂n, χ̂a) (6)

Where Y = (Ya, Yn), Ya = (ya1 , y
a
2 , y

a
3 , ...y

a
T ) represents the abnormal prob-

ability of all instances in the abnormal video package, Yn = (yn1 , y
n
2 , y

n
3 , ...y

n
T )
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represents the abnormal probability of all instances in the normal video pack-

age.

3.3.3. Loss function

The loss function of MIL consists of four parts: ranking loss Lranking,

smooth loss Lsmooth, sparse distribution loss Lsparsity, aggregation loss Lcluster.

The ranking loss represents the difference between the highest abnormal

probability in the normal video package and the highest abnormal proba-

bility in the abnormal video package at the training process. So the Ranking

loss function is expressed as:

LRanking = ||max(Ya)−max(Yn)|| (7)

The video is composed of multiple video clips and is sequence data. There-

fore, the distribution of abnormal probability should be smooth, and the

smooth loss indicates that the occurrence of abnormality in the video se-

quence is promoted by a process. The smooth loss function is expressed

as:

LSmooth = λ1

T−1∑
i=0

||yai+1 − yai ||2 (8)

Loss of sparse distribution. In abnormal video, the time of abnormality

only accounts for a very small part of the entire video data, so the average

abnormal probability of the entire abnormal video is slightly higher than the

average abnormal probability of normal video. The sparse loss function is

expressed as:
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Lsparsity = λ2

T∑
i=0

||yai − yni ||2 (9)

Aggregation loss: The difference between the maximum and minimum

values of each instance in the video packets of normal events is not much

different. On the contrary, the difference between the maximum value and

the minimum value of each instance in the video package of the abnormal

event is relatively large. So the aggregation loss is expressed as:

Lcluster = λ3(1 +max(Yn) +min(Ya)−max(Ya)−min(Yn)) (10)

The total loss function is expressed as:

L = Lranking + Lsmooth + Lsparsity + Lcluster (11)

3.4. The Anomaly Detection Phase

The anomaly detection phase is to describe the detection process of video

data that cannot obtain any labels during the test process. The whole process

is carried out unsupervisedly. In the detection stage, the algorithm complex-

ity of video anomaly detection is also an important indicator for evaluating

models.

3.4.1. Steps of detection

The steps in the anomaly detection phase are divided into five steps.

The first step: preprocess the video data, divide the video into multiple

video segments, and use the vanilla discriminator to obtain the feature (C3D,

I3D) of these segments; The second step: input the feature into the trained
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TCN model, obtain the temporal feature and calculate confident level; The

third step is to compare the confidence value with the previous one. Feature

combination to construct new video features; The fourth step: the video

features are input into the MIL, and the anomaly probability of each instance

is calculated. In the fifth step, the abnormal probability of each instance is

combined with the confidence of the video to obtain the abnormal score. The

calculation of the anomaly score, the anomaly score is composed of the last

instance anomaly probability, loss, and confidence.

Score = z · y + γ1(δy) (12)

The pseudocode of the anomaly detection phase is presented by Algorith-

mic 1:

Algorithm 1 Anomaly Detection

1: Initialization:fTCN , fMIL, ϕvanilla, Pre-trained TCN network, MIL net-

work and C3D vanilla discriminator;

2: χ = ϕvanilla(X), Extract features from video clip X;

3: Z = fTCN(χ), Calculate the confidence of the video X Equation (3);

4: Y = fMIL(Z · χ), Calculate the anomaly probability of labels for each

segment of the video Equation (6);

5: Yvar = variance(Y ),Calculate the volatility of video anomaly probability;

Equation (12)

Output: Anomaly score={λ1Yvar + Z · Y },

Calculate anomaly scores.
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3.4.2. Algorithm complexity analysis in the detection process

The training phase only happens before the model is deployed, so only

the algorithmic complexity of the detection process needs to be considered:

The complexity of the temporal convolutional network model: for a video

sequence, extract T segments, input the TCN model to classify the video

sequence, the algorithm complexity depends on the number of input segments

T , the dimension of the feature F of each segment d, the number of hidden

layer nodes, the number of hidden layers L, the number of kernels k in

the TCN model, the stride ds, and finally the category C. First, map the

extracted features F to the first hidden layer, and each k feature is mapped

to a unit.

OTCN = (O(ϕvanilla) · k · T )L · C (13)

where C is a 2-category, normal or abnormal, and T is the number of

segments, which usually also refers to the number of hidden layer nodes.

