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Abstract
Multi-view data obtained from different perspectives are becoming increasingly available. As such, researchers

can use this data to explore complementary information. However, such real-world data are often incomplete. Existing
algorithms for incomplete multi-view clustering (IMC) have some limitations, such as the ineffective use of valuable
information hidden in the data, oversensitivity to model parameters, and ineffective handling of samples with incom-
plete views. To overcome these limitations, we present a novel algorithm for incomplete multi-view clustering using
Non-negative matrix factorization and a low-rank tensor (IMC-NLT). In particular, IMC-NLT first uses a low-rank
tensor to retain view features with a unified dimension. Using a consistency measure, IMC-NLT captures a consistent
representation across multiple views. Finally, IMC-NLT incorporates multiple learning into a unified model such that
hidden information can be extracted effectively from incomplete views. We conducted comprehensive experiments on
five real-world datasets to validate the performance of IMC-NLT. The overall experimental results demonstrate that
the proposed IMC-NLT performs better than several baseline methods, yielding stable and promising results.

Keywords: Incomplete multi-view clustering, low-rank tensor, consistent representation

1. Introduction

With the development of data acquisition technology, sources and types of data are becoming more diverse. The
collected data were characterized by multiple views. Complex data features can be better understood by fusing
information from multi-view data. A common approach is multi-view clustering. The basic idea of this type of
approach is because multi-view data are strongly related and complementary to each other in different ways(Wang
et al., 2015a; Li et al., 2017; Zhang et al., 2021; Shi et al., 2022; Si et al., 2022; El Hajjar et al., 2022; Hu et al.,
2021; Wong et al., 2019). However, not all data will contain complete multi-view data. We consider land data as an
example, often consisting of data with different views, such as symbols, text, and graphics. In reality, some land data
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may have the format of graphics, but lack text or symbols. As such, incomplete multi-view data were formed (Wang
et al., 2018). That is, a dataset has an arbitrary loss of view with only some instances containing all views.

Specifically, incomplete multi-view clustering methods can be roughly grouped into four categories. Based on a
filling strategy, the methods of the first category (Shao et al., 2015; Xu & Tao, 2015; Liu et al., 2019; Shao et al.,
2016) usually start by selecting a suitable padding algorithm and then applying existing multi-view learning methods
to incomplete multi-view datasets populated by padding algorithms. For example, Shao et al. (Shao et al., 2015) first
filled incomplete samples by averaging the eigenvalues and using regularised weighted non-negative matrix decom-
position to learn a subspace. The methods in the second category (Tao et al., 2019; Yin & Sun, 2022; Zhao et al.,
2016; Quanz, 2012; Yin et al., 2017) ignore incomplete view information in the process of learning potential repre-
sentations. Quanz et al. (Quanz, 2012) pushed clustering solutions for different views from the same example to the
standard membership matrix to simultaneously generate the underlying geometric structure of the views. Learning
from a single view, the third method (Yuan et al., 2012; Eaton et al., 2010) attempts to learn a unified model for all
views. Yuan et al. (Yuan et al., 2012) built a separate classifier for each data source. This model learns different
base classifiers for different data sources. Based on a classifier, the method uses a single column of prediction scores
to represent each source and then combines the estimated incomplete prediction scores with the available prediction
scores. Thus, a multi-source fusion model was built. The methods of the last category (Xie et al., 2021; Cai et al.,
2018; Zhao et al., 2018; Xu et al., 2019) use deep models for incomplete multiview clustering. For example, Tran
et al. (Tran, 2017) proposed a cascaded residual autoencoder (CRA) to complement the incomplete multi-view. By
stacking the residual autoencoders, the residuals between the current prediction and the original data were obtained
by iterative simulation of the algorithm.

Although many methods have been proposed to address the incomplete problem of multi-view clustering, they
have some limitations. For example, as mentioned by (Wen et al., 2020), the first limitation is that most approaches do
not make full use of the information of observation instances inside and between views, resulting in missing valuable
information. Second, some models are sensitive to the choice of parameters and are less robust (Liu et al., 2012),
which restricts their availability in real-world scenarios. Third, existing methods cannot effectively handle samples
with incomplete views, which inevitably reduces the performance of the IMC (Wen et al., 2018a).

To overcome these limitations, in this paper, we propose a unified framework for incomplete multiview clustering
using non-negative matrix factorization (NMF) and the low rank tensor, called IMC-NLT. Specifically, IMC-NLT first
utilises NMF to learn a low-dimensional representation for all the views. In this way, not only is the dimensionality
of the data reduced, but also non-negative numerical effects with strong explanatory power can be obtained. Using
the prior information of a low-rank tensor, IMC-NLT can capture the higher-order and complementary information
embedded in the multi-view data. Finally, a new cost function is introduced to measure consistent information across
views, using a linear kernel that measures similarities. The contributions of this study are summarised as follows.

• We propose a novel and efficient incomplete multi-view clustering model called IMC-NLT to handle incomplete
view data. To the best of our knowledge, IMC-NLT is the first incomplete multi-view clustering method that
combines the low-dimensional representation generated by the fast and effective dimension-reduction method
with a low-rank tensor model.

• To populate missing multi-view data in various cases, IMC-NLT uses a low-rank constraint and a tensor model
constructed from incomplete multi-view data. As such, it can capture the correlations among instances within
and between views well.

• The proposed method is robust to globally extracted consistency information. In particular, consistent rep-
resentation learning can effectively measure the disagreement between consistent information obtained from
different perspectives. IMC-NLT can effectively filter out noisy data under these views, producing an accurate
multi-view consistent representation.

• We conducted comprehensive experiments on multi-view benchmark datasets collected in different application
fields to evaluate the effectiveness of the IMC-NLT. The results showed that IMC-NLT is superior to baseline
methods. Furthermore, IMC-NLT has low sensitivity to its parameters, which demonstrates excellent general-
ization performance for incomplete multi-view clustering.
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The remainder of this paper is organised as follows: Section 2 describes the related work and background. Section
3 describes the proposed IMC-NLT algorithm. Sections 4 and 5 present the theoretical analysis of IMC-NLT and
evaluation results of the performance of IMC-NLT, respectively. In Section 6, we report the experiments on the
parameters and convergence of IMC-NLT. Finally, Section 7 concludes the paper.

