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Abstract—The Internet of Things (IoT) consists of a myriad
of smart devices and offers tremendous innovation opportunities
in industry, homes, and businesses to enhance the productivity
and the quality of life . However, ecosystem of infrastructures
and the services associated with IoT devices have introduced
a new set of vulnerabilities and threats, resulting in abnormal
values of information collected by sensors, jeopardizing system
security. To secure sensor networks, it must be possible to
detect such anomalies or sequences of patterns in IoT devices
that significantly deviate from normal behavior. To perform
this task, this paper proposes a real-time streaming anomaly
detection method based on a Bloom filter combined with hashing.
This method expands the data dimensions through a hashing
algorithm, and then adopts competitive learning (Winner-Take-
All) to build a multi-layer Bloom Filter anomaly detection model.
The feasibility of the proposed algorithm is verified theoretically
using two datasets, KDD (to detect anomalies at the TCP/IP
network level) and Credit (to detect anomalies during credit card
transactions). The simulation results show that the proposed in
this paper can effectively identify anomalies in the simulation
data streams, with almost 95% accuracy for both datasets.

Index Terms—Internet of Things, System Security, Sensor
Devices, Anomaly Detection, Bloom Filter

I. INTRODUCTION

THE security of IoT (Internet of Things) systems has been
the focus of many researchers [1], [2]. The proliferation

of IoT devices and the ever-expanding scale of the data
generated through these devices pose serious challenges to
the security of existing IoT systems. One main reason for
this risk is the sensor equipment; much of it is installed
in a complex natural environment and has been in use for
several years, sometimes decades. Given these conditions, this
equipment may generate abnormal information which could
then be transmitted to the network. Since the data collected
by IoT sensors are high-dimensional and large-scale [3], it is
very challenging to detect the abnormal information they can
produce. Therefore, an accurate data flow detection method is
needed to ensure that the information collected by the Wireless
Multimedia Sensor Network (WMSN) [4]–[6] is secure by
detecting sensor faults in real-time, thereby maintaining the
safety and stable operation of the network system. In general,
such a large-scale smart device network requires the use of
the stream computing framework [7], [8] to process real-time
data streams.

The abnormal information caused by sensor anomalies
usually contains different types of data, such as mosaic images,
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missing frames in video, and incorrect data detection [9]. If
abnormal information is not discovered in time, it will cause
the information transmitted by the network to be invalid, jeop-
ardizing the entire IoT security system. Therefore, anomaly
detection algorithms for the IoT platforms will play a huge
role in maintaining system security and ensuring the safety of
both property and life [10].

Conventional anomaly detection algorithms are based on
classification methods, including k-nearest neighbors and clus-
tering, statistical-based approaches, information theory, and
spectrum-based methods [11]. Even though each of these
methods has its advantages and disadvantages, classification-
based anomaly detection algorithms have shown high detection
efficiency, and thus they have been very widely used in IoT
security systems.

In 2019, Deng F et al. [12] proposed an abnormal traffic
detection framework based on a Bloom Filter (BF). Thanks to
its rapid processing capability, their framework can accurately
detect abnormal traffic from the sensor with low time com-
plexity. Their approach performed better than the conventional
anomaly detection algorithms and can be utilized for real-time
applications. However, single-layer bloom filters and direct
attenuation of dimensions are not capable of enhancing the
performance of anomaly detection. On the other hand, some
methods perform well in anomaly detection, but they do not
apply to real-time scenarios [13]. Apart from these limitations,
the existing models have three main drawbacks: i) They cannot
respond quick enough to perform online anomaly detection
of large-scale data streams from various sensors; ii) They
make it very difficult for a solidified detection model to give
correct results on unseen data types as the scale of the data
stream continues to expand and new types of data continue to
emerge; and iii) In the high throughput and large-scale data
streams, abnormal sensor information is overwhelmed by the
large amount of collected information, and so the abnormal
sensor information is difficult to detect.

To address the above-mentioned issues, this paper proposes
a novel semi-supervised anomaly detection model, FJLT-BF
(Fast J-L Transform Bloom Filter) for IoT secure systems.
The FJLT-BF model can be updated in real-time, which
ensures that our proposed model remains sensitive to newly
arrived anomalies. The proposed algorithm combines Bloom
Filter and dimensional expansion theory, which allows it to
respond to the real-time detection of large-scale data streams
promptly and to distinguish between normal and abnormal data
more accurately. The proposed anomaly detection model is
constantly being updated to ensure detection accuracy. The
proposed algorithm is divided into four steps: 1) pre-process
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the dataset through FJLT-FLSH [14], a locality-sensitive hash-
ing algorithm composed of a fast transformation matrix; 2)
use labeled data to train and generate a Bloom detection
model; 3) pre-prepare a test set and calculate the threshold;
and 4) a detection model utilizes the identified threshold and
applies it to the detection system. To analyze the anomalies
in video streams that are part of the IoT systems, we used
two datasets belonging to different domains to identify their
classification performances. The first dataset is called the KDD
and is used to detect anomalies at the TCP/IP network level,
the second dataset is named Credit and contains streaming
records to detect anomalies during credit card transactions.
Based on our analyses, the model proposed in this paper
significantly outperforms the current mainstream algorithms,
achieving 95% accuracy for both datasets. This work offers
the following main contributions:

• Proposes a rapid stealth anomaly detection model that can
meet the high throughput requirements of IoT security
systems;

• Develops an updatable algorithm model that can effec-
tively prolong the decay period of algorithm performance
and thereby ensure the persistence of a system;

• Proves (theoretically) that the proposed algorithm can
effectively detect invisible anomalies in different data
streams.

The remainder of this paper is organized as follows. We re-
view related work in Section 2 and then describe the proposed
model and algorithm in Section 3. The theoretical analysis is
presented in detail in Section 4, followed by a description of
the experiments and results in Section 5.

II. RELATED WORK

IoT System security has long been an important research
direction for its special significance. Anomaly detection al-
gorithms as a means of system security protection naturally
attract a large number of researchers in recent years. Following
explains the state-of-the-art on anomaly detection systems
used in IoT systems and how the anomaly detection enhanced
through integrating Bloom filters.

A. Anomaly detection in IoT

The threat of the IoT system mainly comes from two
aspects. One is the wear and tear of sensor equipment, which
leads to the collection of wrong information or information
with large errors. The second is man-made malicious intru-
sions. Anomalies due to sensor attrition are more common than
man-made malicious intrusions. Due to the large-scale, high-
throughput characteristics of IoT data, it is difficult to detect
abnormal information in the large-scale data stream. Hence,
anomaly detection can be considered the most important aspect
of the IoT systems security. Abnormal causes are divided
into the following three categories: node anomalies, network
anomalies, and data anomalies [15], [16]. Node anomaly refers
to the abnormality of sensor network nodes that occur at the
sensor layer in Figure 1 due to hardware or software failures.
Network anomalies generally occur at the network layer indi-
cating that data is distorted due to external interference during

Fig. 1. The IoT Framework: From left to right, perception layer, network
layer, application layer. The perception layer is responsible for information
collection, the network layer is responsible for transmitting information; the
application layer is responsible for processing and analyzing data

the wireless transmission process. Abnormal data generally
refers to man-made malicious attacks, which may occur in any
layer. And the external manifestations of all abnormalities are
data fluctuations. Therefore, to detect abnormal information in
the data stream, it is necessary to continuously check the data
objects in the continuous data stream, analyze them one by
one, and make judgment.

