
SOK: A Comprehensive Survey on Distributed
Ledger Technologies

Badr Bellaj * $, Aafaf Ouaddah*, Emmanuel Bertin §(IEEE Senior), Noel Crespi$(IEEE Senior), Abdellatif Mezrioui*
$Telecom SudParis, Paris, France, *Institut National des Postes et Télécommunications, Rabat, Morocco, §Orange, France

Corresponding e-mail: bellaj.badr@mchain.uk

Abstract—In recent years, Blockchain arose as a key technol-
ogy in building autonomous decentralised financial systems. Its
ability to digitize trust enables building trustless systems such
as cryptocurrencies where users do not need to rely on any
third party to exchange value. The success of cryptocurrencies to
operate without any intermediaries draw the interest of business
operators who seek to bypass intermediation and thus to reduce
cost and gain competitive advantages. As a result, Blockchain was
used outside the crypto-sphere to build decentralized systems.
However, this portage led to the inception of new types of
Blockchains adapted to different specifications and with different
designs. Consequently, the technology has diverged from its
baseline (Bitcoin) to the point where some systems marketed as
“blockchain” share only a few design concepts with the original
Blockchain design proposed by Satoshi Nakamoto. This con-
ceptual divergence alongside the lack of comprehensive models
and standards made it difficult for both system designers and
decision-makers to clearly understand what is a blockchain or
to choose a suitable solution.

This survey has a double goal; on the one hand, it attempts
to contribute to the discussion on the ontological status of
DLTs by providing a taxonomy oriented-framework (DCEA)
for conceptualizing and examining DLT. On the other hand, it
also attempts to present an up-to-date review and evaluation of
current blockchains and their variants as constructed of four
layers: the data, consensus, execution and application layers.

Index Terms—blockchain, blockchain-like, DLT, survey.

I. INTRODUCTION

The blockchain ecosystem is evolving very quickly from
the inception of Bitcoin [1] in 2009 to the recent emerging
enterprise version of DLT. This lifetime was marked by
important milestones. The first evolutionary milestone was
the launch of Bitcoin, considered by many as blockchain 1.0,
along with its variants (e.g. Litecoin [2], Peercoin [3], etc.).
The second major milestone was the launch of Ethereum
in 2015, and many other blockchain-like projects such as
IOTA [4], Hyperledger [5], and Hashgraph [6] solutions. This
second generation introduced radical changes to the initial
design of the Nakamoto’s blockchain (Bitcoin), giving birth
to a new category of technologies which can be considered
as blockchain 2.0. The emergence of this category which
was heavily inspired by blockchain but without being one,
drove the industry to adopt a broader term; “Distributed
ledger technology”, or DLT when referring to this category.
Nevertheless, there was no rigorously defined set of termi-
nologies or commonly acceptable taxonomy delineating the

border of each category. As a result, terms like “blockchain”,
“DLT” or even “distributed database” were misunderstood,
misused, and misinterpreted and many projects or enterprises
use the word “blockchain” extensively, simply as marketing
jargon. Although there are multiple proposals for standardizing
blockchain (ISO [7]-[8], IEEE [9], ITU [10]), there is no
recognized standard for defining blockchain or DLT, thereby
some difference of opinion is possible as to the degree to
which a system is blockchain or not. Moreover, we observe
the growing use of ambiguous, imprecise, and inconsistent
language and terminology across different projects— where
the same term may be used to refer to different things— which
could hinder the development of the DLT sector and its mass
adoption. Another consequence of this discordance and lack
of standardization is the lack of interoperability between DLT
networks. In fact, the systems within the DLT ecosystem are
inter-siloed and unconnected as interoperability is deprioritized
in favor of rolling out new systems with better performance,
due to fierce competition and commercial pressure. However,
in the absence of a technical reference model, it is difficult
to measure and compare the quality and performance of these
systems. By recognizing all these concerns, we try herein to
draw the boundaries between different categories in the DLT
ecosystem by proposing a new taxonomy differentiating the
distinctive differences between the existing groups. We also
undertake a systematic and holistic approach to conceptualize
and examine DLTs in general as a functioning system with
key layers at four levels of analysis. The structure of the
paper is as follows. Section II defines a new taxonomy-
oriented framework serving to normalize and deliberates on the
classification and taxonomy of DLTs. Sections III, IV, V and
VI present, respectively the data, the consensus, the execution
and the application layers, where in each section we outline
main components and properties as well as the state of the art
of the studied layer. Section VII presents a global comparative
evaluation and critical analysis of 44 different DLTs in the
academic as well as the industrial field through the prism of
the proposed referential framework. Finally, we close with a
conclusion and future research directions in section VIII.