According to past experience, 32 or 64 are usually chosen, so the algorithm

complexity mainly depends on the level of the network and the number of

nodes. The complexity of the MIL model: In the MIL process, the input unit

usually consists of a feature sequence δn from normal videos and a feature

sequence δa from abnormal videos. Each feature sequence contains T feature

segments, and the MIL usually consists of three fully convolutional layers

(l1, l2, l3)

OMIL = O(Fd(δ
n) + Fd(δ

a)) · (l1 + l2 + l3) = O(2Fd · T )
3∑

i=0

li (14)
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Therefore, in actual operation, the total algorithm complexity is:

O = (O(ϕvanilla) · k · T )L · C +O(2Fd · T )
3∑

i=0

li (15)

The above formula shows that the algorithm complexity mainly depends

on the number of hidden layers of the neural network and the number of

nodes in each layer. This result provides guidance for the design of temporal

convolutional network models.

4. Experiments

4.1. Datasets

There are two commonly used datasets for weakly supervised video anomaly

detection algorithms, namely UCF-Crime and ShanghaiTech datasets, which

also is the benchmark datasets. So we validated the proposed model with

these two datasets. Table 1 displays the data distribution of the two datasets,

revealing that despite the UCF dataset containing an equal amount of nor-

mal and abnormal data, the distribution of training and testing sets is imbal-

anced. Furthermore, during the data reading process, intentional disruption

of the sorting of normal data is implemented to enable meaningful compari-

son and learning between abnormal data and a larger set of normal data

UCF-Crime [15]: is a large-scale dataset consisting of the most primi-

tive surveillance videos. It has a total of 1810 videos, about 200G. Contains

13 common real-world anomalies including abuse, arrest, arson, assault, ac-

cident, burglary, explosion, fight, robbery, shooting, theft, shoplifting, and

vandalism. The videos are divided into two parts, a training set consisting

of 800 normal videos and 810 abnormal videos.

23



Table 1: Dataset Overview: Nor and Abnor are normal and abnormal videos; Atype is the

number of abnormal types; N/A denotes the number of normal videos / abnormal videos

Numbers Total Nor Abnor ATypes Train(N/A) Test(N/A)

UCF Crime 1700 950 950 13 810/800 140/150

ShanghaiTech 437 330 107 13 175/63 155/44

(a) (b)

Figure 5: The distribution of the ShanghaiTech dataset, (a) denotes the abnormal distri-

bution of abnormal data entries(63 videos) in training, x-axis represents the video number

and y-axis represents the total number of frames. Yellow colour is the location for abnor-

mal frames; (b) denotes the abnormal distribution of abnormal data entries in testing for

44 videos.

ShanghaiTech [3]: is a medium-sized dataset of 437 videos with an

average of 726 frames per video. The dataset, collected and published by

ShanghaiTech University, contains 130 anomalous events in13 scenarios. To

make it suitable for evaluating weakly supervised binary classification meth-

ods, Zhong et al.[17] split the data into two subsets: a training set consisting

of 175 normal videos and 63 abnormal videos. As shown in Figure 5:

4.2. Experiment Details

The core elements in our implementation process include the following

steps: 1. When extracting video clips, take 32 video clips equally spaced
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Table 2: The TCN classification performance analysis under the UCF-Crime

UCF-Crime(C3D) 32 64 96

32*8 85.1 85.3 84.9

64*8 86 85.1 85.2

128*8 84.8 84.3 84.4

from a video sequence as an example; 2. The extracted C3D and I3D fea-

tures are stored in numpy format to speed up the training; 3. During the

implementation of the TCN network, the core size is still 7, and the number

of input channels is 32 for the number of instances of a video. In order to

prevent overfitting, The hidden layer of the TCN network used in our work

is (32*8), a total of 8 layers, and each layer has 32 nodes; 4. The MIL con-

sists of (512, 32, 1) three-layer fully connected convolutional networks. The

evaluation index refers to the literature of this series, with AUC as the main

evaluation index[29].

4.3. Experimental results

The experiments are set in three groups. The first group examines the

classification performance of the TCN network and obtains the TCN network

structure with the best performance. The second group is the AUC evalua-

tion experiment for video anomaly detection. The purpose of this experiment

is to measure the performance of the model proposed. The last group is the

visualization experiment, the main purpose of which is to promote the im-

portant evaluation method for the model to transfer from the experimental

scene to the application scene.

The experimental results indicate that with the increase in the number of

divided segments, the classification accuracy of TCN does not show a linear
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increase. Through the analysis of the dataset, it is inferred that this is due

to the ”invalid filling” caused by the different time lengths of each video in

the data. The reason for data padding is that the duration of some videos is

too short to meet the number of divisions, and it is necessary to repeatedly

borrow some video clips and video frames to construct a specified number

of clips. As an example, 32 video clips are divided into 16 frames, and the

total number of video frames of each video cannot be less than 512. Through

the analysis of the data set, only a few videos have a total number of frames

less than 512. But if the video clip is 64, there are nearly 12% of the data

cannot fit into 1024 frames, and therefore overfitting occurs and the detection

accuracy decreases. Hence, we decided to use 32 fragments as a reasonable

number in our experiments.