In 2017, Satoru et al. proposed a method for extracting
precise failures and identifying their causes from network
syslog data [17]. In 2019, Francesco Cauteruccio et al [18].
proposed a new method for automatic anomaly detection in
heterogeneous sensor networks based on the coupling of edge
and cloud data analyses. The approach focuses on detecting
unexpected sensor data generated by the sensor system itself
or by the environment under review; however, this method
ignores the limitations of the computing power of edge devices
[19]. In 2020, Sun et al. [20] proposed a two-stage network
intrusion prevention system. In the first stage of their intrusion
detection approach, support vector machines (SVMs) are used
as detection algorithms to discover suspicious behaviors inside
smart meters. In the second stage, the Temporal Fault Propaga-
tion Graph (TFPG) technique is used to generate attack routes
to identify attack events. This study also inspired the work of
our study, that is, using an SVM to separate abnormal infor-
mation. In 2021, Cui et al. [21] introduced a blockchain-based
decentralized asynchronous federated learning framework for
anomaly detection in IoT systems to ensure data integrity,
prevent sensor node failures, and improve the system operating
efficiency. In 2021, Niu et al. [22] proposed a novel residual
generator designed to detect indirect faults in sensor networks
and a new cooperative decision-making strategy to ensure the
stability of the detection results. However, this solution can
only detect data inconsistencies caused by intermittent failures,
and is less sensitive to abnormal sensor wear. In 2021, Sun et
al. [23] proposed HVDC attack and defense control based on
the FDIAs detection method. First, a squeeze excitation-based
double convolutional neural network (SE-DCNN) is proposed
to achieve fast identification of attack frequency types based
on time- and frequency-domain signals. In 2022, Xiong et al.
proposed a new algorithm, 2DP-FL, that separates anomalies
by adding noise when training the local model, distributing
the global model, and maintaining the safe operation of the
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system [24]. These solutions have played an important role
in maintaining system security; however, there are still some
limitations in the face of large-scale data streams and time
performance. There is still a lack of new abnormal judgment
technologies that can respond quickly and update in real-time.

B. Bloom Filter for Anomaly Detection
Bloom Filter is one of the most successful data structures

that can respond quickly and low latency. Several existing
methods have demonstrated the fast processing capability of
the Bloom filter in large-scale high-throughput data streams.
For example, in 2018, Groza et al. [25] proposed an intrusion
detection mechanism that utilizes Bloom filters to test frame
periodicity based on message identifiers and partial data fields.
In 2019, Deng et al. [26] proposed a framework for abnormal
traffic detection based on a Bloom Filter. Their framework can
accurately retrieve information from large-scale real-time data
with a low time complexity. In 2022, Teng et al. [27] proposed
an improved hashing algorithm combined with a Bloom filter,
which effectively improved the performance of hashing and
enhanced the ability of the technology to monitor and detect
large-scale high-speed network traffic in current IoT systems.
However, the Bloom Filter sacrifices some data features while
realizing fast data processing, which is an inevitable result of
the hash function.

In 2018, Dasgupta et al. [28] proposed a novel anomaly
detection algorithm that simulated the biological recognition
process of odors. Their model recognizes objects in terms of
their similarity to previous objects. Drosophila odor recogni-
tion process is divided into two steps:1) The first step assigns a
hashing rule to each odor (the hashes between different odors
may cross, but not repeat). The odor receptor neurons (ORNs)
receive odor information and then transmit the signals emitted
by the receptor neurons to Kenyon cells (KCs) via projection
neurons (PNs) (per the hashing rules in the KC layer) and
build a hash model of normal data flow. 2) The second step
identifies the cells by determining the hash model and the
novelty of each cell. This method offers a new perspective for
anomaly detection models in secure IoT systems. There are a
few drawbacks to this approach: the influx of a large amount
of data from the sensor will inevitably affect the robustness of
the model, and over time, the construction rules of the initial
IoT anomaly detection model will become outdated. Any
anomaly detection algorithm applied to IoT systems should
have the ability to handle large-scale datasets and be capable
of continuously updating the model over time.

Therefore, this study proposes a novel algorithm that uses a
Bloom Filter as the basis of its detection model. Owing to the
rapid response characteristics of the Bloom Filter, this detec-
tion model can respond to real-time data streams because our
algorithm applies the dimension-expansion theory proposed in
[14]. This approach helps to distinguish between normal and
abnormal data, which can help protect IoT system security.
The integration steps of Dimensional Expansion Theory into
our proposed approach are explained in detail in Section III-B.
The proposed algorithm also has thresholds and conditions
for model updating; therefore, the detection model is updated
continuously over time, ensuring the best performance.

Fig. 2. Traditional Bloom Filter Model: W represents the length of the bloom,
and K represents the number of bits the data occupies in the model

III. SYSTEM MODEL

This section describes the framework of the IoT security
system. The algorithm proposed in this work is mainly based
on the Bloom filter and expansion theory, which can effectively
combine the advantages of the fast processing of a Bloom
filter and the advantages of dimension expansion, enabling the
detection model to quickly process large-scale data streams

A. Bloom Filter Model

Bloom Filter (BF) was proposed by Bloom in 1970 [29]
as a probabilistic data structure based on hashing. This data
structure reduces the space occupied by the hash code by
allowing a few errors in the hash code, which has become
a common processing method for large-scale data [30]. In
recent research, BF has been used as a solution for fast data
retrieval and processing in IoT security systems.

1) Basic Bloom Filter: A BF consists of a vector array of
n Boolean values, initially all set to 0 (false), and an element
can be added to the bloom filter but not deleted. When an
element ’x’ has to be added to the set, the element is hashed
with ’k’ hash functions and ’n’ array positions are obtained,
and the values in those indexes are changed to 1.

Currently, the function of a traditional BF is to determine
whether a given element v is present in a set S. Suppose that
a set of binary coding models with length w and its elements
are initiated with a value of 0. The idea here is to map the
elements in the collection to the model one by one through k
hash functions and set the bits in the bit vector at the index
of those hashes to 1. When k positions mapped by the query
point in the model are 1. This proves that the query point exists
in the set, that is, v ∈ S and thus, output = True; otherwise,
output = false, indicating that the query point is not in the set
S.

Figure 2 shows a traditional Bloom Filter of length w = 9
with k = 3 hash functions. In this filter, the second, fourth,
and eighth positions are activated. Therefore, when evaluating
the element-wise value of (2, 4, 8) after mapping, the model
returns ’True’ as its output, which indicates that the model
performs element-wise operations.

2) False positive value of a Bloom Filter: When an element
refers to the same index as that of another element, the new
element changes its value to 1, but the previous element has
a value of 1. Hence, if an element is not present in the set,
its existence returns a value of one, which is called a False
Positive.

Figure 3 shows the process of false positives in the BFs.
Suppose that there are two elements in a set S(x1, x2). The
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Fig. 3. False positive of Bloom Filter:False positives due to overlapping
positions after data projection

mapped positions of x1 are 1, 3, 4 while that of of x2 are 2,
6, 9. A query point q is mapped to the model at positions 1,
6, and 9. When identifying set q that are mapped to positions
1,6,9, the output from the BF returns True, but positions 1
and 9 are already mapped with some elements in x1 and
x2 sets. This behavior of the BF indicates that it is a False
Positive state. The previous related literature [31] has given
the calculation method of false positive probability Pfp as
mentioned in Equation 1, where m is the length of BF, which
is equal to W in Figure 3; n is the number of elements in the
model, k is the number of hash functions, and the probability
of mapping each element to a fixed position is 1

m . When all
elements after the kth positions need to be activated, the total
number of mappings is n · k times.

Pfp = (1− (1− 1

m
)kn)k. (1)

(1 − 1
m )kn indicates the probability that a position in the

model is 0 after all elements are mapped and 1− (1− 1
m )kn

when the probability is set to 1. Therefore, the probability
that all positions of the element are set to one is indicated by
(1− (1− 1

m )kn)k.

B. The basis of dimensional expansion theory

Johnson and Linden-strauss [32] proposed the J-L theorem
in 1984, which is to explore the law of similarity loss in
the process of data dimension transformation It contains two
important points: First, it proves that the minimum value
of the dimensional reduction of high-dimensional data sets
and the data of the original number of dimensions of the
set are irrelevant. The second point proves the relationship
between the loss of the relative distance (mainly the Euclidean
distance) after dimensional reduction and reduced dimension
k. A locally sensitive hashing (LSH) algorithm [33]–[36]
inspired by the J-L theorem was later developed.