2. Related Work and background

In this section, we present two studies closely related to the proposed method. First, we present the basics of
low-rank tensor-based models for multi-view learning. Here, we review incomplete multi-view clustering based on
matrix factorization.

2.1. Multi-view learning based on low-rank tensor

A low-rank tensor can effectively capture hidden information as a valid technique for analyzing high-dimensional
data. There are many examples of low-rank tensors used for multi-view clustering(Zhang et al., 2015; Xu et al.,
2020). Zhang et al. (Zhang et al., 2015) proposed a subspace clustering method called low-rank tensor-constrained
multi-view subspace clustering (LT-MSC). LT-MSC can be described by the following equation:

min
Z(v),E(v)

∥Z∥∗ + λ∥E∥2,1

s.t. X(v) = X(v)Z(v) + E(v), v = 1, 2, ...,V,

Z = Ψ(Z(1),Z(2), ...,Z(v)),

E = [E(1); E(2); ...; E(v)],

(1)

where X(v) is the v-th view of data. Note that X(v) = X(v)Z(v) + E(v). The formula can learn the subspace representation
matrix Z(v) by exploiting the self-expressive properties of the data; λ is a positive penalty parameter, and E(v) is the
reconstruction error matrix. Imposing the L2,1 regularizer on E(v) can urge the data in each column of matrix E(v) to
be close to 0. ∥Z∥∗ is the tensor kernel norm constraint added toZ. The tensorZ consists of subspace representation
Z(v). The model obtains the low-rank tensor using a self-representation multi-view.

Similar to previous research methods, Xu et al. (Xu et al., 2020) proposed a method called low-rank tensor-
constrained co-regularised multi-view spectral clustering(LTCSPC). The objective function of the LTCSPC is as fol-
lows:

min
F(v)∈Rn×c

m∑
v=1

α(v)Tr(F(v)T
L(v)F(v)) + ∥F ∥ω,⊛ (2)

where we have

α(v) = 1
/
(2
√

Tr(F(v)T L(v)F(v))) (3)

In Eq.(3), α(v) is the weight of each view and ω is the singular value-weighted coefficient. LTCSPC calculates
F(v) according to the standard spectral clustering and data X(v) with m views. To use the high-order structure and
complement, we denote the indicator matrix as F(v) ∈ Rn×c, where n is the number of samples, and c is the number
of categories. The slice of tensor F consists of the indicator matrix F(v). L(v) is the Laplacian matrix. ∥F ∥ω,⊛ is the
weighted nuclear norm constraint added to F ∈ Rn×m×c, which is defined as:

∥F ∥ω,⊛ =

c∑
i=1

∥F̄(i)∥ω,∗ =

c∑
i=1

min(n,m)∑
j=1

ω j ∗ σ j(F̄(i)) (4)

where F̄(i) ∈ Rn×m, σ j(F̄(i)) is the j-th largest singular value of F̄(i), and ω j is the j-th element of the vector ω.
Although these methods can elegantly model different views, they improve the clustering accuracy while reducing the
redundancy of the learning subspace representation. In addition, they are only applicable to complete multi-view data,
and cannot handle incomplete cases.
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2.2. Incomplete multi-view clustering based on matrix factorization

In this section, we review two classical methods: one-pass incomplete multi-view clustering(OPIMC) (Hu &
Chen, 2019) and partial multi-view clustering(PVC) (Li et al., 2014).

OPIMC applies regularized matrix factorization (RMF) (Gunasekar et al., 2017) and weighted matrix factorization
(WMF) (Kim & Choi, 2009) to produce multi-view clustering results. The objective function of the OPIMC is written
as:

J =
nv∑

v=1

{

[N/s]∑
t=1

∥∥∥ (X(v)
t − U(v) VT

t )W (v)
t

∥∥∥2
F
+ α
∥∥∥U(v)

∥∥∥2
F}

s.t. Vik ∈ {0, 1},
K∑

k=1

Vik = 1,∀i = 1, 2, ...,N

(5)

where X(v)
t denotes the t-th data chunk in the v-th view. Assume that each view is composed of blocks of size s. V ∈

RN×K is a clustering indicator matrix, and K represents the number of categories of the data. If the instance belongs
to one category, it is marked as 1; otherwise, it is 0. U(v) and Vt are the low-rank regularized factor matrix and the
clustering indicator matrix for the t-th data chunk, respectively. α is a non-negative parameter. Where N denotes the
number of instances. Furthermore, to achieve a high calculation cost when the number of instances and categories are
large, the model applies a 1-of-K coding constraint to V , where W (v)

t is a diagonally weighted matrix of the t-th data
chunk. OPIMC can directly obtain the clustering results at the end of the iteration.

PVC is an incomplete multi-view clustering method that uses NMF. It constructs a specific latent space for un-
aligned instances and a shared latent space for aligned instances. These shared and specific representations were used
together for clustering. PVC was formalized as follows:

min
P(c),P̂(1),P̂(2),U(1),U(2)

∥∥∥∥∥∥
[

Xc
(1)

X̂(1)

]
−

[
Pc

P̂(1)

]
U(1)

∥∥∥∥∥∥2
F

+

∥∥∥∥∥∥
[

Xc
(2)

X̂(2)

]
−

[
Pc

P̂(2)

]
U(2)

∥∥∥∥∥∥2
F

+λ
∥∥∥ P̄(1)

∥∥∥
1 + λ

∥∥∥ P̄(2)
∥∥∥

1

s.t.U(1) ≥ 0,U(2) ≥ 0, P̄(1) ≥ 0

P̄(2) ≥ 0

(6)

In Eq.(6), Xc
(1) and Xc

(2) represent instance data that exists in both views, X̂(1) represents instance data that ex-
ists only in the first view, and X̂(2) represents instance data that exists only in the second view. Pc represents the
low-dimensional representation of the common views after matrix decomposition. P̂(1) and P̂(2) represent individual
potential representation parts of each view. U(v) is the basis matrix of the view, P̄(1) = [Pc; P̂(1)] and P̄(2) = [PcP̂(2)]
are the latent representation of instances in the latent space. λ is the positive tradeoff parameter. The grouping result
was obtained by establishing a potential subspace.