II. DCEA A TAXONOMY ORIENTED-FRAMEWORK FOR
CONCEPTUALIZING AND EXAMINING DLTS

We propose DCEA, a framework that defines a layered het-
erogeneous stack for DLT systems. From a design perspective,

our conceptual framework (DCEA) segregates DLT technolo-
gies into four essential and distinct layers: data, distributed
consensus protocols and network organization, execution and
application layers — each one playing a well-defined role in
the DLT architecture. The application of the DCEA framework
leads to a double level classification of DLTs. The first classifi-
cation is based on the different settings of key designs and the
second is a two-dimension high-level taxonomy (blockchain
and blockchain-like) that considers the impact of the different
settings of DCEA at three levels (Figure 1). The result of the
extended review and taxonomy presented in the sections III,
IV, V and VI are invested , in section VII, to evaluate and
classify a wide set of DLTs into the two high categories.

A. Presentation of DCEA framework

The framework consists of the DLTs components and their
main properties (Table I), with logically related functions
grouped together. This layering approach is aligned with the
DLT’s modular architecture. That is, it will help to provide
a better understanding of DLTs, and serves as a baseline to
build a comparative analogy between different DLT variants.

In the following, we introduce the four layers that form the
DLT stack.

• Data Layer: Represents the data (transactions and states)
flowing through the distributed network and stored in
the ledger. Data in this layer is represented by entries
recorded in the ledger, under consensus and shared
amongst the network participants. These records may rep-
resent elements defined by the underlying protocols (such
as cryptocurrency, or smart contracts), or data received
from external environments (such as IOT data). Generally,
the data layer covers data stored on the blockchain itself
(on-chain storage) as well as data stored in an auxiliary
source using a distributed database (off-chain storage).

• Consensus layer: Defines the global software-defined
ruleset to ensure agreement among all participants, in
a network, on a unified ledger. Consequently, this layer
designates the formal rules that govern the system.

• Execution layer: Represents the components responsible
for enforcing and executing distributed programs (e.g.
smart contracts). Basically, these programs or contracts
codify a given logic (e.g. a business logic) as a set of
instructions for manipulating the states recorded in the
ledger.

• Application layer: Represents an abstraction layer that
specifies a variety of protocols and APIs provided by
the DLT system to enable the building of distributed
applications commonly called DApps. This layer also
represents a communication link between the external
actors or applications and the code hosted on the DLT
ledger.

Based on the above layering, we propose a four-layered
taxonomy , to categorize DLT systems. The purpose of the
taxonomy is to:

• Classify the typical DLT systems proposed in the
academia and in the industry; and to

• the relative strengths and weaknesses of existing systems
and identify deficiencies in the current set of DLTs.

At each layer, DLTs adopt different settings for DCEA
properties defined in Table I. Based on their combinations,
at the four layers, we can define different DLT classes. For
instance, at the data layer we differentiate between DAG-based
and chain-based DLTs based on the nature of the underlying
data structure; at the consensus layer we differentiate between
permissioned and permissionless DLTs based on the identity
model of the consensus mechanism; at the execution layer we
differentiate between Smart-contract based DLTs and script
based-DLTs; and at the application layer we can differentiate
between DApps-oriented DLTs and Cryptocurrency-oriented.
Subsequently, this cross layer wise categorization help us to
classify all DLT systems into two major classes, namely,
blockchain and blockchain-like systems, with regard to DCEA
properties.

III. DATA LAYER

In this section, we lay out the key components, and their
characteristics, that construct the data layer as introduced in
Table I. A summary of the state of the art of different data
structures adopted by major DLT solutions is also presented.
We end this section with a discussion of key challenges and
tradeoffs.

A. Components and properties

DLT’s ledger basically represents a distributed data store
where data is duplicated among multiple nodes, by means of
data synchronization. In these data stores, the data organization
in its macroscopic structure varies from one technology to
another. Generally, we distinguish between two main models
of data structures in the DLT space; the linear chain of blocks
and the chain-less models.

