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Abstract—With the freedom of communication
provided in online social media, hate speech has
increasingly generated. This leads to cyber conflicts
affecting social life at the individual and national
levels. As a result, hateful content classification is
becoming increasingly demanded for filtering hate
content before being sent to the social networks.
This paper focuses on classifying hate speech
in social media using multiple deep models that
are implemented by integrating recent transformer-
based language models such as BERT, and neural
networks. To improve the classification performances,
we evaluated with several ensemble techniques,
including soft voting, maximum value, hard voting
and stacking. We used three publicly available Twitter
datasets (Davidson, HatEval2019, OLID) that are
generated to identify offensive languages. We fused
all these datasets to generate a single dataset (DHO
dataset), which is more balanced across different
labels, to perform multi-label -classification. Our
experiments have been held on Davidson dataset and
the DHO corpora. The later gave the best overall
results, especially F1 macro score, even it required
more resources (time execution and memory). The
experiments have shown good results especially the
ensemble models, where stacking gave F1 score of 97 %
on Davidson dataset and aggregating ensembles 77 %
on the DHO dataset.

Index Terms—hate speech detection, BERT, deep
neural networks, Twitter, ensemble learning.

I. INTRODUCTION

Twitter is used to disseminate hate speech,
especially with the anonymity provided [1]. Thus,
any strategy to identify such content is critical
in today’s world for keeping the internet a safe
environment. Detecting online hateful content is the
first step in developing a system that flags such
items and take right actions. Human annotators are
employed by social media corporations to erase
these samples and users can flag anything they find
harmful to the public. But these procedures are
time consuming and depend on human judgment.
Thus, automated hate speech detection approaches
have been a major concern in this era. To this end,
in early research, many attempts were built upon
machine learning algorithms and different features
extraction techniques, but in recent years, significant
performances were obtained by using Transformer-
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based Language Models [2]. Bidirectional Encoder
Representations from Transformers, BERT, has

achieved state-of-the-art results in many NLP tasks
[3]. Moreover, Neural Network - NN approaches
managed to reduce feature engineering and are
implemented and coupled with the representation
of texts as word vectors through word embedding
models. However, machine learning and NN models
required to have a larger corpus of datasets to train,
but BERT-based models work with a small number
of labeled data and sometimes. Hence, to use the
advantage of both approaches, we integrate them
together to build a deep architecture in order to
achieve considerable performances in hate speech
classification. In addition, we use Ensemble learning
approaches to improve model performances further
[4]. In this context, we employed and fine tuned
BERT, combined it with deep neural networks and
merged obtained models via ensemble learning, in
order to detect hate speech in Twitter base data.

The main contributions of this paper are: 1)
Presenting transfer learning approach by integrating
BERT with Multi Layers Perceptron (MLP),
Convolutional Neural Networks (CNN) and Long
short-term memory (LSTM) for hate speech
detection, in order to explore this mix of models
performs better in text classification tasks compared
to neural networks or BERT alone. 2) Applying
several ensemble learning approaches to improve
the performance of these models. 3) Creating new
corpora, by fusing multiple public and labeled
datasets to get large-size and more balanced
corpora. 4) Comparing the integrated models
with baseline models and, 5) Comparing model
performances through their memory utilization and
runtime parameters. We managed to get benefit from
the contribution of the combination of BERT and
deep neural networks in the text classification task,
dealing with the scarcity and the imbalanced data.
In addition, we exploited that ensemble learning
approaches enhanced our deep models’ ability in
the classification of hate speech content.

II. LITERATURE SURVEY

Transfer learning: The deep learning models
rely on the adoption of Neural Networks -



NN coupled with conventional word embedding
techniques, which achieved effective performance
but often not as efficient as a transformer’s
[5]. Recent methodologies have gradually changed
approaches from RNNs to self-attention and
transformers [6] in many NLP tasks. Google’s
BERT [3] adapted Transformers in 2018, that
can condition both left and right context to
pretrain deep bidirectional representations from
texts. Chiril et al [7] built a BERT-based muti-
task hate speech detection method that outperforms
a system trained on a single topic-generic dataset.
Moreover, Kovics et ai [8] suggested a model of a
conjunction of RoOBERTa and FastText incorporated
with CNNs and RNNs and achieved 63% F1
score. Malik et al. [9] conducted a review of
14 shallow/deep classifiers, driven by a variety
of word representation approaches. They resulted
that coupling BERT, ELECTRA, and AI-BERT
with NNs outperforms other approaches. Their best
models were BERT+CNN and ELECTRA+MLP
giving F1 macro score of 76% on Davidson
[10] dataset. Moreover, Mozafari et al. [11]
used BERT-based methods (BERT+Bi-LSTM, and
BERT+CNN) to detect hate speech and achieved
significant performances.