Equation 2 describes the relationship between the related pa-
rameters in the high-dimensional data-dimensional reduction
process.

k ≥ 4(
ε2

2
− ε3

3
)−1 ln(n) (2)

where k represents the dimension of the dataset after the
dimensional reduction, n is the size of the dataset, and ε is the
relative distance loss during the dimensional reduction process.
The relationship between ε and relative distance is expressed
by the following equation:

(1− ε)∥u− v∥2 ≤ ∥f(u)− f(v)∥ ≤ (1 + ε)∥u− v∥2 (3)

In Equation 3, u and v represent two points in a dataset
of size n,∥ · ∥2 represents the Euclidean distance between
the two data points, and f() represents the description of the
data after dimensional reduction. According to the value of k,
the relative distance between two data points in the processed
dataset varies between [1− ε, 1 + ε].

The J-L theorem provides theoretical support for the se-
lection of the parameters of the data dimensional reduction
process, and it corrects the previous error of researchers always
linking the dimensions of the data after dimensional reduc-
tion to the initial dimensions. Subsequently, many scholars
have proposed a series of related expansion theories [37],
[38] based on the J-L theorem, which has supplemented the
theoretical gaps in the dimensional reduction process of high-
dimensional datasets, and has had a significant impact on the
production of more scientific dimensional reduction schemes.

1) Dimension Expansion in Support Vector Machine and
Kernel Method: Kernel methods (KMs) are pattern recognition
algorithms that can be used to determine dependencies in a
dataset [39]. More versatile kernel methods include support
vector machines and Gaussian processes. The core idea of
KMs is to Transform the original data into a suitable high-
dimensional feature space through a certain nonlinear mapping
(generally referred to as matrix projection), and then use a
general linear classifier in this new space for further analysis.
One advantage of KMs is that as it is a linear segmentation
method, there is no overfitting.

The support vector machine (SVM) technique is a type of
kernel method that is mainly used for classification [40]. SVMs
divide the dataset linearly according to the corresponding
category or type, usually into two different categories based
on the dataset characteristics through the hyperplane. In the
basic SVM approach, a dataset contains different types of data
in the current vector space, and then a line (two-dimensional
data) or a surface (three-dimensional data) from the vector
space is used to divide the dataset into different categories.
For example, as shown in Figure 4, the number of dimensions
can be set to two and the dataset is divided into two categories.

Figure 4 describes the operation flow of SVM segmentation
when the dataset is linearly separable, but the actual dataset
is usually linearly inseparable (difficulty in finding a good
hyperplane that can divide the data points). This situation is
usually due to the subhigh cohesiveness [54] of the data, that
is, the data of different categories intersect in the vector space;
thus, it is impossible to divide the dataset into two categories.
When dealing with this type of dataset, the usual practice is
to project the dataset into a higher-dimensional space so that
it can be successfully classified.

Figure 5 presents a visualization of this situation. Figure
5(a) depicts the data points that are not linearly separable
in two-dimensional space, and Figure 5(b) shows the
indivisible data points mapped in three-dimensional space (as
it is difficult to obtain suitable higher-dimensional specific
dimensions, only the ideal situation is discussed). From this
figure, it can be concluded that we can easily find a suitable

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3246798

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. XX, XX 20XX 5

Fig. 4. Basic SVM segmentation: Linear segmentation in 2D space

a

b
Fig. 5. a is Linear indivisible data points are displayed in two-dimensional
space; b is Three-dimensional space after SVM processing

hyperplane in three-dimensional space to correctly divide the
dataset according to its category. Hence, when data points
are projected into a higher-dimensional space, the difference
between different types of data points will increase, which
enhances the identification of abnormal data and inspires the
work of this paper

C. Real-time anomaly detection for IoT

This work builds a BF-based real-time data stream anomaly
detection model FJLT-BL that effectively combines BF and
dimensional expansion theory and can be successfully applied
to anomaly detection for large-scale data streams of the IoT.
This section introduces the proposed model from the following
two aspects: model construction process and real-time data
stream detection.

1) The framework of real-time data stream using FJLT-BF:
The real-time detection process of the data stream is illustrated
in Figure 6. When the prior data from the collection of the wire
multimedia sensor are processed, three important components
are obtained: the detection model, growth threshold, and
abnormality determination threshold. When the real-time data
stream collected by the sensor is input to the model, the model
simply preprocesses the data stream with reference to the prior
data processing method and then adjusts the dimension of the
data object to Bloom through the FJLT-FLSH algorithm [14],
[42], [43], filtering the width of the model and retaining the
position of the most significant feature of the data through
a competitive learning strategy [44], [45]. Finally, the stored
location information in the model was compared with the
location of the significant feature value of the data object
to calculate the outliers of the data object. The size of the
abnormal values was compared with the abnormal threshold.
If the abnormal value was greater than the threshold, the data
were judged to be abnormal. Otherwise, the data were judged
to be normal and the abnormal values were compared with the
growth threshold. If it is less than the growth threshold, then
the location information of the salient features of this piece
of data is input to the model, the corresponding location is
activated, and the model is updated. To make the model more
stable, the activation threshold of a certain position within
a time window is usually calculated during the experiment
such that when the number of activations or collisions reaches
the activation threshold, the model is updated to prevent the
robustness from being reduced by a rapid model update rate.
Simultaneously, each activated position in the model will
automatically fail if it is not repeatedly activated for a long
time.

2) FJLT-BF Model construction: The construction of the
model was divided into five steps:

Step 1: Preprocesses the data set, which is mainly di-
vided into two processing processes. The first is numerical
processing, i.e., the normalization and standardization of the
data set. Normalization and standardization can make the
features between different dimensions have a certain degree of
comparison in terms of value, which can greatly improve the
accuracy of the classifier, and can also make the optimization
process of the optimal solution smoother and easier to correct
so that it more quickly converges to the optimal solution.
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Fig. 6. FJLT-BF Detection Model Framework: This framework describes the
dual process from data training to anomaly detection in secure IoT systems

Step 2: Processes the data by FJLT-FLSH algorithm. Di-
mensional transformation is done first, so that the prior data
is transformed to the appropriate dimension through the FJLT
matrix, and different types of data are separated. Next, the
competitive learning strategy is applied to linearly reduce the
dimensionality of the converted data, that is, to ensure that the
more obvious feature values in the data set are retained. These
are used to build a new index structure.

Step 3: Records the significant dimensional positions of
the data processed by the FJLT-FLSH algorithm. The index
position is reserved for the entire a priori data set in the BF,
and the corresponding position is set to 1. This action builds
the anomaly detection model.

Step 4: Train the threshold. The existing normal data and
abnormal data are classified into two groups, and the abnor-
mal average value, abnormal variance value, and maximum
abnormal value and minimum abnormal value of the two data
sets are calculated. According to each group of four values,
two appropriate thresholds are calculated (generally set as the
average value plus or minus t times the standard deviation)
and the specific values can be adjusted according to different
data sets.

Step 5: Verify the threshold and the model. After prepro-
cessing a set of data with known labels, it is input to the
model to calculate the outliers. The model’s output is classified
according to the outliers of the data and the two existing
thresholds, which are com- pared to the original labels. If the
accuracy rate reaches the appropriate range, the effectiveness
of the model is proved.