1) Chained model:
a) Chain of blocks: Data in the chain of blocks is

organized in elementary units called blocks. Each block is
a collection of transactions validated by the network. These
units are organized chronologically as a chain of inter-hinged
blocks, which are tied by tamper-evident hash pointers. Each
new block can only be valid if it is built upon an unchangeable
body of previous blocks. Blocks are composed of a header

Fig. 1. As per our definition, a blockchain-like system can only have two
features of these traits.

TABLE I
LAYERS AND COMPONENTS OF DCEA FRAMEWORK

Application Layer Integrability DLT orientation and purpose Wallet and identity management

Execution Layer Execution
environment Turing-completeness Determinism Openness Interoperability

Consensus Layer Safety Liveness Finality Network
model

Failure
model

Adversary
model

Governance
model

Transaction
ordering

Conflict
resolution

Data Layer Data structure Data shareability Data immutability States storage

and a record of transactions. The block’s header contains
meaningful metadata such as a cryptographic reference to the
previous block and the current time. This linear linkability
ensures data integrity through cryptographic connections be-
tween blocks and enables each participant in the network to
verify and validate data. Data in a chain of blocks is carried
over and stored in the ledger using transactions, we therefore
consider a transaction as the most elementary data type. At
the block level, the transactions are ordered and hashed into
a Merkle tree, with the hash root placed in the corresponding
block’s header. This structure guarantees a cryptographically
sealed and tamper proof data vault resistant to any type of data
corruption.

b) Skipchain: The data structure of a skipchain is in-
spired by skip lists [11]. It adapts the skip list idea to the
chain of blocks by adding links between blocks both forwards
and backwards in time. In skipchain, a block includes not just
a single hash link to the previous block, but also an additional
hash link to a point farther back in time. Thus, skipchain can
build subsequent layers of linked blocks on top of an original
linked list of blocks. Skipchain is very useful when one wants
to concurrently access the data structure.

2) Chainless model:
a) Chain of blocks: In order to overcome some limita-

tions imposed by the adoption of the chained block structure,
certain DLTs have opted for a chain-less model. Instead, they
use new data structures for better scalability or security.

b) DAG: In contrast to using a chain of blocks, some
DLTs are using a nonlinear structure such as the Direct Acyclic
Graph (DAG) to offer better performance. A DAG is a graph
that grows in one direction without cycles connecting the other
edges (i.e., there is no path from a vertex back to itself). As
with a chain of blocks, a DAG is used as a sorted collection of
hierarchically connected transactions where each transaction
and sometimes a block of transactions is represented by a
node (which refers to a vertex in the graph) and linked to at
least another node. The DAG is extended chronologically by
appending new transactions to the previous nodes. The ledger
is thus an ever-growing tree, starting initially from a root node.
The acyclic nature of the DAG and its unidirectional evolu-
tion enables participants to confirm transactions automatically
based on previous transactions. Based on the representation of
its nodes, we identify two types of DAGs:

• Transaction-based DAGs: DAG nodes that represent in-
dividual transactions; and

• Block-based DAGs: DAG nodes that represent a block of
transactions.

c) Decentralized database model: Some DLTs adopt
radical changes in their architecture over the conventional
blockchains, to the point they resemble a classical dis-
tributed database. We consider these solutions as decentralized
databases, as they manage data similar to how conventional
databases handle data but they present a different technology.
In fact, unlike in a conventional distributed database, where
nodes cooperate to maintain a consistent view of data across all
systems, a decentralized database is designed to allow multiple
parties that may not trust each other to collaborate with their
peers to maintain shared records.

d) Hybrid data model: Some DLT projects combine both
chains of block models along a block-less model to manage
transactions and states in the network. The hybridization is
designed to exploit the advantages of each model to enable bet-
ter scalability and rapid transaction validation. In this model,
the states are generally stored in external dedicated key-value
databases and the blocks contain only the transactions affecting
the ledger’s states. Using key-value databases makes it easy to
directly access the updated value of a state rather than having
to calculate it by traversing trees of transactions.

3) State management: A key distinguishing factor among
various DLTs, is how states are managed within the system.
Although DLTs serve as distributed ledgers for shared data,
in the case of many DLTs, data is stored outside the transac-
tional distributed ledger (off-chain/off-ledger) using auxiliary
databases. Conventional blockchains, however, tend to always
store data on the shared ledger (on-chain/on-ledger). When we
analyze how general states (e.g. user’s balance) are managed
in existing DLTs, two models emerge: UTXO model, Account
model. The first, is a special transactions set, linking new
transactions to old transactions, wherein a newly produced
transaction (new UTXO) points to a single or multiple ulterior
transactions (inputs), whereas, the second is a model where the
ledger keeps track of up-to-date global states related to each
account. A deep analysis of the UTXO model can be found
in [12].