3. Proposed IMC-NLT

To cluster incomplete multi-views, we present a new incomplete multi-view clustering model called IMC-NLT. It
consists of three parts: incomplete multi-view data filling and decomposition, multi-view fusion of low-rank tensor,
and consensus representation learning. The framework for the IMC-NLT is illustrated in Fig. 1.

3.1. Incomplete multi-view data filling and decomposition

To align the dimensions of multi-view data in a way that better reflects the structure of incomplete data, we used
NMF to build a multi-view data model with a unified dimension and maintain information about the data space and
feature space. The model is as follows:
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Fig. 1. Overview of IMC-NLT. IMC-NLT consists of six major components: (a) Incomplete multi-view data input; (b) Pre-filing and dimension-
ality reduction of incomplete view data; (c) Construction of a tensor structure with unified view dimensions. (d) Singular value decomposition
visualization; (e) The Low-rank tensor fusion implements data filling; and (f) Consensus representation.

min
H(v)

V∑
v=1

n(v)
o +n(v)

cp∑
i=1

∥∥∥∥∥∥
[

Y (v)
oi

Y (v)
cpi

]
−

[
H(v)

oi

H(v)
cpi

]
Q(v)

i

∥∥∥∥∥∥2
F

s.t. H(v) ≥ 0,Q(v) ≥ 0,H(v) = T
[

H(v)
o ; H(v)

cp

] (7)

An example is shown in Fig. 2, where matrix Y (v)
o ∈ Rn(v)

o ×d(v)
is the matrix of complete instances selected from the

original view X(v) ∈ Rn(v)×d(v)
. n(v) is the number of instances when the view is complete, n(v)

o is the number of instances
in each view that are not missing, and d(v) represents the original feature dimension of multi-view data. Y (v)

cp ∈ Rn(v)
cp×d(v)

is a matrix of incomplete instances selected from the original view. n(v)
cp is the number of instances incomplete in the

multi-view data. To better reflect the structure of incomplete data and better fill in incomplete values, we filled the
incomplete view data instances matrix Y (v)

cp with 0. The main purpose of dividing the available part Y (v)
o and missing

part Y (v)
cp is to emphasize the filling of the missing part of the data using the proposed low-rank tensor model. The

zero matrices represent the missing part of the data, whereas the change in the zero matrices reflects the data recovery
function of the model proposed in this study. By introducing the decomposition model, we constructed the following
low-dimensional representation structure: H(v)

o ∈ Rn(v)
o ×t is the low-dimensional representation matrix formed by the

complete instances, where t represents the unified dimension number after the dimension reduction. The selection of
the feature dimension t depends on the existing algorithms for multi-view data-sharing features based on NMF (Zong
et al., 2017). H(v)

cp ∈ Rn(v)
cp×t is a low-dimensional representation matrix formed by the incomplete instances. Q(v) ∈

Rt×d(v)
is the coefficient matrix after non-negative factorization. T is a reconstruction operation of the modal matrix

after the low-dimensional representation of each data view. The purpose of this is to arrange incomplete modal data
after dimensionality reduction in the original order of the instance arrangement.

3.2. Multi-view collaborative fusion of low-rank tensor

In the previous section, we completed the unified transformation of the data dimensions between views and pre-
filling of missing data. In this section, we introduce a low-rank tensor-filling model that can better capture high-order
correlations between viewing data. This process consists of two parts:1) construction of the tensor, and 2) addition of
low-rank constraints to the tensor.

An intuitive example is shown in Fig. 3, where H(v) is the low-dimensional representation matrix after incomplete
multi-view data-filling and decomposition. A third-order tensor model was constructed using the enumeration method.
Its construction is as follows:

5
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Fig. 2. Example of incomplete multi-view data filling and decomposition.

H = Ψ(H(1),H(2), ...,H(v)) (8)

operation Ψ represents listing the reduced-dimensional second-order structure matrix H(v) in view order to construct
a third-order tensorH .

After obtaining the tensor model, we use tensor kernel parametrization to approximate the tensor low-rank repre-
sentation. The optimization model is as follows:

min
H
∥H∥∗ (9)

Fig. 3. Example of restoring incomplete data based on a low-rank tensor.

To make the objective function separable, we introduced the auxiliary variable Km to solve the optimization prob-
lem in Eq. (9). The formula used is as follows:

6
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min
H(v),Km

M∑
m=1

σm ∥Km∥∗

s.t.km = Pmh,m = 1, 2, ...,M,

H = Ψ(H(1),H(2), ...,H(v))

(10)

where σm represents the strength of the low-rank tensor constraint and km is the vectorization of the matrix Km. Pm is
the alignment matrix used to align the corresponding elements between H(m) and Km, and H(m) is the matrix obtained
by unfolding tensor H along the m-th mode, defined as unfoldm(H)= H(m) ∈ RIm×(I1×...Im−1×Im+1...IM ). The vectorization
of tensorH is denoted as h. This process can recover incomplete data based on effective association information.

3.3. Consensus representation learning
Generally, an incomplete multi-view clustering algorithm based on the fusion strategy gives the clustering results

a more explicit physical meaning. However, existing incomplete multi-view clustering algorithms based on fusion
strategies still suffer from several shortcomings:1) during the construction of the model, the fusion results are obtained
separately from each view, and the similarity features between views are ignored, resulting in incomplete extraction of
essential features for multi-view data; and 2) the semantic consistency features between the fused views are not fully
considered. Therefore, we introduce a consistent representation model for our algorithm, which seeks a consensus
representation from different perspectives, as follows:

J = min λ1

V∑
v=1

no+ncp∑
i=1

∥∥∥∥∥∥
[

Y (v)
oi

Y (v)
cpi

]
−

[
H(v)

oi

H(v)
cpi

]
Q(v)

i

∥∥∥∥∥∥2
F

+

σm∥Km∥∗ + λ2Λ(H(v),U)

s.t.Pmh = km,m = 1, 2, ...,M,H(v) = T
[

H(v)
o ; H(v)

cp

]
,

ℜΩ(Y (v)) = ℜΩ(X(v)),H(v)T
H(v) = I,

H = Ψ(H(1),H(2), ...,H(v)),UU(T ) = I,

H(v) ≥ 0,Q(v) ≥ 0

(11)

where U denotes the learned consensus representation. This representation can effectively fuse each instance of
information from all views. λ1 and λ2 are positive penalty parameters for adjusting the impact of each term in all
objective functions. The function Λ produces a consistent representation matrix, and H(v) is the incomplete view
data processed by filling the low-rank tensor model. ℜΩ represents a mapping operation, which maps the complete
instance part of the view to matrix Y (v)

o and the incomplete part of the view to matrix Y (v)
cp .