D. Fast J-L Transform Bloom Filter (FJLT-BF): the anomaly
detection algorithm proposed in this study

The algorithm is mainly divided into four steps: first, the
data are preprocessed, and in the process, each data object
is standardized. This step makes the model trained by the
algorithm closer to the real data; the second step is to imitate
the process of identifying odor information by the olfactory
sense of fruit flies, use the improved FJLT-FLSH algorithm to
expand the original dimension of the data to M , and pass the
neural network of the fruit flies. Competitive learning retains
the most significant p% characteristic of each data object. The
purpose of this step was to simplify the separation of different
types of data and effectively reduce the false positives of the
BF. The number of misjudgments in the BF; the third step is
to initialize the BF of length M , and map the position of each
data object’s reserved feature to the BF, which is activated
according to the BF, the number of units and the calculation
Equation 1 for false positives, calculate the theoretical false
positives of the model at this time. If the false positives at
this time are higher than 5%, then theoretically, the detection
accuracy of the model is less than 95%. The value of M
must be initialized. In a specific application process, it is
necessary to set different false positive peaks according to
different application scenarios and train a suitable model. The
fourth step is to output a set of normal data and abnormal
data prepared in advance to the model; calculate the average,
variance, and standard deviation of the abnormal value of each
data; verify the model twice according to the three parameters;
and judge the validity of the model, that is, whether the two
sets of data are clearly distinguished. If the model effect is
poor, adjust the parameter M and the parameter p until a
suitable model is trained. Then according to the abnormal
value of the two sets of data, the corresponding growth
threshold and abnormal threshold are calculated; theoretically,
the p value is unchanged, the larger the M value, the lower
the false positive of the model, and the better the detection
effect; the M value is unchanged, the greater the p value is,
The activation unit in the model is more likely to collide,
false positives increase, and the more similar data is retained,
the more uncertain the impact on the detection effect of the
model (different data sets will produce different effects, after
experimental testing, under normal circumstances, the data
similarity retention gain is higher than the false positive).

The pseudocode of the algorithm is as follows.
Because this algorithm uses the FJLT-FLSH algorithm in

[14] when processing real-time data streams, the time com-
plexity of the algorithm in this chapter for the real-time
detection of data streams in actual operation is:

E[|P |] = O(εp−4 logp+1 n) (4)

IV. ANALYSIS OF CHANGES IN DATA OBJECTS IN THE
PROCESS OF DIMENSIONAL EXPANSION

Due to the distortion of space, the data projection process
generally causes a loss of similarity between data, except for
certain matrices (such as Fourier transform and Hadamard
transform) [46] [47]. Data dimensional reduction will im-
prove the efficiency of data processing, and having higher
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Algorithm 1 FJLT-FLSH
Require:

Input:Normal Data and Test Data

Process by algorithm 1 Step 1,2,3

ModelF−BF = ΣXN

Output: ModelF−BF , Threshold Outliers α; Threshold Extends β

Ensure:

Input: data(X);

Step 1: XP = Pre(X), Data Preprocess;

Step 2: XE = FJLT (XP ,M); Extend Dimension to M

Step 3: XN = WTA(XE ,K); Reserve k Features by competition

learning.

Step 4: Ols = 1− Intersect(ModelF−BF , Xn). Calculate outliers

Step 5: Judge: Outliers

If Ols > α: Output: The data(X) is Anomaly Data

Else: Output: The data(X) is normal Data

If Ols < β: ModelF−BF = ModelF−BF .Add(XN ). Update Model.

Step 6: ModelF−BF = ModelF−BF ∗ f . Update Model.

dimensions helps to effectively distinguish between normal
and abnormal data, such as constructing an SVM classifier
through a kernel function to segment the data.

A. Dimensional expansion theory

Traditional data dimensional reduction is designed to di-
rectly reduce the feature dimensions of high-dimensional
datasets (usually through principal component analysis, sup-
port vector product, etc.) to reduce query time and space occu-
pation. However, even if dimensional reduction is performed
by principal component analysis (PCA) and other methods, the
accuracy might be reduced because the process of dimensional
reduction must conform to the J-L theorem. According to the
J-L theorem, there is a relationship in Equation 2 between the
reduced dimension k of the dataset and loss parameter ε. That
is, the more the dimensionality of a dataset is reduced, the
more similarity within the dataset is lost [42].

Figure 7 depicts the relationship between the loss param-
eter ε during the projection process and dimension k after
projection. Based on Figure 7, the value of dimension k after
projection must be sufficiently large to reduce the similarity
loss during the projection process.

The FJLT-FLSH algorithm is a locality-sensitive hashing
algorithm combined with a fast matrix transformation [14],
which has the following relationship:

k = ε−2 log(n) (5)

There are two theorems for extension of the J-L theorem:
it shows that losses caused during data transformation are
unavoidable and that there is a bottleneck in the preservation of
the degree of similarity between the transformed and original
data.

Theorem 1: (Advantage of Dimensional extension) Let the
size of the original data be n and dimension be l.After the
dimensional reduction of the data, the dimension is k, the
distance loss is ε1, and the corresponding maximum regression

Fig. 7. The relationship of k and ε under the size of 10000

distance RS1 = 1 − ε1. The function represents the highest
value that the query precision of the algorithm can reach. After
dimension expansion of the data, the dimension is M = mk,
the loss parameter is ε2, and the corresponding maximum
regression distance RS2 = 1 − ε2,in which k < l < M .
Then, the difference of the maximum regression distance is
defined as follows: ∆RS = RS1 −RS2

Theorem 2: (The Maximum Regression Distance Differ-
ence Theorem) sets the original dataset to S0. After dimension
reduction, the dataset was S1, and after dimension extension,
the dataset was S2. Compared to the dimension reduction
dataset, the dimension extension dataset can obtain a higher
Maximum Regression Distance.

RS = RS2 −RS1

= (1− ε2)− (1− ε1)

=

√
log n√
k

−
√
log n√
mk

=

√
m(m− 1) log n

m
√
k

(6)

In Equation 6, when the values of n and k are fixed,
the M value increases as the m value increases, since the
value of k does not change, RS1 does not change. The
difference in the maximum regression distance ∆RS is larger,
and the maximum regression distance RS2 of the extended-
dimension dataset is superior to the maximum regression
distance obtained by the reduced-dimension dataset.

When the values of n and m are fixed, as the k value
increases, ∆RS gradually decreases; that is, RS1 and RS2

gradually approach each other. Assuming that k breaks through
limit (k < l) and becomes infinitely close to positive infinity,
lim

k→+∞
= ∆RS = 0. And, lim

k→+∞
ε1 = lim

k→+∞
ε2 = 0

can be introduced, and the loss parameter at this time is
infinitely close to 0 and the maximum regression distance
lim

k→+∞
RS1 = lim

k→+∞
RS2 = 0, in which the peak of the
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query precision is infinitely close to 1, and lim
k→+∞

∆RS = 0.

When k is infinitely close to and greater than log n, then the
loss parameter lim

k→logn
ε = 1, lim

k→logn
RS1 = lim

k→logn
RS2 =

0, lim
k→logn

∆RS = 0

The theorem above indicates that a dataset with extended
dimensions can obtain a higher maximum regression distance
than a dataset with reduced dimensions. Therefore, the peak
of query accuracy that can be achieved by extending the
dimensions is much higher than the peak of query precision
obtained by reducing the dimensions. Table 1 shows a compar-
ison between the maximum regression distance, the converted
dimension k and the loss parameter ε, which is calculated
using Equations 5 and 6.

TABLE I
EXAMPLE OF THE RELATIONSHIP BETWEEN THE MAXIMUM
REGRESSION SIMILARITY AND k AND ε VALUES UNDER THE

DIFFERENT DATA SET SIZES

n=10000 n=1000000

k ε RS k ε RS

10 0.9487 0.0513 10 Nan Nan
100 0.3033 0.6967 100 0.3715 0.6285

1000 0.0949 0.9051 1000 0.1175 0.8825
10000 0.0303 0.9697 10000 0.0371 0.9629

In the FJLT-FLSH algorithm, the main reason for enlarging
the data dimension is that the FJLT matrix used in the third
chapter obeys the J-L theorem; that is, the larger the value of
dimension k after projection, the smaller the similarity loss
caused by the projection. Therefore, the dimensionality of the
data is enlarged, the similarity between the data objects is
better preserved, and a higher maximum regression similarity
is obtained. Simultaneously, because of the existence of the
Fourier transform and kernel function [46], the time consumed
by the dimensional expansion process is acceptable. The al-
gorithm in this study amplifies the dimension of data features,
can more efficiently retain the similarity between data objects,
obtains higher query accuracy, and can better simulate the
recognition process of biological sensory nerves. Finally, we
can conclude that we can better distinguish the differences
between different data only by amplifying the received signal.