4.3.1. Experiment 2: AUC comparison with state-of-the-art models

The purpose of this experiment 2 is to compare the AUC accuracy of the

algorithm proposed with the current mainstream algorithms.

In this process, we first train a novel temporal convolutional network.

The output value is the probability that the input video belongs to normal

video and abnormal video. After completing the TCN model training, input

the feature to MIL model. First, divide a video into multiple segments and

extract features; second, extract features of a fixed number of segments as

input, and the number of segments is the number of input channels; third,

input features to the TCN model, calculate the probability; The fourth step

is to take the larger value in the two-dimensional array and perform the point

multiplication operation with the extracted features, and then input it into

the MIL model to calculate the abnormal probability of each segment.
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Table 3: Accuracy test of current mainstream algorithms on the UCF-Crime dataset

Method Source Technique Performance (AUC)

Sultani et al[15] CVPR18 C3D 75.41

TAEDM[30] SCN20 ResNet 78.51

TCN-IBL[16] ICIP19 TCN & IBL 78.66

Zaheer et al[31] SPL21 Self-Reasoning 79.54

GCN-AD.[17] CVPR19 GCN & Action Classifier 82.12

XD-Violence[32] ECCV20 Holistic-Localized Networks 82.44

CLAWS[33] ECCV20 Clustering 83.03

SACRF[19] ICCV21 Relation-Aware 85.00

RTFM[34] ICCV21 Feature Magnitude 84.03

STGCNs[6] IPM22 Spatio-temporal GCN 84.2

BN-SVP[35] CVPR22 Bayesian 83.39

Ours Novel TCN 85.1

Table 4: Accuracy test of current mainstream algorithms on the ShanghaiTech dataset

Method Source Technique Performance (AUC)

TCN-IBL[16] ICIP19 TCN & IBL 83.5

Zaheer et al.[31] SPL21 Self-Reasoning 84.16

GCN-AD[17] CVPR19 GCN & Action Classifier 84.44

CLAWS[33] ECCV20 Clustering-Based 89.67

AR-Net[18] ICME20 AR Network 91.24

TAEDM[30] SCN20 ResNet 94.2

MIST[36] CVPR21 Self-Guided Attention 94.83

BN-SVP[35] CVPR22 Bayesian 96.0

Ours Novel TCN 95.3
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Table 3 results show that the first list shows that the algorithm proposed

in this paper has achieved an accuracy of 85.1% on the I3D features of the

UCF-Crime dataset, which has reached the most advanced accuracy. In

addition, in order to test the classification performance of the TCN network,

extracts the C3D features from the original video to analyze the performance

of the TCN, see Experiment 1 for details.

Table 4 shows that the AUC accuracy of the model proposed has reached

95.3%. Compared with the current most mainstream algorithms, the algo-

rithm proposed has surpassed the performance of most published mainstream

algorithms. Through the experimental results of the two data sets, it is con-

cluded that the correlation between normal data and abnormal data is also

an important consideration in the process of abnormal detection. The model

proposed overcomes the above two shortcomings.

4.3.2. Experiment 3: Ablation Study

To test the model’s capability, we conducted two sets of ablation experi-

ments: An ablation study and a Loss Function Study. The former involved

training and testing different components of the TCN model independently to

confirm their effectiveness. The latter involved combining various loss func-

tions during training to examine their impact on performance. Our aim was

to verify the impact of different loss functions on the model’s performance.

The Ablation study conducted in this paper involves the verification of

the model with two datasets (UCF-Crime and ShanghaiTech) using C3D and

I3D to independently extract video features and input them into MIL train-

ing. Additionally, The model training is divided into four groups, namely

I3D+MIL, C3D+MIL, I3D+TCN+MIL, and C3D+TCN+MIL, and the per-
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Table 5: Ablation study: Divided two datasets into four groups: I3D+MIL, C3D+MIL,

I3D+TCN+MIL, C3D+TCN+MIL, to evaluate the TCN module.

I3D C3D TCN AUC

ShanghaiTech

✓ ✓ 0.953

✓ ✓ 0.883

✓ 0.861

✓ 0.853

UCF Crime

✓ ✓ 0.851

✓ ✓ 0.782

✓ 0.823

✓ 0.761

formance was calculated for each group as shown in Table 5.