To form a consistent representation of U, we utilised the measurement formula Λ(H(v),U) to measure the degree
of inconsistency between U and H(v) (Kumar, 2011):

Λ(H(v),U) =

∥∥∥∥∥∥ S U

∥S U∥
2
F

−
S H(v)

∥S H(v)∥2F

∥∥∥∥∥∥2
F

(12)

where S U is the similarity matrix of U and S H(v) is the similarity matrix of H(v). This function can produce a better
fusion representation by minimizing the gap between multi-view and consistent representations. Furthermore, we use
the linear kernel, that is, S U = UUT , which is the standard of a similarity measurement (Kumar, 2011). Based on the
fact that ∥S U∥

2
F = c, and ∥S H(v)∥2F = c, the value of c in the formula is equal to the number of categories of multi-view

data. Most of the algorithm settings were the same, and their effectiveness has been verified (Kumar, 2011). we
rewrite Eq.(12) as:

Λ(H(v),U) =
2(c − Tr(H(v)H(v)T UUT ))

c2 (13)

Because c is a constant, it can be omitted when calculating to obtain the final consistency expression in Eq. (14).

Λ(H(v),U) = −Tr(H(v)H(v)T
UUT ) (14)

7
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3.4. Objective function and optimization
Putting Eqs. (7), (10) and (14) together, we can obtain the following objective function:

J = min λ1

V∑
v=1

no+ncp∑
i=1

∥∥∥∥∥∥
[

Y (v)
oi

Y (v)
cpi

]
−

[
H(v)

oi

H(v)
cpi

]
Q(v)

i

∥∥∥∥∥∥2
F

+

σm∥Km∥∗ − λ2

V∑
v=1

Tr(H(v)H(v)T
UUT )

s.t.Pmh = km,m = 1, 2, ...,M,H(v) = T
[

H(v)
o ; H(v)

cp

]
ℜΩ(Y (v)) = ℜΩ(X(v)),H(v)T

H(v) = I,

H = Ψ(H(1),H(2), ...,H(v)),UU(T ) = I,

H(v) ≥ 0,Q(v) ≥ 0

(15)

This objective function is a non-convex function; therefore, it cannot be optimized directly. As such, we can
minimize the objective function by iteratively solving the following subproblems: The specific process is as follows.

H(v)-sub-problem: By fixing all the other variables, we set the derivative to H(v) as follows:

D(H(v)) = −2λ1(Y (v) − HQ)Q(T ) − 2λ2(UU(T )H(v))+
M∑

m=1

B(v)
m −

M∑
m=1

A(v)
m (MI)(−1) (16)

A(v)
m = Ω

(v)(αm), B(v)
m = Ω

(v)(km). (17)

It is difficult to use the KKT condition because of the complexity of D(H(v)). We chose the traditional gradient
descent method to update the data.

H(v)t+1
= H(v)t

− τ(D(H(v))). (18)

where τ denotes the step size. In terms of targeting, there are several M ways to expand the M-order tensor. Our model
pair uses unfolding of the three modalities. αm is the Lagrange multiplier corresponding to the constraint Pmh = km.
Where I is the identity matrix. Operator Ω(v)(.) only selects N × N elements corresponding to the v-th views and
reshapes them to the N × N dimensional matrices A(v)

m and B(v)
m corresponding to H(v).

h-sub-problem: We update h directly for each element in H(v) by replacing it directly:

h∗ ← H(v). (19)

Q(v)-sub-problem: When other variables are fixed, the subproblem process for updating Q(v) is as follows:

min
V∑

v=1

n0∑
i=1

∥∥∥Y (v)
oi
− H(v)

oi
Q(v)
∥∥∥2

F (20)

Q(v) = Q(v) H(v)T

o Y (v)
o

H(v)T

o H(v)
o Q(v)

. (21)

U-sub-problem: When other variables are fixed, the subproblem process for updating U is as follows:

min
UT U=I

−λ2

V∑
v=1

Tr(H(v)H(v)T
UUT )⇔ (22)

max
UT U=I

Tr(
V∑

v=1

UT (H(v)H(v)T
)U). (23)

8
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These problems can be computed simply using eigenvalue decomposition. The best solution for variable U is the
eigenvector set corresponding to the first c largest eigenvalues of the matrix (

∑V
v=1 H(v)H(v)T ).

Km-sub-problem: The formula for the sub-problem Km is as follows:

K∗m = argmin
Gm

σm∥Km∥∗ + µΦ(αm, Pmh − km)

= proxtr
βm

(Ω(m)(Pmh + αm)).
(24)

Here, we define Φ(αm, Pmh − km) =
1
2
∥Pmh − km∥

2
F + ⟨αm, Pmh − km⟩, where ⟨., .⟩ is the inner product of a matrix,

and µ is a positive penalty parameter. The Ω(m)(Pmh + αm) operator converts the vector Pmh + αm into a matrix
with the corresponding modal expansion. βm = (σm/µ) is the threshold value for the soft-threshold operation of the
spectrum. proxtr

βm
(L) = Umax(S − βm, 0)VT with L = US T T is the singular value decomposition (SVD) of the matrix

L, and the max operation is performed element-wise. Intuitively, the solution is truncated according to the subspace
representation tensorH .

km-sub-problem: We update km by Km:

k∗m ← Km. (25)

αm-subproblem: The variable αm is updated by:

α∗m = αm + (Pmh − km). (26)

4. Theoretical Analysis of IMC-NLT

The complete procedure of IMC-NLT is summarized in Algorithm 1. The values of variables H(v), Q(v), Km, km,
αm, µ, and U are updated iteratively until the number of iterations reaches the maximum, or the difference between the
target values in two consecutive steps is less than the set threshold ε. In the following, we analyze the computational
cost and the convergence properties.