Anomaly detection is the process of segmenting data. This
study found that in the process of dimensional expansion,
similar and dissimilar data differ in their degree of similarity
loss, as explained in Section IV-B. To explore the advantages
of dimension expansion on anomaly detection tasks, this study
analyzes two directions: from the problem of data similarity
loss in the dimension expansion and from the analysis of the
false positive impact of BF.

B. Data similarity loss analysis

Under limited conditions (when the value corresponding to
a data point retains a limited number of decimals), the proba-
bility of any two points colliding in a two-dimensional plane is
much greater than the probability of any two points colliding
in a three-dimensional space. Similarly, normal and abnormal
data will increase the dissimilarity between the two types of

data after dimensional expansion. The normal data have a
similar data structure, and thus, the similarity between them
only occurs with a smaller distortion during the dimensional
expansion. Therefore, it is easier to separate abnormal data
from normal data by using dimensional expansion.

We can verify the relationship between similarity loss and
dilation dimension by simulating data points.

For example, assume that there are three data points in
a three-dimensional space, namely A, B, and C. Consider
the coordinates of A = (x, 2x, 3x), B = (2x, 4x, 5x), and
C = (x, 7x, 4x). First, A is considered as the target point. The
distance from B to A is 3x and the distance from C to A is√
26x ≈ 5.09x. Therefore, we can assume that B is the nearest

neighbor of A relative to C. Based on Euclidean space, the
similarity between points A and B is higher than that between
points A and C. We can randomly select the following matrix
M to expand the dimensionality of the original data points:

M =

 2y y y y
4y 3y y y
5y 6y 2y 1y

 (7)

Â, B̂ and Ĉ are the resultant data points when data points
A, B, and C are projected by the projection matrix Min
into three-dimensional space. The resultant matrix can be
represented as:
Â = (25xy, 25xy, 9xy, 6xy),
B̂ = (45xy, 44xy, 16xy, 11xy),
Ĉ = (50xy, 46xy, 16xy, 12xy).

The Euclidean distance between points A and B is DAB =√
835xy ≈ 28.89xy and the distance between points A and C

is DAC =
√
1135xy ≈ 34xy. This indicates that the distance

between point A and point B increases by △DAB = 25.89xy,
and the distance between point C and point A increases by
△DAC = 28.91xy and thus, △DAC > △DAB .

This study further analyzes this phenomenon and finds that
when matrix M is the sum of the squares of the coefficient
roots of any rank greater than 1, the conclusion remains
robust, and because the number of dimensions in the process
of dimension expansion is large, the conclusion is general.
We can conclude from these facts that dimensional expansion
can more easily separate dissimilar data. This further proves
that, in the process of dimensional expansion, the degree of
similarity loss between similar and dissimilar data is different.
This is consistent with the previous assumption in this study,
that is, when the input signal is amplified, the data structure
is distorted, and it becomes easier to distinguish signals of
different data.

C. The relationship between BF false positives and dimen-
sional extension

Equation 8 shows how the false positive calculation method
of Bloom Filter is represented theoretically, where m is the
length of BF, that is, the expanded dimension of the data set,
k is the number of elements required for a piece of data in
BF, and n is the size of the data set [31].

Pfp = (1− (1− 1

m
)kn)k ≈ (1− e

kn
m )k (8)
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Fig. 8. False positive analysis under different k values

Equation 8 indicates that with the continuous expansion
of dataset dimensions, the false positives of BF is gradually
reduced, so the probability of misjudgment is gradually re-
duced, resulting in abnormal data becoming more significant,
which is not conducive to hiding abnormal data. It is useful
for distinguishing abnormal data from normal data.

Figure 8 shows the theoretical curve of the BF false posi-
tives under different k values, which are expanded to different
dimensions. This clearly shows that when the dataset is
expanded to higher dimensions, there are fewer false positives.
Figure 8 also shows the difference in the rate of false-positive
decline under different k values. The smaller the value of k,
the faster the rate of false-positive decline, and vice versa.
However, the smaller the value of k, the greater the loss of
data similarity. The larger the value of k, the lesser the loss
of similarity. Therefore, when selecting the value of k, it is
important to weigh the decreased rate of false positives and
loss of similarity to select the appropriate parameters. We used
the following approach to select the appropriate parameters.
In the first stage of the proposed algorithm, the dataset is
expanded to m dimensions and then reduced to k dimensions.
In the first stage of the algorithm proposed by the paper, the
data set is expanded to m dimensions, and then reduced to k
dimensions. Therefore, m in the BF represents k in JL. In the
second stage, the dataset was quickly reduced to k dimensions
through competitive learning. Therefore, k in the J-L theorem
is the k value in the BF. The false positives and conversion
of the J-L equation during the two stages are given below:
The first stage: expand the data set with size n and original
dimension d to m dimensions:

△1 = Pfp + ε ≈ (1− e
kn
m )k +

√
log n

m
(9)

At this time, the independent variable is m, which is the
expanded dimension of the data set.

The second stage: build a model through competitive
learning, that is, keep k-dimensional data after dimensionality
expansion

△2 = Pfp + ε ≈ (1− e
kn
m )k +

√
log n

k
(10)

The independent variable is k, which is the number of bits
used to represent the data point in the BF. By setting x =
m; y = k, the binary function is obtained as follows:

△ = △1 +△2 = 2(1− e
−yn
x )y +

√
log n

√
x+ y

xy
(11)

When △ takes the minimum value, the selected parameter
is theoretically optimal.

Through the analysis of the two parts of the detection model
construction process, surface dimension expansion plays a
positive role in the abnormal detection process. The first
positive effect is to increase the distance between abnormal
and normal data, which makes it easier to strip the abnormal
data hidden in the normal data. The second positive effect is
to reduce false positives in the BF detection model, that is,
to reduce the hidden space of abnormal data and improve de-
tection accuracy. Finally, Equation 11 can be used to improve
parameter selection.

V. EXPERIMENTAL RESULTS

A. Datasets

It is difficult to collect a dataset of fault information for
IoT devices and it is common practice to verify the validity
of the proposed model through simulation experiments. In
this study, the fault information extracted from sensory data
stream was simulated using the KDD [48], [49] and Credit
[50] datasets. This article uses two data sets to evaluate the
algorithm proposed in this article. The first dataset is the KDD
dataset, which is one of the few public domains that utilizes
TCP/IP level information and is embedded with domain-
specific heuristics to detect intrusions at the network level.
At present, this dataset has become a benchmark dataset in
the field of anomaly detection. This dataset has 41 features,
but the scale of the dataset is large and suitable for us to
explore Anomaly detection and analysis of large-scale real-
time data streams. The second dataset is a credit card fraud
dataset, which sets a certain label for each entry, is suitable for
training the model, and can be used to evaluate the detection
accuracy of the proposed algorithm. This dataset contains 5000
pieces of data, and we can use this dataset as a data stream
to evaluate the our model.

B. Experiments and Analyses

This study mainly evaluates the algorithm from two aspects,
as mentioned below.
i) The total accuracy of the anomaly detection was Ar1, which
is the accuracy of the detection model for detecting all data
objects. It represents the total number of correctly classified
items-Tt divided by the total number of classified items-Tn.
Ar1 = Tt/Tn.
ii) The detection accuracy rate of abnormal data Ar2 where
the total number of detected abnormal items Ta divided by
the total abnormal items in the dataset Tan.
Ar2 = Ta/Tan

The model detection accuracy rate is the most representative
indicator to evaluate the algorithm, which guarantees the
effectiveness of the algorithm and therefore, we can use this
metric to evaluate our anomaly detection algorithms.
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Fig. 9. Changes in detection accuracy when threshold is α

In order to verify the feasibility of the FJLT-BF proposed in
this article, we designed the following six sets of experiments.

1) Experiment 1 : To prove the algorithm proposed in this
paper, it is first necessary to verify the detection accuracy when
the model remains unchanged for hyper-parameters.