Ensemble learning: This is a machine learning
approach that involves training several models
together in a given task. An ensemble is made up
of a group of learners known as base/weak learners,
trained for the same problem, then integrated to
improve results [4].

Badjatiya et al. [12] ensembled Embedding,
LSTM and gradient boosted trees to determine
whether a tweet is racist, sexist, or neither in a 16k
dataset and achieved 93% F1 score. Plaza-del et al.
[13] built a vote ensemble classifier including SVM,
LR and Decision Tree(DT) to classify hate tweets
in English and Spanish and achieved 44% F1 score.
Agarwal et al. [14] proposed a Stacking classifier
to extract word embedding with RNNs, then, they
used SVM, DT, MLP, kNeighbors, ELM, with LR
as the meta-classifier and F1 score of 73%. Aljero
et al. [15] got F1 score of 97% with their stacking
ensemble that combines SVM, LR, and XGBoost.

According to the recent researches that have
been held using ensemble learning, we find that
the majority of them didn’t implement transformers
in their experiments (whether for word embedding
or as classifiers). Moreover, most of the recent
studies were focused on assembling only machine
learning classifiers. The classification process was
also binary detection of hateful/abusive content.
Based on the state-of-the-art on hate speech
detection using transformers-based transfer learning
and ensemble learning, in this work we propose
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several strategies to the same task by integrating
best of both approaches.

III. METHODOLOGY

We aim to build deep learning hate speech
detectors by fine tuning and integrating BERT with
several NNs, and to enhance hate speech detection
performance via ensemble learning. We work on
multi-label classification task to distinguish between
hateful, offensive and normal content from Twitter.

A. Dataset
Our analyses are based on 3 publicly available

datasets: Davidson [10], HatEval [16], and OLID
[17]. 1) Davidson: created by Davidson et al.
[10] (2017). It includes 24783 tweets and 3
labels (hateful, offensive, and neither), that were
generated using Figure Eight crowdsourcing'. These
tweets were selected from 85.4M archive tweets,
focusing on HateBase keywords (hatebase.org),
and annotated by 3 people. For the rest of the
paper, we refer this dataset as Davidson dataset. 2)
HatEval: contains 13000 tweets about immigrants
and women, and generated for the SemEval2019
Task5 [16]. The majority of the tweets came from
the AMI corpus® and the dataset was labeled via
Figure Eight crowdsourcing'.

The annotators detect if a tweet is hateful,
aggressive, and whom it is directed (individual
or group). In this paper, we refer this dataset
as HatEval2019. 3) OLID: Offensive Language
Identification Dataset, created by Zampieri et al.
[17] and composed of 14100 tweets. A 3-level
hierarchical annotation was used, with the first one
determines if a tweet is offensive. In this paper,
We refer this dataset as OLID dataset. 4) DHO:
generated by merging Davidson, HatEval2019 and
OLID datasets to build a large data corpus for
our analysis. Data statistics of these corpora are
illustrated in Figure 1. Compared to Davidsons,

Uhttps://appen.com/figure-eight-is-now-appen/
Zhttps://groups.inf.ed.ac.uk/ami/corpus/
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DHO is more balanced, it is used to demonstrate
the resilience and generalization of our models.

B. Deep models
Trained on large amounts of data [3], BERT

will certainly lead to excellent performances when
using for downstream tasks. It also returns different
vectors and contextual embedding for the same
word, which extract more information from texts.
In the other hand, deep learning networks provide
many advantages for NLP, where CNN and RNN
are majorly used for text classification. Therefore,
we implemented 4 models integrating BERT with
other popular NN models such as MLP, CNN
and LSTM. At first, we assess the contextual
information derived from BERT. We fine-tune
them using our datasets to get its contextual
representations and then, ensemble models with
several ensemble learning techniques: aggregation
and stacking, aiming to improve performance
and robustness, and to get better classification.
The Figure 2 shows the general architecture of
our models: Text data needs to be transformed
to numeric token ids then arranged in several
Tensors before being input to BERT-model, here,
TensorFlow Hub provides a matching BERT-
preprocessor (tokenizer) for each of the BERT
models, which implements this transformation using
TF.text library?. Our Bert-Model you will return
512 dimension embedding for each token: ’sequence
output’ and "Pooled output’, which, will be fed into
the created NN (Keras layer).