4.1. Computational complexity

We calculated complexity in five steps. In the first step of mechanical filling, the time cost was O(
∑V

v=1 nv
odv). In

the second step of the SVT operation on the tensor, we use Lemma 1 for the complexity calculation:
Lemma 1 (Oh et al., 2015). Let A = QB ∈ Rm×n, where Q ∈ Rm×n has orthonormal columns. Then, we have:

Sτ(A) = QSτ(B), (27)

where Sτ(.) is the SVT operator with time cost O(n3). In order to reduce the expensive cost, we perform the SVT
operation on the smaller matrix B ∈ Rn×n instead, if the matrix Q ∈ Rm×n is available(m ≥ n). In the third step of
recomposing the tensors into vectors, the time cost is O(

∑V
v=1 nvc). In the fourth step of derivative gradient descent,

the vector reconstitution tensors can be approximated as O(n2c + cndv). The time cost is O(n3) for the fifth step of
calculating eigenvalues and eigenvectors.

Therefore, the computational complexity of IMC-NLT proposed in this study is O(
∑V

v=1 nv
odv + nvc + l(n3 + n2c +

cndv + n3)), where l is the iteration number. Because c is usually much smaller than dv and n, the overall complexity
can be approximated as O(ln3). To ensure that the algorithm achieves faster convergence and better experimental
results, we obtained H(v) and Q(v) through the non-negative matrix factorization of Y (v).

4.2. Convergence Analysis

In this section, we demonstrate the convergence of the IMC-NLT iterative algorithm.
Theorem 1. The objective function of the IMC-NLT: J(H(v),Q(v),Km,U, αm) in (15) is bounded. The proposed

optimization algorithm monotonically reduced the value of the objective function.
Proof. Because this is the sum of norms with positive penalty parameters, problem (15) is bounded from below:

(H(v), Q(v), U) obtained by formulas (18), (21), and (23) are the minimum points corresponding to subproblems (16),
9
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Algorithm 1 IMC-NLT

Require: Incomplete multi-view dataset X(v), parameters σm, λ1, λ2, µ, maximum number of iterations tmax, the
threshold ε = 10−7.

Ensure: The resulting clusters.
1: Initialize ρ = 1.1,maxµ = 1010;
2: Initialize H(1),H(2)...,H(v);
3: Initialize Q(1),Q(2)...,Q(v);
4: Initialize K1=0,...,KM=0;
5: Initialize α1=α2...,αM=0;
6: while not converge do
7: for v = 1 to V do
8: Update H(v) via Eq. (18);
9: Update Q(v) by solving Eq. (21);

10: end for
11: Update Km via Eq. (24);
12: Update km by solving Eq. (25);
13: Update αm via Eq. (26);
14: Update µ by µ = min(ρµ; maxµ ) ;
15: Update U via Eq. (23);
16: Check the convergence conditions:
17:

∣∣∣∣ Jt+1−Jt
Jt

∣∣∣∣ < ε;
18: Until (15) reaches the maximum number of iterations tmax or convergence.
19: end while
20: Apply K-means to U for producing the resulting clusters.

(20), and (22). For the subproblem of solving Km, the fast method of formula (24) is used for the approximate matrix
inversion calculation. h and km are updated by directly substituting the corresponding elements. Intuitively, multiplier
αm is updated according to the updating rule of multipliers.

Let
{
H(v),Q(v),Km,U, αm

}
t=1

be a bounded monotonically decreasing sequence determined by Theorem 1. Ac-
cording to the bounded monotone convergence theorem (Rudin et al., 1976), the objective function monotonically
decreases and is bounded.

Theorem 2. Algorithm 1 converges to a minimum under the updating of the value of J(H(v),Q(v),Km,U, αm) in
each optimization step.

Proof. Suppose that
{
H(v),Q(v),Km,U, αm

}
t

and
{
H(v),Q(v),Km,U, αm

}
t+1

represent the iterative sequence of the
(t) and (t + 1) times of problem (15), respectively. According to the previous sub-problem optimization steps, we
can conclude that these sub-problems are not only convex optimization problems but also have closed solutions. By
solving the above sub-problems one by one, we can get the following formula:

J(H(v)
t ,Q

(v)
t , (Km)t,Ut, (αm)t) ≥ J(H(v)

t+1,Q
(v)
t , (Km)t,Ut, (αm)t)

≥J(H(v)
t+1,Q

(v)
t+1, (Km)t,Ut, (αm)t) ≥ J(H(v)

t+1,Q
(v)
t+1, (Km)t+1,Ut, (αm)t)

≥J(H(v)
t+1,Q

(v)
t+1, (Km)t+1,Ut+1, (αm)t) ≥ J(H(v)

t+1,Q
(v)
t+1, (Km)t+1,Ut+1, (αm)t+1)

(28)

Eq. (28) proves that the decrement of the objective function is achieved through the iterative updating of variables
in sequence

{
H(v),Q(v),Km,U, αm

}
t
. So we have completed the proof of Theorem 2.

The above two theorems ensure that by using the proposed optimization method, the objective function is mono-
tonically decreasing and bounded. Meanwhile, the sequence is continuously optimized and can converge to the
minimum value.

10
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5. Experimental Evaluation

In this section, we evaluate the effectiveness of the IMC-NLT in comparison with the experimental results of the
baseline algorithm on five incomplete multi-view datasets.

5.1. Datasets
Table 1 lists the five datasets widely used in our experiments.

Table 1: Statistics of the datasets

Dataset Clusters Views Instances Features

SensIT300 3 2 300 50/50
Statlog 7 2 2310 9/10

Wisconsin 5 2 265 1703/265
WebKB 2 2 1051 1840/3000

Caltech101-7 7 6 1474 48/40/254/1984/512/928

• SensIT3001: Data collected from distributed sensors in an intelligent transportation system. A total of 300 in-
stances were divided into three categories, which corresponded to three types of transportation in real life. Each
data instance has two information views: sound information recorded by a sensor, and vibration information, in
which each view contains 50-dimensional characteristic attributes.

• Statlog2: An image segmentation dataset was randomly selected from a database of images from seven cate-
gories. The images were manually segmented to create classification for each pixel. Collected by the vision
group at the University of Massachusetts, this dataset contains 2310 instances with corresponding categories
under two views. The characteristic dimension of one view is nine, whereas the characteristic dimension of the
other view is 10.