4) Data shareability: All nodes in a DLT network exchange
transactions carrying shared data in order to reach consensus,
but due to privacy reasons different visions of data shareability
have been adopted. Some systems favor complete shareability
of all data — which we consider as global shareability—,
whereas others restrict the perimeter of shareability including
some nodes and excluding others — which we consider as
restricted shareability.

5) Data immutability / Atomicity: There is a common belief
that records stored on a DLT (especially a blockchain) are

immutable and unalterable. However, that is not necessarily
the case, as different DLT systems provide different degrees of
immutability depending on the system design. This means that,
under some circumstances, nodes can hold inconsistent states,
or that a confirmed transaction may be reversed. Section VII
provides a more detailed overview of the transaction finality
process. For data immutability, we differentiate between:

• Strong immutability. When the state variables or
blockchain entries cannot be mutated after their creation;
and

• Weak immutability. When the state variables or
blockchain entries can be mutated after their creation.

It is worth noting that for some strong immutable systems,
their states can be updated without breaking immutability. This
is achieved by using tree structures to store persistently both
new and old values for a given entry.

B. Data layer: state of the art

This subsection is meant to present an overview of DLTs
projects adopting the different data structures previously out-
lined by our framework as well as an evaluation of their
properties.

1) Chained DLTs: Most DLTs follow the linear data chain
structure initially defined by Bitcoin. In this broad category,
multiple projects define different inner block structures.

a) Bitcoin: In Bitcoin and its clones, transactions are
assembled in the block’s body and then linked in a Merkle tree.
The root of this tree, or the Merkle root, is a hash representing
an indirect hash of all the hashed pairs of transactions in the
tree and is included in the block header, thereby ensuring
transaction verification. In addition to the Merkle root, the
block header also contains other important information, includ-
ing: the timestamp, and the previous block’s hash. Moreover,
Bitcoin adopts the UTXO model to track the system states
(Wallet balances). The UTXO set is stored off-chain in an
auxiliary database.

b) Ethereum: The block structure is more complex in
Ethereum than in Bitcoin, and the system’s state tracking is
different than in Bitcoin. In fact, the block’s header comprises
more metadata and its body englobe multiple types of data,
namely: transactions, receipts and system states. Each of these
data types is organized into a Merkle tree or a Patricia tree
(Radix tree) in the case of the state tree. The state tree is an
important component in the Ethereum ledger, as it is used to
implement the account model, whereby each account is linked
to its related states (account balances, smart contract states,
etc.). Any node can parse the tree and get the updated state
without any overhead calculation. The state tree grows each
time a change occurs in a state. It grows by adding new nodes
(stored in the new block) — containing new states— which
points to the nodes (stored in the previous block) containing
the old value for the same state. To enforce immutability
Ethereum keeps its root hash in the block header.

c) Bitcoin-NG: Introduced by Eyal et al. in [13], adopts
a chain of block data structure, with two types of blocks —
key-blocks and Microblocks. Keyblocks are produced through

proof-of-work, with an identical structure to Bitcoin’s blocks,
in order to determine the block producer (miner or leader).
Between two key-blocks, the selected miner creates and signs
multiple Microblocks, that contain many smaller batches of
collectively signed transactions. The Microblocks reference
previous Microblocks and Keyblocks forming a chain.

d) ByzCoin: Inspired by Bitcoin-NG, ByzCoin [14]
adopts the decoupling in two blocks but instead of having a
single chain, it forms two separate parallel chains of Keyblocks
and Microblocks.

2) Skipchain:
a) Chainiac: Nikitin and al. [15] introduced Chainiac to

solve offline transaction verification problems (enable nodes
to check if a transaction has been committed to a blockchain
without having a full copy of the ledger). The Chainiac
solution was to add traversability forward in time using a
skipchain , where back-pointers in Chainiac are crypto-graphic
hashes, whereas forward-pointers are collective signatures.
With long-distance forward links and via collective signatures,
a client or node can efficiently verify a transaction anywhere
in time.