In this work, we used BERT Tensorflow Hub* to
compute vector-space representations of datasets, to
implement 4 different deep models.

1) BERT baseline: (Figure 3.a) We used BERT
uncased L-4 H-512 A-8 model: 4 hidden layers (L),
512 hidden size (output size of 512 dimensions)
(H). We took the pooled output and integrated a
dropout and a dense layer (Softmax activation).

3https://www.tensorflow.org/text/tutorials/classify\ _text\ _
with\_bert
“https://tfhub.dev/google/collections/bert/1

2) BERT+MLP: (Figure 3.b) MLP is a type
of traditional neural networks that are highly
adaptable. They consist in 3+ layers of neurons.
2 dense and one dropout layers are added to
BERT’s pooled output. 3) BERT+LSTM (Figure
3.c): LSTM is a RNN that update hidden layers
using memory cells, and appear to be effective in
sequential learning long-range text dependencies.
We integrated into BERT’s sequence output, 2
LSTM layers (512 units) followed by a dropout
and a dense layer. 4) BERT+CNN (Figure 3.d):
CNNs are deeper and sparsely connected, allowing
to efficiently find patterns in noisy texts. Here,
2 CNN (convlD with ReLu activation), a Global
Max Pooling and 2 dense layers are integrated into
BERT’s sequence output.
C. Ensemble Learning

Since Neural networks are nonlinear, they have
high variance and low bias, being very sensitive to
noisy data. Thus, there is no guarantee to exhibit
low generalization error when predicting. Hence,
we implemented ensemble learning to improve
model performance by reducing these issues’
effects. We used 4 ensembling methods combining
BERT+MLP, BERT+CNN and BERT+LSTM, with
stacking and aggregation: 1) Soft Veoting Or
averaging, merges several fine tuned models trained
on the same dataset. We took the average of
predicted class probabilities of each individual
classifier C'; and then, used argmax to obtain the
final class as shown in equation 1. The predicted
probabilities were treated equally (w; = 1 for each
Jjth model).

§ = argmazie(1,. cyje{1,..myw;bij

ey

@ is the class value in data and the class probability
pis Vi, py = i) = i, P,

2) Maximum voting Consider the maximum

prediction probability from the models. We have
C(z) = p: the probability distribution over the c
classes y where:
p = {ply=0lC),p(y =1|C),..py = m|C)}.
Thus, the max value ensemble result is the
class with the maximum probability among the
classifiers, as illustrated in the equation 2.

§ = argmazieqa,..c}p (y = i|C) )

3) Hard voting Employs the principle of majority
voting (of an odd number of classifiers), it takes
the predictions of each model and output the most
frequent class. We predict the class ¢ via majority
vote of each of the m classifiers as shown in
equation 3.

9§ =mode{Cy,Cs,...Cn}. 3)

4) Stacked Generalization ensemble Or
stacking, is an integration strategy [18]. It
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Fig. 3. The architectures of integrated deep models: (a.) BERT baseline, (b.) BERT+MLP, (c.) BERT+LSTM, (d.) BERT+CNN

Predictions 2

Predictions 1

Fig. 4. Different Ensemble learning Models (EM):

EMI1: BERT-MLP + BERT-CNN, EM2: BERT-MLP + BERT-
LSTM EM3:, BERT-CNN + BERT+LSTM EM4: and BERT-
MLP + BERT-CNN + BERT-LSTM

frequently combines heterogeneous trained base
learners by training a meta-model to output a
prediction based on the predictions of the base
models. We have implemented the Stratified k-fold
cross-validation technique to partition the training
set between the models, keeping the same ratio of
10% for the validation set. Given the training set
D = {Dy, Dy, D3} where D; and D; = D\ D; are
respectively the training set and its corresponding
test set, each base t'" learner hgj ) is trained on
a Dj, then, their predictions z (equation 4) are
fed as training set into the meta learner (Linear
Regression classifier in our case) which will predict

the final predictions.
z = stack{h: (D)} . “4)

All ensemble models are depicted in Figure 4
which presents the architecture of the integration
of multiple deep learning models to form 10
different ensemble models. These ensembles have
2 prediction levels: Predictionsl: the predictions
of each model and Predictions2: the output after
ensembling them using different scenarios. EM1 is
the ensemble of BERT-MLP and BERT-CNN, based
on these 2 levels. As Figure 4 depicts, EM2, EM3
and EM4 are implemented by the same technique.