• Wisconsin 3: A set of webpages collected from the University of Wisconsin website. The five types of web-
pages are student, project, course, staff, and faculty. Each has two views: the content view and the reference
view. In the content view, each webpage consists of 1703 words. The reference view is described by the
reference relationships between a page and other pages.

• WebKB 4: A set of course and non-course documents. Each document has two representations: the text content
of the webpage and the anchor text with links to other webpages pointing to the webpage. Based on the page
representation, 3000 features were selected. For linked representations, 1840 features were generated.

• Caltech101-75: Caltech101-7 is a subset of the real dataset Caltech101 with seven categories, which are from
various categories such as football, camera, and chair. This dataset contains six views: Gabor, WM, Centrist,
HOG, GIST, and LBP.

Specifically, we used the SensIT300, Starlog, Wisconsin, and WebKB datasets to build incomplete multi-view
data. In our experiments, approximately 10%, 30%, and 50% of the instances were randomly deleted from each view
of the four databases. For the accuracy of the results, we perform standard validation on these datasets (Rodriguez
et al., 2010), and produced the results of the average calculation. All of the experimental codes were developed using
MATLAB 2015a running on an Intel(R) Core(TM) i7-8750H CPU @ 2.20GHz with 16-GB RAM with the Win 10
system.

1https://github.com/Liuzhenjiao123/multiview-data-sets/blob/master/sensIT300.mat
2https://github.com/Liuzhenjiao123/multiview-data-sets/tree/master
3https://lig-membres.imag.fr/grimal/data.html
4https://github.com/Liuzhenjiao123/dataset4
5https://github.com/Liuzhenjiao123/data5

11
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5.2. Baseline methods
Against the five datasets, IMC-NLT was compared with five IMC methods: IMSC-AGL (Wen et al., 2018a),

DAIMC (Hu & Chen, 2018), UEAF (Wen et al., 2019), IMC-GRMF(Wen et al., 2018b), and HCP-IMSC(Li et al.,
2022).

• IMSC-AGL An algorithm first exploits low-rank representations for multi-view adaptive learning of graphs
and then uses spectral constraints to obtain better low-dimensional representations.

• DAIMC Incomplete multi-view clustering algorithm based on weighted semi-non-negative matrix factoriza-
tion (semi-NMF). It exploits a weight matrix to adapt to a variety of incomplete cases and uses L2,1 -norm
regularization to obtain a cluster-friendly basis matrix shared by views.

• UEAF A unified and robust embedding alignment model for incomplete multi-view clustering. To maintain
the consistency of the local semantics of the view and infer incomplete information, it learns the local structure
shared by the views by reversing the graph regularization.

• IMC-GRMF Incomplete multi-view clustering method based on matrix factorization. For better integration,
IMC-GRMF uses the local information of each view to facilitate fusion of the complementary information of
views to obtain a shared representation. Orthogonal constraints can effectively handle out-of-sample problems.

• HCP-IMSC This is an incomplete multi-view clustering method that is based on hypergraph induction and
tensor decomposition. It effectively uses the correlation of high-order information to recover missing data and
combines the affinity matrix, tensor decomposition, and missing-view recovery into one framework.

5.3. Evaluation metrics
The resulting clusters by the algorithms in the experiments are evaluated by normalized mutual information (NMI)

(Estévez et al., 2009), clustering accuracy (ACC) (Cai et al., 2005), Adjusted Rand index (ARI) (Romano et al., 2016),
and F1 Score (F1) (Wang et al., 2015b). A higher value of these metrics indicates a higher cluster quality. The NMI
is defined as follows:

NMI =

∑C
i=1
∑C

j=1 Ni, j ln
Ni, j

NiN̂ j√
(
∑C

i=1 Ni ln
Ni

N
)(
∑C

j=1 N̂ j ln
N̂ j

N
)

(29)

where N is the number of instances in a complete view, Ni is the number of instances in the i-th cluster, N̂ j is the
number of instances of the j-th label, and Ni, j is the number of samples that exist in both the i-th cluster and j-th
clusters. The ACC measures the quality of clusters as follows:

ACC =
∑N

i=1 δ(map(ri), li)
N

(30)

where ri is the cluster label of xi, li is the exact class label, and N is the number of samples. When x=y, δ(x, y) is
equal to 1; otherwise, it is 0. Map(ri) is the optimal permutation mapping function obtained. The ARI is formulated
as:

ARI =
RI − E[RI]

(max(RI) − E[RI])
(31)

where E[RI] resents the expected value of RI and RI is a random index used to measure the similarity between two
clusters. It is defined as follows:

RI =
T P + T N

T P + FP + FN + T N
(32)

where TP is the true positive, TN is the true negative, FP is false positive, and FN is false negative. The F1 is defined
as:

12
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Table 2: Mean NMIs, ACCs, ARIs and F1 of different methods on SensIT300 , Statlog and Wisconsin datasets

Dataset Method \ PER NMI ACC ARI F1

0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5

SensIT300 IMSC-AGL 0.23 0.21 0.16 0.66 0.63 0.61 0.25 0.21 0.17 0.51 0.48 0.45
SensIT300 DAIMC 0.21 0.18 0.16 0.64 0.61 0.59 0.23 0.18 0.16 0.49 0.46 0.45
SensIT300 UEAF 0.21 0.18 0.16 0.65 0.61 0.59 0.24 0.18 0.16 0.51 0.45 0.44
SensIT300 IMC-GRMF 0.16 0.08 0.06 0.61 0.51 0.47 0.17 0.08 0.06 0.45 0.39 0.37
SensIT300 HCP-IMSC 0.32 0.30 0.21 0.72 0.65 0.57 0.35 0.30 0.22 0.56 0.50 0.48
SensIT300 IMC-NLT 0.32 0.28 0.25 0.69 0.66 0.61 0.31 0.24 0.19 0.54 0.51 0.49

Statlog IMSC-AGL 0.44 0.42 0.38 0.55 0.54 0.48 0.79 0.31 0.29 0.43 0.41 0.41
Statlog DAIMC 0.47 0.41 0.34 0.57 0.51 0.45 0.71 0.27 0.19 0.46 0.39 0.33
Statlog UEAF 0.49 0.38 0.35 0.48 0.46 0.44 0.81 0.24 0.18 0.41 0.36 0.32
Statlog IMC-GRMF 0.11 0.21 0.14 0.28 0.38 0.31 0.68 0.15 0.08 0.22 0.28 0.22
Statlog HCP-IMSC 0.51 0.46 0.40 0.58 0.54 0.49 0.38 0.32 0.26 0.48 0.44 0.39
Statlog IMC-NLT 0.63 0.56 0.48 0.68 0.62 0.58 0.54 0.45 0.35 0.61 0.53 0.45