To train the model, randomly select Mn pieces of normal
data, expand it to the M dimension, and the expanded di-
mension M is related to Mn, and then pass the expanded
data through competitive learning to retain k features that
best represent the data. Then, sets the remaining k features
of each piece of data in a one-dimensional space of length
M , in which, the position of the projection is set to 1, and the
remaining positions are set to 0 to generate the model.

The second step is to train the threshold for multiple
itineraries, each of which takes Mn pieces of normal data
and Mn pieces of abnormal data. After the same dimensional
expansion to M dimensions, and retaining k features through
competitive learning, calculate the intersection of each data
and mode, calculate its novelty, and select a value based on
its average and variance, which can distinguish most abnormal
data (it needs to be able to distinguish at least 95% of abnormal
data). Set this value as the abnormal threshold α, and then
select a value according to the training set of normal data,
which contains at most 5% of the normal data as the extended
threshold β.

The third step is to test the accuracy of the model and
calculate the novelty of the test set after the same projection.
The abnormal threshold for this group of experiments was
α = 0.01. Due to the uninterrupted data flow, this study
sets 1000 data points from KDD dataset as a time window,
Mn = 5000,M = 20000, repeated 10 times, and then average
value was taken.

Based on Figure 9, the detection accuracy of the model
proposed in this study was in the range from 97% to 98.9%,
which indicates that our algorithm proposed in this study
has high detection accuracy. Although the detection accuracy
of our model remains at a high rate as the time window
continues, it decreases over time and therefore, it is required
to update the model continuously.

2) Experiment 2: On the basis of Experiment 1, Exper-
iment 2 adds the model update threshold β, but does not
set the activation parameter π (i.e, π = 1). In this set of
experiments, we extracted three subsets from the KDD dataset
for testing purposes. First, the abnormal threshold for the
first batch of experiments is set to be α = 0.01. Due to
the uninterrupted data flow, we set 1000 data points to be
in one time Window (i.e. Mn = 5000,M = 20000). These
experiments are repeated 10 times, and the average accuracy
is taken to evaluate the performance. The dataset used in this
group of experiments is a subset of the KDD dataset, which
is different from the subset extracted in experiment one.

Figure 10 shows the experimental results for this
Experiment 2. We can conclude that the detection accuracy
of the model was significantly improved when the model
update with threshold value. However, due to setting the
model activation threshold to 1, the number of units in the
model is easily activated, and thus, the detection accuracy
of the model shows a significant increase in the early stage.
However, When it rises to the peak value, the probability
of misclassificaiton increases because of the false positive
of the Bloom filter increases. Hence, the accuracy of the
detection model shows a downward trend. Through this set
of experiments, we realized that there is an upper limit to the
endurance of the model, where if the activation parameter
activation setting is set to 1, the M − bit filter we set will be
rapidly occupied, resulting in a rapid increase in the detection
accuracy of the proposed model and then a rapid decline.
If the number of activation units in the model increases
rapidly, the detection ability of our model reaches the upper
limit at the earliest convergence. At this point, the model is
homogenized by a new type of data, which makes it difficult
to distinguish different types of data.

3) Experiment 3: In the third set of experiments, we added
the relevant model update process to set the updated threshold
β and the activation threshold π. First, we construct the model
and then, the number of initially activated units, such as the
initial model length IML, the abnormal threshold α and the
expansion threshold β in the model, are recorded through two
training sets. Then data flow was detected followed by the
previous step. With the continuous influx of data flow, when
the abnormal value of a data object is less than the expansion
threshold β, a dimensional feature that does not match the
object and the model is added to the activation array. When
the number of occurrences of an element of is greater than
or equal to the activation parameter π, the position of the
element in the model Mode is activated and set to 1. At this
time, the value of IML is also increased by 1. In this set of
experiments, in order to highlight the update of the model, we
took 2000 data as a time window, and count the number of
model activation units to show the model update.

Figure 11 shows the change curve of the detection accuracy
Ar1, Ar2 with in terms of time windows. We can observe that
there is a value above the accuracy for each time window.
This value represents the number of active units in the model
and can be interpreted as the model length ML. Following
conclusions were drawn from this Figure 11. i) When we
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Fig. 10. Detection accuracy after adding threshold β

Fig. 11. Anomaly detection results under different thresholds and activation parameters π

add the update function to the model, the detection both
accuracy Ar1 and Ar2 are both higher than the accuracy
under a fixed model length. ii) After comparing Experiments
2 and 1, it can be concluded that when the activation function
is set for the model, the detection accuracy of the model
remains unchanged with the continuous influx of data flow.
The detection accuracy in Experiment 1 has decreased with
the continuous influx of data streams, which proves that
the model proposed in this study has achieved significant
performances in the abnormal detection of data streams. iii)
Figure 11 clearly shows that the number of model activation
units, ML, automatically increased with the continuous influx
of data flow. By setting different activation parameters π, the
growth rate of ML can achieve different values. The larger
the value of π, the slower the growth of the ML and the

smaller the value of π, the slower the growth of the ML. If π
is set to a too large value, the model is likely to experience
many time windows, and the model is still not updated,
which causes the detection accuracy of the model decrease.
Additionally, the β value is another important parameter for
updating the model. Setting different expansion thresholds
β results in different model growth rates. In other words,
the larger the β value, the faster the model growth, and
vice versa. The model grew slower if the β value is large.
When the dimension of abnormal data added to the model,
then the abnormal data appears in future can recognized as
normal data, resulting in a significant decrease in the accuracy
of detecting abnormal data in the subsequent data stream;
thus, the value of β is generally selected to be a smaller value.
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(a) (b)

(c) (d)
Fig. 12. Comparison of the accuracy of four anomaly detection technologies

4) Experiment 4: To compare the accuracy of the proposed
algorithm with several baseline models, we calculated two
accuracy evaluation metrics (Ar1 and Ar2) using two datasets.
We used three baseline models in our evaluations: IForest
[51] - Isolated Forests proposed by Zhou Zhihua [52], the
BPNN neural network algorithm [53] and the Fast-KNN [54].
In Experiment 4, these baseline models are compared with the
FJLT-BF algorithm proposed in this paper. We first divided
the pre-processed dataset to analyze time-series data and then
entered the trained model to calculate the outliers in the time
windows to determine the abnormality. To evaluate FJLT-BF
algorithm, we executed other baselines models in the same
operating.

The experimental results are shown in Figure 12, where
subimages (a) and (b) are the comparison of the detection
accuracy of the four algorithms on the two datasets under the
Ar1 indicator. In terms of Ar1, the model proposed in this
paper shows better performances compared to other models.
Among them, the IForest algorithm showed less accuracy on
the KDD dataset. The accuracy of the algorithm proposed in
this study and the BPNN can reach more than 0.95%. On the

credit card dataset, the detection accuracy of the IForest has
reached more than 0.85%, which indicates that different data
types will affect the efficiency of the anomaly detection model.

Subfigures (c) and (d) show the anomaly detection
accuracy of the four algorithms in the two datasets under the
Ar2 metric. Based on the Ar2 metric our F-BF algorithm
proposed in this study performs well on the KDD dataset
and performed better than BPNN and IForest. However, on
the credit card fraud dataset, the BPNN performed better
than that of the other algorithms used in this experiment.
However, one drawback of the BPNN is that it is costly, in
terms of training time and space, to train a NN for anomaly
detection. The Fast-KNN algorithm needs to calculate the
distance between a large number of high-dimensional data
points during the calculation process, which consume lots
of time to converge and also requires additional space. In
summary, the novel anomaly detection algorithm FJLT-BF
proposed in this study has higher efficiency than the baseline
anomaly detection models.
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TABLE II
THE COMPARISON OF TIME PERFORMANCE

Times(s) 1 2 3 4 5 6 7 8 9 10
IForest 3.1 3.2 3.1 3.2 3.3 3.3 2.9 3.1 3.2 3.2
Fast-KNN 50.2 52.1 49.5 50.5 49.2 49.6 48 52.6 51 53
BPNN 296.5 295.7 291.2 290.7 300.2 287.9 297.8 281.5 299.5 293.6
F-BF 12.6 12.8 12.6 12.7 12.8 12.4 12.9 12.8 12.6 12.7

5) Experiment 5: In this set of experiments, we compared
the time efficiency of four anomaly detection algorithms
(BPNN, Fast-KNN, IForest, and F-BF) under the same ex-
ecution platforms and configuration. The total time consumed
during the execution of the algorithm consists of two parts:
model building and model checking. To explore the time loss
of the four algorithms in actual operation, this study separately
obtains the timestamp when the program starts and terminates.
The difference between the two timestamps is calculated to
obtain the execution time of the algorithm. To ensure the
authenticity of the results, this study conducts 10 tests on the
four sets of algorithms, each acquisition builds a model, and
calculate the total time to test 1500 sample data points. The
experimental results are shown in Table 2.