IV. EXPERIMENTS AND RESULTS
A. Data Pre-processing

We started pre-processing our raw data: 1)

Switch tweets to lower case, 2) Delete URLs,

3) Remove users names, 4) Shorten prolonged
words (“yeeessss” to yes”..), 5) Keep stop
words, 6) Remove punctuation marks, unknown
uni-codes, and additional delimiting characters, 7)
Remove hashtags (#) and correct their texts (e.g,
“#notracism” to “not racism”), 8) Eliminate tweets
of length less than 2, and 9) Remove emoticons.
B. Data analysis platform and evaluation metrics

The implemented models are trained with various
fine-tuning strategies (batch size of 32 for 50
epochs) on Colab. We created our custom optimizer
with a learning rate of 2e-5, and experimented with
AdamW optimizer and Sparse Categorical Cross-
entropy loss functions. In order to utilize features
from each label, we introduced weights in the
training phase. Thus, classifiers performances are
measured via macro averaged F1 score, accuracy,
precision and recall scores.
C. Results and Interpretations

The results are shown in Table 1 and the best
results of each group of the same ensemble and are
highlighted in blue and the best overall ones are
in red. We set up early stopping with Validation
Accuracy as a monitor parameter to prevent
overfitting. Following experiments are mainly based
on Davidson dataset and DHO dataset. Davidson
dataset: As illustrated in Table 1, BERT+LSTM has
shown the best results on the test set. Moreover, all
the models outperform BERT baseline, which prove
the importance of adding NN classifiers for such
a task. As for the aggregation ensembles, all the
approaches outperformed single models, it shows
obviously better results, especially the Soft Voting
of BERT+LSTM with BERT+CNN, as well as
Hard Voting ensembling (in bold) that outperformed
both of the other aggregation ensembles. DHO
dataset: Models trained and tested on this dataset
gave better performance than on Davidson’s.
Getting the most performed model BERT+MLP.
Moreover, aggregation ensembles outperformed
each of these single models, getting the best
result when ensembling the 2 most performed
models: BERT+MLP and BERT+LSTM. All of the
3 ensemble approaches have given almost similar



Davidson Dataset Merged Dataset
Model Accuracy | FI Score | Precision | Accuracy | FI Score | Precision

BERT (baseline) 0.8498 0.7209 0.6894 0.79164 0.7571 0.7466

BERT-MLP 0.876 0.7401 0.7209 0.8087 0.7704 0.764

BERT-CNN 0.8943 0.7355 0.7379 0.7853 0.74902 0.7391

BERT-LSTM 0.8968 0.7548 0.7397 0.8013 0.762 0.7559

EMI1 0.9005 0.7558 0.7468 0.8045 0.7672 0.7586

EM2 0.8943 0.7554 0.7354 0.8158 0.7783 0.7724

EM3 0.9047 0.7596 0.7519 0.8091 0.7734 0.7641

Soft voting EM4 0.9018 0.7589 0.7469 0.812 0.7746 0.7669
EM1 0.9009 0.7564 0.747 0.8077 0.7715 0.7622

EM2 0.8939 0.7549 0.7348 0.8162 0.7786 0.7726

EM3 0.9034 0.7566 0.7494 0.8077 0.7715 0.7622

Max value EM4 0.9026 0.7588 0.748 0.814 0.7773 0.769
Hard voting | EM4 0.9001 0.7595 0.7457 0.8085 0.771 0.7628
Ensembler Method Stacking EM4 0.776 0.9706 0.9430 0.463 0.9278 0.8654

TABLE 1

EXPERIMENTAL RESULTS FOR THE DAVIDSON DATASET AND DHO DATASET.