Wisconsin IMSC-AGL 0.21 0.19 0.14 0.43 0.39 0.34 0.17 0.11 0.08 0.51 0.33 0.32
Wisconsin DAIMC 0.31 0.27 0.24 0.51 0.44 0.46 0.25 0.17 0.17 0.49 0.39 0.39
Wisconsin UEAF 0.36 0.41 0.34 0.61 0.57 0.51 0.35 0.34 0.25 0.51 0.51 0.44
Wisconsin IMC-GRMF 0.26 0.19 0.11 0.44 0.37 0.33 0.15 0.11 0.05 0.45 0.34 0.31
Wisconsin HCP-IMSC 0.27 0.24 0.26 0.50 0.40 0.49 0.21 0.17 0.20 0.42 0.39 0.40
Wisconsin IMC-NLT 0.48 0.39 0.37 0.74 0.68 0.69 0.48 0.38 0.32 0.67 0.61 0.59

WebKB IMSC-AGL 0.66 0.31 0.5 0.95 0.83 0.91 0.79 0.41 0.68 0.93 0.77 0.88
WebKB DAIMC 0.61 0.52 0.42 0.93 0.90 0.85 0.70 0.64 0.51 0.91 0.88 0.84
WebKB UEAF 0.68 0.71 0.65 0.95 0.96 0.95 0.81 0.82 0.79 0.93 0.93 0.93
WebKB IMC-GRMF 0.52 0.34 0.03 0.92 0.92 0.61 0.68 0.52 0.04 0.89 0.84 0.59
WebKB HCP-IMSC 0.71 0.68 0.61 0.95 0.93 0.92 0.82 0.79 0.77 0.93 0.92 0.91
WebKB IMC-NLT 0.71 0.65 0.53 0.96 0.94 0.92 0.83 0.77 0.66 0.94 0.93 0.90

(a) (b)

Fig. 4. Cluster structure illustration on two incomplete multi-view datasets. (a) Statlog with 10% incomplete instances of each view, (b) visualiza-
tion on WebKB with 10% incomplete

F1 = 2 ×
precision × recall
precision + recall

(33)

where precision =
T P

T P + FP
, and recall =

T P
T P + FN

.

5.4. Evaluations on clustering performance and discussion

In our experiment, we selected 10%, 30%, and 50% of the total number of instances to randomly delete them
from each view of the five datasets. Table 2 shows the average performance of NMI, ACC, ARI, and F1 for the five

13
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Table 3: Mean NMIs, ACCs, ARIs and F1 of different clustering methods on SensIT300 , Statlog and Wisconsin datasets

Dataset Method \ PER NMI ACC ARI F1

0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5

SensIT300 K-means 0.32 0.28 0.25 0.69 0.66 0.61 0.31 0.24 0.19 0.54 0.51 0.49
SensIT300 Fuzzy 0.32 0.27 0.25 0.68 0.61 0.64 0.28 0.21 0.22 0.54 0.49 0.49
SensIT300 Spectral 0.35 0.31 0.27 0.71 0.68 0.62 0.33 0.31 0.21 0.57 0.56 0.51

Statlog K-means 0.63 0.56 0.48 0.68 0.62 0.58 0.54 0.45 0.35 0.61 0.53 0.45
Statlog Fuzzy 0.43 0.27 0.25 0.51 0.36 0.36 0.31 0.13 0.14 0.41 0.29 0.29
Statlog Spectral 0.62 0.44 0.36 0.54 0.45 0.33 0.38 0.28 0.09 0.51 0.38 0.29

Wisconsin K-means 0.48 0.39 0.37 0.74 0.68 0.69 0.48 0.38 0.32 0.67 0.61 0.59
Wisconsin Fuzzy 0.42 0.35 0.31 0.59 0.45 0.46 0.39 0.28 0.21 0.57 0.42 0.42
Wisconsin Spectral 0.40 0.39 0.33 0.58 0.66 0.59 0.36 0.43 0.32 0.54 0.61 0.51

WebKB K-means 0.71 0.65 0.53 0.96 0.94 0.92 0.83 0.77 0.66 0.94 0.93 0.90
WebKB Fuzzy 0.69 0.55 0.54 0.96 0.93 0.93 0.83 0.72 0.71 0.94 0.91 0.91
WebKB Spectral 0.68 0.54 0.89 0.96 0.92 0.92 0.82 0.66 0.66 0.94 0.90 0.89

Table 4: Two incomplete multi-view clustering methods based on tensor models show different performances in terms of ACC, F1, Running time
(seconds), and computational complexity with 90% incomplete instances of each view on the Caltech101-7 dataset

Dataset Method ACC F1 Running time (seconds) computational complexity

Caltech101-7 HCP-IMSC 0.37 0.40 106.04 O(Vn3 + V(n − no)3 + cnVlog(V) + cn2V)
Caltech101-7 IMC-NLT 0.43 0.45 92.75 O(n3)

(a) (b)

Fig. 5. Robust performance on two incomplete multi-view datasets: (a) SensIT300 (b) Wisconsin

different methods on the five incomplete multi-view datasets. From this table, we can observe the following results.
1) The performance of HCP-IMSC was better than that of other incomplete multi-view clustering methods on most

datasets. This indicates that the tensor-based model can achieve incomplete multi-view clustering, which preserves
the high-order correlation advantage. In addition, compared to HCP-IMSC, our IMC-NLT can produce good results
from most datasets with high missing rates. This verifies that building a tensor model directly from prepopulated
modal data can better recover missing data and reduce the impact of noise.