Table 5 shows the results of the ablation experiments. The results show

that the TCN module used in this paper can effectively improve the accuracy

of the model on the benchmark. On the ShanghaiTech datasets, compared

with the benchmark I3D+MIL, the model proposed in this paper has im-

proved by 9%. Compared with the benchmark C3D+MIL, the model has

improved by 3%; For the UCF-Crime dataset, compared with the bench-

mark I3D+MIL, the model has increased by 3%, and compared with the

benchmark C3D+MIL, the accuracy rate has increased by 2%. It shows that

the TCN module proposed in this paper is effective

In the study of loss function, this paper uses the ranking loss function

as the benchmark, and cooperates with several other novel loss functions to

test the performance of the model in two data.

Table 6 shows that when there are more types of loss functions combined,

the performance tends to increase slowly. Among them, the Lsparsity loss has
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Table 6: The Study of Loss Function: Set different loss function combination modes to

explore the impact of different loss functions

I3D+TCN+MIL Lranking Lsparsity Lsmooth Lcluster AUC

UCF-Crime

✓ 0.836

✓ ✓ 0.837

✓ ✓ ✓ 0.847

✓ ✓ ✓ ✓ 0.851

ShanghaiTech

✓ 0.911

✓ ✓ 0.913

✓ ✓ ✓ 0.927

✓ ✓ ✓ ✓ 0.953

a general effect on improving the model performance, and the loss Lsmooth and

Lcluster have a greater impact on performance. big. The experimental results

show that the l cluster loss function is helpful for performance improvement.

4.3.3. Experiment 4: Visual display during anomaly detection.

In the testing phase, outliers for anomaly detection are constructed from

the output of the pretrained TCN network, the output of the MIL model,

and the loss function.

The results of experiment 4 show that when an abnormal event occurs

in a video, the abnormal score will fluctuate violently (the abnormal score

is generated after normalization), so the fluctuation of the abnormal value

can be used as the identifier of an abnormal occurrence. Second, the results

in figure 6 (b) show that for long-lasting abnormal events, the fluctuations

of outliers will be abnormal, resulting in inaccurate detection results. The

reasons for this problem mainly come from two aspects: 1. C3D and I3D

motion capturers tend to capture short-term actions; the action extractor is
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(a)

(b)

Figure 6: Visual effects of the anomaly detection phase, (a) the detection results of anoma-

lous events with a short duration, (b) the detection results of anomalous events with a

longer duration d, the yellow line indicates the correctly detected samples, and the red

line indicates the detection results is wrong.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7: Visual effects of the anomaly detection phase. Red is the area where real

anomalies occur, and the curve is the anomaly score.

training in Sports1M, and the action duration of this data set is relatively

short. Therefore, the action capture used to preprocess the data set is more

favorable for the short duration. 2. Video instance division and the genera-

tion of instance outliers do not meet the actual situation of long-term actions.

During the experiment, 16 frames are usually delineated as an instance, and

there are also cases where the duration is shorter. We hope that follow-up

research in this paper can optimize this problem. Overall, the visual effect

of this paper is better than other models. Figure 7 is a supplement to the

visual experiment. In order to show the experimental effect more clearly, the

video data is divided into 32 instances for calculation.
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5. Conclusion and Future Work

This work proposes a novel weakly supervised anomaly detection model

(NTCN-ML), a new Temporal Convolutional Network (TCN). The NTCN-

ML model shows an excellent performance in temporal information mining

and provides high-level temporal feature information for weakly supervised

learning. The advantage of the NTCN-ML model is that it can enhance

temporal features for the entire video sequence, which is different from other

related works as they calculate temporal features in segments, and redefine

the integrity and coherence of temporal features of video data. Our experi-

mental results show that the NTCN-ML model learns the potential patterns

from both anomalous and normal events, and outperformed the baseline

anomaly detection models considered in this work. The algorithm presented

in this research paper introduces a novel approach for video anomaly detec-

tion algorithms, delving into the distribution of data within the feature space

in weakly supervised algorithms, and optimizing the process of weakly su-

pervised learning. Furthermore, the proposed model can be seamlessly inte-

grated into other systems, enhancing the algorithm’s robustness in real-world

applications. However, this paper is subject to certain interpretability limi-

tations. It is expected that future research in the domain of video anomaly

detection will primarily focus on improving interpretability. The applica-

tion of relational triples in NLP represents a promising approach to provide

semantic explanations of anomalous events, which is therefore expected to

become a primary area of investigation.

In the future, we will asses whether the temporal features extracted from

the video sequences align with real-world scenarios, and how the integrity
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and coherence of temporal features affect video data analysis. We will also

evaluate whether the integrity of temporal signatures has positive implica-

tions with both unsupervised and supervised models. Based on the current

work, we will further try to define a new anomaly definition in which anoma-

lous events are deeply associated with global temporal signatures. This will

certainly help to integrate temporal video analysis patterns in real traffic

scenarios.
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