results, but we can observe that Maximum value
and Hard Voting are the best ones. Unlike BERT-
CNN, BERT-MLP and BERT-LSTM gave the
best performance on DHO and Davidson datasets
respectively, this is related to the type of corpora
and the subject we are dealing with: NLP Twitter
text classification with small imbalanced dataset.
As for the stacking approach, it outperformed all
the other ensembles in both datasets, giving highest
F1 and precision, even with the lower accuracy,
which is not always guaranteed in this ensemble
and unexpectedly, Davidson accuracy results were
better then DHO’s. We refer these results to the meta
classifier used (Linear Regression), which is not
a complex multi layered model that can correctly
deal with the used datasets. And, as David H. et al.
stated [18], for almost any real-world generalization
problem one should use some version of stacked
generalization to minimize the generalization error
rate. Moreover, the main reason for getting lower
accuracy is not easy to be interpretable since BERT
(as any other transformer) is a black box, so it is
not easy to understand its functioning. Meanwhile,
we refer also these results to the imbalanced
corpora used in our experiments. Figure 5 shows the
confusion matrix to present clearly the ensembles’
classification performance of the best performed
models: soft voting EM3 for Davidson, and Max
value EM2 for DHO. The classification performance
of both models is very good for each class,
especially for ’Offensive’ and ’Neither’ (Highest
True Positives) since they represent the biggest
percentages of each dataset. Moreover, ’Hateful’
class classification error rate is decreased in DHO
because this corpora is more balanced.

V. DISCUSSIONS AND FUTURE WORK

A. Discussions and Challenges

Data: As shown in the section above, we
worked on a small-size imbalanced datasets, where
there is a huge gap between class distribution (in
Davidson dataset ‘Hateful’ label takes 5.77% while
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Fig. 5. Confusion matrix of ensembles: (a.) Soft voting EM3 -
Davidson, (b.) Max value EM2 - DHO

‘Offensive’ takes 77.34% of all data) Figure 1.
This led to many issues we faced during training
such as the overfitting problems. Computational
power: Our proposed approaches require a strong
GPU, and even with the use of Google Colab
Pro for training, we were restricted to some
limitations (Number of BERT and deep learning
layers). We ended up getting a 28,765,188-
parameter BERT baseline, 29,027,844-parameter
BERT-MLP, 28,835,428-parameter BERT-CNN
and 32,963,588-parameter BERT-LSTM, which,
increases the models’ complexity, thus, required
more computational resources as displayed in
Figure 6.

Obviously, DHO require more resources than
Davidson. And even getting less number of
parameters, training BERT-CNN took more
memory size than BERT-MLP. Although requiring
more memory, the ensembles were very faster
than baselines’ training, which explains their
efficiency. The best least resouces consuming
models are EM1 and EM3 for both datasets.
Multi-label classification: We worked on multi-
label datasets, which add more complexity to the
classifications. When compared with the previous
works, our results didn’t often overcome the binary
classifications on the same datasets. Stacking
ensemble: Dealing with BERT+NN, we couldn’t
implement directly the pre-defined stacking
ensemble functions of Sklearn library. Thus,
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we manually elaborated the required functions
(Defining: stacked dataset got from the predictions
of base learners, the meta learner and, its stacked
final predictions).

B. Future work
Various improvements can be added to our study

in the future to enhance hate speech detection
approach with ensemble transfer learning. It starts
with the data where we can work more on
the labels’ distribution. Taking into consideration
balance status, we can use several techniques like
data augmentation. Dealing with the dataset bias
issue and the granularity of hate speech content,
we can get benefit further from K-BERT (using
Knowledge Graph) [19], it helps also to handle
the issue of the data scarcity, especially in other
languages, thus, detecting hateful and offensive
content from unlabeled corpora. Adding to that,
we can check our models’ generalization by testing
them on other datasets, from different social media
resources like Facebook etc. As for the models’
implementation, we can use TensorFlow Hub BERT
architecture similar to BERT base Hugging Face
model’s (L=12, H=768 and A=12), or at least,
increase the number of parameters and test their
impact on models’ performances. Moreover, we
can employ other ensemble learning techniques and
enhance the stacking ensemble we built, we can
also improve the baseline models and build new
and more complex deep learning classifiers and
combine them with other transformers than BERT
and compare their effects.

VI. CONCLUSION

For the purpose of hate speech detection on
social media, this paper worked on several public
datasets to build large more balanced corpora
used to train and test transfer learning classifiers.
Combining BERT transformer with several deep
neural networks, we managed to get heterogeneous
multi-label classifiers that successfully detect
hateful and offensive content from Twitter. We,
then , improved their performance using different

aggregating and stacking ensemble techniques, the
latter significantly outperformed the baselines and
the other ensembles’ predictions even with giving
low accuracy, which is a future subject to work
on, where we aim to develop more powerful and
resilient stacking meta-classifiers.
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