It can be concluded that the total time spent by the IForest
was the smallest, followed by the F-BF algorithm proposed
in this study. The BPNN requires the most time because of
the need to iteratively train the model. In our experiments,
we found that NN training consume more time, and in the
detection process, the neural network algorithm for detecting
1500 data takes approximately 0.6 seconds. The execution
time of the Fast-KNN is also high because it needs to
calculate the distance between multiple data. In short, the
algorithm proposed in this study simplifies the model training
process and improves the efficiency of model training. In
addition, the optimization of the model in terms of execution
time in this study has low latency when processing data. It
is known from Experiment 4 that the detection accuracy of
the algorithm in this study was much higher than that of the
isolated forest algorithm.

6) Experiment 6: In our analysis, we designed a set of
experiments to explore the impact of dimensional expansion
on the detection rate Ar1 and Ar2 using four different datasets.
The first dataset is 2000 normal data extracted to train the
model, and the second is to use another 1000 normal data
and 450 abnormal data (there are only 495 abnormal data in
credit card fraud) as a training set. Then, a detection model
was constructed using the method explained in Experiment 1,
and the threshold α was calculated using two training sets.
Finally, another 1500 pieces of data were selected for testing.

Experiment 6 has two important parameters: expanded di-
mension M and number of features reserved for competitive
learning k. The selection and distribution of the value k is
based on the J-L theorem introduced in Section IV-C, Figure
8, and Equation 11 and the k setting range is near the inflection
point. This experiment is divided into three groups as follows
and the experimental results are listed in Table III.

1) First, set the model length M = 30000; that is, all

datasets are expanded to 30,000 dimensions, and then k
(k = 1000, 1500, 2000, 2500, 3000) features are retained.
Finally, the detection accuracy Ar1 and Ar2 are calculated
through the test set;
2) Set the total length of the model to M = 50000, k =
1000, 2000, 3000, 4000, 5000. Calculate the detection accuracy
Ar1, Ar2;
3) Set the fixed length k = 3000, select different model
total lengths M = 10000, 20000, 30000, 50000, 60000, 90000.
In other words, the fixed number of retained features is
calculated, and the detection accuracy Ar1, Ar2 under
different model lengths.

TABLE III
THE EXPERIMENTAL RESULT OF EXPERIMENT 6

M = 30000

k 1000 1500 2000 2500 3000
α 0.001 0.00067 0.0005 0.0004 0.00033
Ar1 0.914 0.919 0.922 0.926 0.927
Ar2 0.677 0.698 0.718 0.744 0.744
A. The influence of α value on the test result under M=30000

M = 50000

k 1000 2000 3000 4000 5000
α 0.001 0.0005 0.00033 0.00025 0.0002
Ar1 0.918 0.923 0.93 0.933 0.933
Ar2 0.695 0.732 0.759 0.77 0.771
B. The influence of α value on the test result under M=50000

M = 50000, α = 0.00033

k 10000 20000 30000 50000 60000 90000
Ar1 0.921 0.924 0.927 0.93 0.931 0.937
Ar2 0.706 0.722 0.744 0.759 0.762 0.791

C. Optimal Exploration with Fixed M and α Values

Table 3 shows the relationship between the detection ac-
curacy, extended dimension, and number of retained features.
From Table 3.A and Table 3.B, we can conclude that, as the
number of retained features increases, the detection accuracy
of the model also gradually increases. However, Table 3.A
shows that when k = 2500 and k = 3000, the detection
accuracy is essentially the same. Therefore, there is a bot-
tleneck in the increase in k; that is, when k reaches a certain
value, the detection accuracy does not increase, which is in
line with the limit under the JL theorem. Table 3.C shows
the relationship between the detection accuracy and the total
length M of the model when the k value is fixed. From Table
3.C, it can be seen that as M increases, the two detection
accuracy Ar1, Ar2 are both It is increasing, which shows that
the extended dimension can separate the abnormal data hidden
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in the normal data, thereby improving the detection accuracy
of the model. This further proves the argument put forward
in the third section of this article that dimensional expansion
makes it easier to distinguish between normal and abnormal
data.

VI. CONCLUSION AND FUTURE WORKS

This paper proposes a new real-time anomaly detection
model, the FJLT-BF, for streaming data (device logs, con-
tent data, sensor environment information). This model can
discover the fault(s) or wear of a sensor network in an IoT
device in real-time, and thus maintain the stability of the
IoT system. The FJLT-BF model differs from existing work,
mainly due to our novel algorithm that can effectively combine
the advantages of the fast processing of a Bloom filter and
the advantages of dimension expansion, enabling the detection
model to quickly process large-scale data streams . The FJLT-
BF model solves the problem of identifying data anomalies
in data streams due to the wear and tear of sensors or other
IoT devices. In addition, the FJLT-BF model can identify
malicious intrusion data hidden in large-scale data flow. Our
proposed model provides a novel perspective for the protection
of IoT security systems, and it effectively integrates the theory
of dimension expansion, which ensures that our proposed
algorithm can more effectively detect abnormal data. We train
our Bloom filter model and the required two thresholds on
the training data. Then, during the detection process, these
two thresholds are utilized to identify anomalies and expand
the model to guarantee the model proposed in this paper. The
algorithm can effectively maintain the security of the Internet
of Things system and protect the security of the system from
man-made or accidental damage. In the future, our work will
focus on combining additional evaluation metrics and IoT
datasets to explore additional metrics to evaluate our anomaly
detection algorithm. Our research group also hopes to use
the proposed model proposed to better and more effectively
combine wireless multimedia sensors, so that it can be applied
to IoT systems based on wireless multimedia sensors as well.

REFERENCES

[1] Alzubi J A. Blockchain-based Lamport Merkle digital signature: authen-
tication tool in IoT healthcare[J]. Computer Communications, 2021, 170:
200-208.

[2] Alzubi O A, Alzubi J A, Shankar K, et al. Blockchain and artificial
intelligence enabled privacy-preserving medical data transmission in
Internet of Things[J]. Transactions on Emerging Telecommunications
Technologies, 2021, 32(12): e4360.

[3] Demirbaga U, Aujla G S. MapChain: A Blockchain-based Verifiable
Healthcare Service Management in IoT-based Big Data Ecosystem[J].
IEEE Transactions on Network and Service Management, 2022.

[4] Benmansour F L, Labraoui N. A Comprehensive Review on Swarm
Intelligence-Based Routing Protocols in Wireless Multimedia Sensor
Networks[J]. International Journal of Wireless Information Networks,
2021, 28(2): 175-198.

[5] Bai F, Liu X Y, Zhang Y L, et al. Research on game model of
wireless sensor network intrusion detection[C]//Proceedings of the 2019
International Conference on Embedded Wireless Systems and Networks.
2019: 373-378.

[6] Alzubi J A. Bipolar fully recurrent deep structured neural learning based
attack detection for securing industrial sensor networks[J]. Transactions
on Emerging Telecommunications Technologies, 2021, 32(7): e4069.

[7] Karim M R, Cochez M, Beyan O D, et al. Mining maximal frequent
patterns in transactional databases and dynamic data streams: A spark-
based approach[J]. Information Sciences, 2018, 432: 278-300.