3) Chainless DLT:
a) DAG based chains: The idea of using DAGs as under-

lying data structure has encountered great interest from DLT
designers of multiple projects, including Byteball , DagCoin
IOTA, Nano , Phantom and Hedera . Some studies have tried to
introduce DAG in conventional blockchain DLTs, for instance
the GHOST protocol [16] proposes a modification of the
Bitcoin protocol by making the main ledger a tree instead
of a blockchain.

b) IOTA: [4] is a DLT system designed primarily for
the Internet-of-Things (IoT) industry. IOTA is one of the
first projects that adopted a DAG data structure called Tangle
—a block-less DAG where individual transactions are tangled
together. The Tangle stores transactions as edges; each single
transaction references two direct previous transactions and
indirectly references a subsection of the Tangle. That is, the
tangle is simultaneously constructed of validated transactions,
transactions waiting for validation and uncertain validated
transactions.

c) Byteball: [17] is another transaction-based DAG,
where a transaction references directly one or more previous
transactions. Once a new transaction is added to the DAG by
a node, it becomes visible to its peers; those peers can append
their child transactions on top of this new one.

d) Nano: [18] Formally called RaiBlocks, Nano is based
on a special DAG data structure called Blocklattice. Each
account has a dedicated chain of blocks) that are replicated
to all peers in the network, thereby allowing multiple single
chains to grow concurrently. In this structure, only the owner
of the wallet can make changes to the individual chains. This
means that each wallet can be updated asynchronously.

4) Decentralized Databases:
a) Corda R3 [19]: In the corda network, each node

maintains a local database called a “vault” that stores time-

stamped data. Each vault has many different versions (current
and historic) of data in the form of state objects.

5) Hybrid DLTs:

a) Hyperledger Fabric [20] : Hyperledger Fabric com-
bines between the usage of a chain of blocks to store only the
validated transactions, and the usage of a key-value classical
database to store the system’s states (transaction outcomes). In
the Fabric chain, the block structure resembles the structure
of a block in a conventional chain but with an additional part:
block metadata. This additional section contains a timestamp,
as well as the certificate, public key and signature of the block
writer. The block header is straightforward and the transactions
are ordered in the block body without Merkilization.

b) EOS [21]: EOS uses a chain of blocks as an im-
mutable store of transactions and a mutable database holding
system states. The EOS database adopts an account model sim-
ilar to a distributed database with permissions, where accounts
represent user profiles rather than a simple cryptographic
identity. In the EOS database the states can be updated directly
in the database tables, thus old values cannot be retrieved from
Chainbase, all states are reproducible at any specific time by
replaying transactions from the genesis block.

c) BigchainDB: The BigchainDB [22] was introduced
as a blockchain database. It aims to combine the key char-
acteristics of “traditional” NoSQL databases (MongoDb) and
the key benefits of traditional blockchains. BigchainDB server
nodes utilize two distributed databases (transaction set or
“backlog”) holding incoming transactions and a chain of
blocks storing validated transactions (Creation or Transfers).
Each transaction represents an immutable asset (represented
as JSON documents in MongoDB).

6) Data shareability: Most DLTs operating as global cryp-
tocurrency platforms adopt by design a global shareability of
the transactions. In fact, networks such as Bitcoin, Ethereum
and many others, operate in relay mode where nodes are
relaying transactions to each other, thereby propagating it to
the entire network without restrictions. In other DLTs, such
as Hashgraph, senders deliver their transactions to a set of
selected nodes that are responsible for including them into
their DAG and sharing them with others by Gossiping. On the
other hand, the DLTs constructed for business purposes, such
as Corda or Hyperledger Fabric, impose restricted shareability
of the transactions as privacy is an important requirement in
such contexts. In Corda, for instance, each node maintains
a separate database of data that is only relevant to it. As a
result, each peer sees only a subset of the ledger, and no peer
is aware of the ledger in its entirety. In Fabric a subset of
the ledger restricts data shareability by using the concept of
channels [23]. A channel is a private sub network between two
or more specific network members. Each transaction on the
network is executed on a channel, where only authenticated
and authorized parties are able to transact on that channel.
Therefore, the network ends up with a different ledger for
each channel.

IV. CONSENSUS LAYER

DLTs have renewed the interest in the design of new
distributed consensus protocols. In fact, a myriad of consensus
algorithms, for DLT, have been proposed in the literature pre-
senting different properties and functionalities. In this section,
we present the properties and features we consider as part of
the DCEA framework for studying and differentiating between
the protocols. We also present the state of the art in the second
subsection. In section VII we present and discuss the results
of a comparative analysis of the studied protocols.