2) Compared with the other five algorithms, the IMC-NLT has obvious advantages. For example, on the statlog
and Wisconsin datasets, according to various clustering indicators, IMC-NLT performs the best. When the missing
rate of the Wisconsin dataset was set to 10%, our algorithm achieved an ACC score that was approximately 13%

14
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(a) (b)

(c) (d)

Fig. 6. NMI versus parameters σ and µ of IMC-NLT on different datasets with various percentages of incomplete instances of each view (a)
SensIT300 with 50%, (b) Statlog with 10%, (c) Wisconsin with 50%, and (d) WebKB with 10% .

higher than that of the second-best method. Although the advantages of our algorithm on SensIT300 and Webkb are
not as prominent as those of the above datasets, the difference between our method and other superior algorithms is
not evident in most cases. The IMC-NLT is relatively stable for datasets with different missing rates.

3) From table 2, we can see that our method is superior to other views based on recovery methods such as UEAF.
This shows that IMC-NLT not only effectively utilises the specific information of each view but also builds a unified
structure to effectively maintain the semantic relationships among the different views. Therefore, IMC-NLT can
capture useful information with complex interactions between views to recover the missing data.

4) The proposed IMC-NLT method was more robust than the DAIMC, IMSC-AGL, and IMC-GRMF methods.
Our method neither indirectly obtains consensus representations from individual expressions of all viewpoints, such
as DAIMC, nor is it constrained by the existing incomplete data. At the same time, it prevents the IMSC-AGL from
extracting hidden information from incomplete and complex data. Our method is suitable for various complex missing
situations, and ensures the filling effect of complex missing situations through an effective filling mechanism.

5.5. Clustering Performance on Three Clustering Methods
Table 3 reports the performance of the fusion effect on three clustering algorithms. Compared with other in-

complete multi-view clustering algorithms, the overall experimental result of applying K-means is the best, followed
by Fuzzy clustering and spectral clustering. Again, our algorithm has demonstrated the excellent performance in
incomplete multi-view data filling and later fusion.

5.6. Visualization of Clustering Results
To further demonstrate the advantages of the IMC-NLT algorithm, we visualised the distributions of experimental

clustering results. For example, on the Statlog and WebKB datasets, the IMC-NLT algorithm can produce different
15
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(a) (b)

(c) (d)

Fig. 7. NMI versus parameters λ1 and λ2 of IMC-NLT on the four datasets with various percentages of incomplete instances with each view,
respectively. (a) SensIT300 with 50%, (b) Statlog with 10%, (c) Wisconsin with 50%. and (d) WebKB with 10%.

colour clusters with obvious grouping structures, as illustrated in Fig. 4.

5.7. The effectiveness of IMC-NLT on large-scale datasets

The performances of the two methods for incomplete multi-view clustering based on the tensor model are pre-
sented in Table 4. From this table, we observe that our method demonstrates certain advantages in terms of clustering
indicators, running time, and complexity. In addition, the proposed method performed well on larger datasets.

5.8. Robustness Analysis

To investigate the robustness of the proposed algorithm, we examined the clustering results of the IMC-NLT
algorithm on SensIT300 and Wisconsin datasets with different missing rate intervals of 5%, as shown in Fig. 5. In
terms of accuracy, our method remains relatively robust as the missing rate of data points increases. This shows the
capacity of the IMC-NLT to handle missing data filling.

6. Parameters and Convergence of IMC-NLT

6.1. Parameter sensitivity analysis

In this section, we present several comparative experiments to demonstrate the effects of different IMC-NLT
parameter values. We focus mainly on the following parameters of IMC-NLT: the non-negative matrix decomposition
control parameter λ1, feature orthogonal constraints to limit the control parameter λ2, and low-rank force coding. We
set the M parameters inside to be equal, that is, σ1= .. =σM= σ, and accordingly, tune the parameter σ and Lagrange
operator control parameter µ.

1)Parameters σ and µ: We show the NMI versus the two parameters σ and µ on the datasets of SensIT300,
Statlog, Wisconsin, and WebKB with different incomplete-view rates in Fig. 6. For example, on the Statlog dataset,
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Fig. 8. The objective function loss and NMI v.s. iterations on (a) SensIT300 with 10% incomplete instances of each view.

the experimental results showed that the best performance was achieved when σ ranges between {0,9} and µ between
{1,11}. In this study, we find that our algorithm achieves the best clustering when σ takes values in the range of {1,6}
and µ in the range of {8,10} by using a latticework search. Meanwhile, on the Statlog and WebKB datasets, IMC-NLT
exhibited low sensitivity to its parameters.

2) Parameters λ1 and λ2: From Fig. 7, we can observe that parameters λ1 and λ2 are insensitive to the Statlog and
WebKB datasets. For SensIT300, the algorithm performs well when the parameters λ1 and λ2 are between {20,21}

and {2−1, 21}, respectively. Similarly, there is a certain parameter sensitivity in the Wisconsin dataset. When the
parameters λ1 and λ2 are between {2−2,20} and {21, 22}, respectively, IMC-NLT achieves good performance.

The adaptive selection of various parameters for different datasets to reach their optimal values is problematic.
Determine the most suitable parameters for the proposed IMC-NLT model. We solve this problem by choosing a
combination strategy to find the optimal parameters. Specifically, we first fixed the insensitive parameters to set λ1 and
λ2 with a fixed value range, and then ran IMC-NLT with different values of σ and µ. As such, the optimal parameter
value set of the algorithm is obtained, experiments are conducted, and the results are compared and reported.

6.2. Convergence analysis

To better deal with the complex objective function, we split the objective function into several subproblems and
use an iterative optimization algorithm to monotonically decrease it until convergence. The objective function values
are plotted in Fig. 8 according to the corresponding NMI with the number of iterations (within 30 iterations). As
shown, the loss of the objective function decreases monotonically and converges to a stationary point. This ensures
the convergence of the proposed optimization method.

7. Conclusion

In this paper, we have presented a novel algorithm for incomplete multi-view clustering called IMC-NLT based
on NMF and low-rank tensor fusion. IMC-NLT relies on both the modal unified dimensional structure and low-
rank tensor. IMC-NLT can effectively integrate the information hidden in datasets with the same view and between
views. Moreover, IMC-NLT not only deals effectively with various incomplete data but also has low sensitivity to
its parameters. We have carried out comprehensive experiments on the five representative data sets by comparing
IMC-NLT with state-of-the-art algorithms. The experimental results have shown that our method can achieve good
clustering results with stability.

In the future, we intend to extend the low-rank tensor filling model to the deep model to obtain more efficient view
representations of incomplete multi-view clustering.
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