[8] D’Alconzo A, Drago I, Morichetta A, et al. A survey on big data for
network traffic monitoring and analysis[J]. IEEE Transactions on Network
and Service Management, 2019, 16(3): 800-813.

[9] Garg S, Kaur K, Batra S, et al. A multi-stage anomaly detection
scheme for augmenting the security in IoT-enabled applications[J]. Future
Generation Computer Systems, 2020, 104: 105-118.

[10] Habeeb R A A, Nasaruddin F, Gani A, et al. Real-time big data
processing for anomaly detection: A Survey[J]. International Journal of
Information Management, 2019, 45: 289-307.

[11] Singh G, Khare N. A survey of intrusion detection from the perspective
of intrusion datasets and machine learning techniques[J]. International
Journal of Computers and Applications, 2021: 1-11.

[12] Deng F, Song Y, Hu A, et al. Abnormal traffic detection of IoT terminals
based on Bloom filter[C]//Proceedings of the ACM Turing Celebration
Conference-China. 2019: 1-7.

[13] Hasheminejad S M H, Salimi Z. FDiBC: a novel fraud detection method
in bank club based on sliding time and scores window[J]. Journal of AI
and Data Mining, 2018, 6(1): 219-231.

[14] Shao W, Xiao R, Huang J, et al. FJLT-FLSH: More Efficient Fly
Locality-Sensitive Hashing Algorithm via FJLT for WMSN IoT Search[J].
IEEE Internet of Things Journal, 2019, 6(4): 7122-7136.

[15] Chandola V, Banerjee A, Kumar V. Outlier detection: A survey[J]. ACM
Computing Surveys, 2007, 14: 15.

[16] Zarpelão B B, Miani R S, Kawakani C T, et al. A survey of intrusion
detection in Internet of Things[J]. Journal of Network and Computer
Applications, 2017, 84: 25-37.

[17] Kobayashi S, Otomo K, Fukuda K, et al. Mining causality of network
events in log data[J]. IEEE Transactions on Network and Service Man-
agement, 2017, 15(1): 53-67.

[18] Cauteruccio, Francesco, et al. ”Short-long term anomaly detection
in wireless sensor networks based on machine learning and multi-
parameterized edit distance.” Information Fusion 52 (2019): 13-30.

[19] Qu G, Wu H, Li R, et al. DMRO: A deep meta reinforcement learning-
based task offloading framework for edge-cloud computing[J]. IEEE
Transactions on Network and Service Management, 2021, 18(3): 3448-
3459.

[20] Sun C C, Cardenas D J S, Hahn A, et al. Intrusion detection for
cybersecurity of smart meters[J]. IEEE Transactions on Smart Grid, 2020,
12(1): 612-622.

[21] Cui, Lei, et al. ”Security and privacy-enhanced federated learning for
anomaly detection in iot infrastructures.” IEEE Transactions on Industrial
Informatics 18.5 (2021): 3492-3500.

[22] Niu, Yichun, et al. ”Distributed intermittent fault detection for linear
stochastic systems over sensor network.” IEEE Transactions on Cyber-
netics (2021).

[23] Sun K, Qiu W, Yao W, et al. Frequency injection based HVDC attack-
defense control via squeeze-excitation double CNN[J]. IEEE Transactions
on Power Systems, 2021, 36(6): 5305-5316.

[24] Xiong Z, Cai Z, Takabi D, et al. Privacy threat and defense for federated
learning with non-iid data in AIoT[J]. IEEE Transactions on Industrial
Informatics, 2021, 18(2): 1310-1321.

[25] Groza, Bogdan, and Pal-Stefan Murvay. ”Efficient intrusion detection
with bloom filtering in controller area networks.”IEEE Transactions on
Information Forensics and Security 14.4 (2018): 1037-1051.

[26] Deng, Fengjie, et al. ”Abnormal traffic detection of IoT terminals based
on Bloom filter.”Proceedings of the ACM Turing Celebration Conference-
China. 2019.

[27] Zhan, Teng, and Shiping Chen. ”An improved hash algorithm for
monitoring network traffic in the internet of things.” Cluster Computing
(2022): 1-16.

[28] Dasgupta, Sanjoy, Charles F. Stevens, and Saket Navlakha. ”A neural
algorithm for a fundamental computing problem.” Science 358.6364
(2017): 793-796.

[29] Bloom, Burton H . Space/time trade-offs in hash coding with allowable
errors[J]. Communications of the ACM, 1970, 13(7):422-426.

[30] Sinha K, Ram P. Fruit-fly Inspired Neighborhood Encoding for Clas-
sification[C]//Proceedings of the 27th ACM SIGKDD Conference on
Knowledge Discovery & Data Mining. 2021: 1470-1480.

[31] Byun H, Lim H. Learned FBF: Learning-Based Functional Bloom Filter
for Key-Value Storage[J]. IEEE Transactions on Computers, 2021.

[32] Johnson W B, Lindenstrauss J. Extensions of Lipschitz mappings into
a Hilbert space[J]. Contemporary mathematics, 1984, 26(189-206): 1.

[33] P. Indyk and R. Motwani, “Approximate nearest neighbors: Towards
removing the curse of dimensionality,” in Proc. 30th Annu. ACM
Symp.Theory Comput., May 1998, pp. 604–613.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3246798

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. XX, XX 20XX 15

[34] X. Gu, G. Dong, X. Zhang, L. Lan and Z. Luo, ”Towards Mak-
ing Unsupervised Graph Hashing Robust,” 2020 IEEE International
Conference on Multimedia and Expo (ICME), 2020, pp. 1-6, doi:
10.1109/ICME46284.2020.9102845.

[35] Li D, Zhang W, Shen S, et al. SES-LSH: shuffle-efficient locality sensi-
tive hashing for distributed similarity search[C]//2017 IEEE International
Conference on Web Services (ICWS). IEEE, 2017: 822-827.

[36] Xu K, Qiao Y. Randomized sampling-based fly local sensitive hash-
ing[C]//2018 25th IEEE International Conference on Image Processing
(ICIP). IEEE, 2018: 1293-1297.

[37] Frankl P , Maehara H . The Johnson-Lindenstrauss lemma and the
sphericity of some graphs[J]. Journal of Combinatorial Theory, Series
B, 1988, 44(3):355-362.

[38] Dasgupta S, Gupta A. An elementary proof of a theorem of Johnson and
Lindenstrauss[J]. Random Structures & Algorithms, 2003, 22(1):60-65.

[39] Liu, Fanghui, et al. ”Random features for kernel approximation: A
survey on algorithms, theory, and beyond.” IEEE Transactions on Pattern
Analysis and Machine Intelligence 44.10 (2021): 7128-7148.

[40] Alzubi O A, Alzubi J A, Al-Zoubi A M, et al. An efficient malware
detection approach with feature weighting based on Harris Hawks opti-
mization[J]. Cluster Computing, 2022, 25(4): 2369-2387.

[41] Nie F, Zhu W, Li X. Decision Tree SVM: An extension of linear SVM
for non-linear classification[J]. Neurocomputing, 2020, 401: 153-159.

[42] Ailon N, Chazelle B. Approximate nearest neighbors and the fast
Johnson-Lindenstrauss transform[C]// Thirty-Eighth ACM Symposium on
Theory of Computing. ACM, 2006:557-563.

[43] Singhal A, Buckley C, Mitra M. Pivoted document length normaliza-
tion[C]//ACM SIGIR Forum. New York, NY, USA: ACM, 2017, 51(2):
176-184.

[44] Thilakaratne M, Falkner K, Atapattu T. A Systematic Review on
Literature-based Discovery: General Overview, Methodology, & Statis-
tical Analysis[J]. ACM Computing Surveys (CSUR), 2019, 52(6): 1-34.

[45] Tian, Ye, et al. ”Efficient large-scale multiobjective optimization based
on a competitive swarm optimizer.” IEEE Transactions on Cybernetics
50.8 (2019): 3696-3708.

[46] Kita, Derek M., et al. ”High-performance and scalable on-chip digital
Fourier transform spectroscopy.” Nature communications 9.1 (2018): 1-7.
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