A. Components and properties

1) Basic Properties: The concepts of safety and liveness
properties were introduced initially by Lamport in 1977 [24]
and have been well adopted in the distributed computing
community. All consensus algorithms provide these properties
under different assumptions of synchrony, adversary model,
etc.

a) Safety: Safety represents in the context of DLT net-
works, the guarantee that the correct nodes will not validate
conflicting outputs (or make conflicting decisions) at the
same time (e.g. chain forks). The safety property ensures;
Availability whereby transactions submitted by an honest user
get incorporated into the ledger sufficiently fast [25].

b) Liveness: A consensus protocol guarantees liveness
if requests (transactions) from correct clients are eventually
processed.

c) Finality: In the DLT settings, we define the finality
property as the affirmation and the guarantee for a transaction
to be considered by the system as final and irreversible. The
Finality as property can be divided into two types:

• Probabilistic finality, where the probability that a vali-
dated transaction will not be reverted, increases with time
once the transaction is recorded onto the ledger.

• Absolute finality, where a transaction is considered final-
ized once it is validated by the honest majority.

2) Network models: In both traditional distributed systems
literature and DLT consensus protocols, we consider the
message passing model in which nodes exchange messages
over the network, under differing assumptions of network
synchrony. We adopt in this survey the following taxonomy
defined by [26].

• Synchronous, where we assume the existence of a known
upper bound on message delay. That means, messages are
always delivered within sometime after being sent.

• Partially-synchronous, where we assume there is some
known Global Stabilization Time (GST), after which the
messages sent are received by their recipients within some
fixed time bound. Before the GST, the messages may be
delayed arbitrarily.

• Asynchronous, where messages sent by parties are even-
tually delivered. They may be arbitrarily delayed and
no bound is assumed on the delay of messages to be
delivered.

3) Failure Models: Different failure models have been
considered in the literature; we list hereafter two major types.

• Fail stop failure (Also known as benign or crash faults):
Where nodes go offline because of a hardware or software
crash.

• Byzantine faults: This category of faults was introduced
and characterized by Leslie Lamport in the Byzantine
Generals Problem [27] to represent nodes behaving arbi-
trarily due to software bugs or a malicious compromise.
A Byzantine node may take arbitrary actions, provide am-
bivalent responses or intentionally mislead other nodes by
sending sequences of messages that can defeat properties
of the consensus protocol.

We consider, therefore, a protocol as fault tolerant, if it
can gracefully continue operating without interruption in the
presence of failing nodes.

4) Adversary models: We consider a message passing
model where a node communicates by exchanging messages
with its neighbors. The adversary is able to learn the message
exchange and to corrupt different parts of the network.

• The Threshold Adversary Model (Hirt and Maurer) : This
model is the most common adversary assumption used
in the traditional distributed computing literature, which
assumes that the Byzantine adversary can corrupt up to
any f nodes among a fixed set of n nodes. Under this
model, the network usually has a closed membership
requiring a permission to join. The consensus protocol
should be able to operate correctly and reach consensus in
the presence of Byzantine nodes as long as their numbers
do not exceed a given threshold.

• Computational Threshold Adversary: A new model in-
troduced by Bitcoin, where the control of the adversary
over the network is bounded by the computational power
–requiring concrete computational material— instead of
the number of nodes he can control. In this model,
typically the membership is open and multiples parties
and the bounding computation is a brute force calculation.

• Stake Threshold Adversary : In this model the adversary
control is bound by his proportion of a finite finan-
cial resource. In networks managing cryptocurrencies,
the underlying protocol can ensure consensus based on
cryptocurrency deposits, thus the adversary is bound by
the share of cryptocurrency he owns. In addition, in these
protocols’ punishment rules (e.g. stake slashing) could be
put in place to deter bad behaviour.

Adversary Modes Protocols assume the existence of differ-
ent types of adversaries based on their ability and the time
they need to corrupt a node.

• Static adversary: A Byzantine user who is able to corrupt
a certain number of network nodes ahead of time and
exercise complete control over them. However, he is not
able to change which nodes they have corrupted or to
corrupt new nodes over time.

• Adaptive adversary: A Byzantine user who has the ability
to control nodes and dynamically change, depending on

the circumstances, the nodes under his control to gain
more power.

• Mildly adaptive adversary: A Byzantine user who can
only corrupt nodes based on past messages, or its antic-
ipations, and cannot alter messages already sent. More-
over, the adversary may mildly corrupt groups, but this
corruption takes longer than the activity period of the
group.

• Strongly adaptive adversary: A Byzantine user can learn
of all messages sent by honest parties, and based on their
content, he can decide whether or not to corrupt a party
by altering its message or delaying message delivery.

5) Identity Model: Protocols manages nodes membership
differently, but in general two opposite sides are adopted:

• Permissionless, where the membership is open and any
node can join the network and validate new entries.

• permissioned, where the membership is closed and only
a restricted set of approved members is able to validate
new entries.

6) Governance Model: Governance model refers to the
process of decision-making adopted by a DLT network to
decide on the protocol rules and their upgrade. Hence, the
governance of the system boils down to a social concept, we
find it appropriate to identify some of the possible governance
model, from a social perspective:

• Anarchic, where protocols upgrade proposals are ap-
proved by every participant in the network. Each par-
ticipant chooses to accept or reject a given proposal, thus
leading to potential splits in the network.

• Democratic, where participants vote on new rules and
protocol upgrades proposals and at the end all participants
have to follow the decision of the majority, even for those
participants who voted against them.

• Oligarchic, where new rules and protocol upgrades are
proposed and approved by a group of participants.

As most DLTs move governance and related issues “on-
chain” or “off-chain” we consider also the differentiation be-
tween; Built-in (or on-chain governance), where the decision-
making process in the network is defined as part of the under-
lying consensus protocol; External governance (or off-chain
governance), where the decision-making process is based on
procedures independently performed without involving the
DLT mechanisms.

7) Transactions ordering: Whether for a linear or a non-
linear DLT (e.g. DAGs), the stored transaction should be
ordered chronologically to avoid frauds and inconsistencies.
Different approaches have been introduced by the consensus
protocols to provide reliable and fair transaction ordering.
Usually, in DLTs the ordering is an integrating part of the
consensus mechanism but in some cases, it can be decoupled
from the execution and validation of transactions. Ordering
is an important property with direct impacts on the security
and the usage of a DLT, thus the need to evaluate this feature
separately.

8) Conflict resolution model: In some DLT networks, con-
flicting temporary versions of the ledger (known as forks) can
coexist for different reasons (e.g. network latency, parallel
validation of blocks, etc.). To converge toward a canonical
ledger or chain, networks and consensus mechanisms adopt
different rules. The most notable rule is defined by Bitcoin
protocol as “longest chain rule”, whereby in the presence of
conflicting orders, the network converges to one order follow-
ing the longest chain — the chain with the largest accumulated
PoW in case of PoW-based systems— and discards the rest.
The longest chain rule is adopted by different protocols and
each may adopt a different cumulative parameter (witnesses
votes, endorsement, etc.).

B. Consensus layer: state of the art

In this subsection, we present multiple consensus mecha-
nisms and their properties. Although, is out of scope of this
paper to present a detailed taxonomy of the existing protocols
(fig. 2), we consider to group all the reviewed protocols in six
categories. This protocol categorization serves us as a basis to
categorize the DLTs.

Fig. 2. Taxonomy of consensus protocols

1) BFT consensus family (PBFT-like): This family refers
to the classical consensus mechanisms introduced in the tradi-
tional distributed computing literature and their recent variants.
The BFT family is easily recognized due to their property: all-
to-all voting rounds , the identity of the nodes in the network
is known, the number of participants is limited. Due to the
big number of the protocols belonging to this family, we limit
our review, in this paper, on the most used algorithms in DLT
context namely; PBFT, RAFT, IBFT, DBFT, POA (AURA,
Clique), HoneyBadgerBFT and Hotstuff.

2) Nakamoto consensus family: We consider that
Nakamoto’s consensus family represents protocols using
a chain of block data structure and adopting the longest chain
fork choice rule (or a variant like GHOST), to ensure safety,
along economic incentives. These protocols were introduced
primarily to enable secure currency transfer over the internet.
Conversely to PBFT, they are conceptually simple and tolerate
important corruptions up to n/2. Besides, they are known
for being permission-less (open enrollment) — they do not
require node authentication and allow nodes to arbitrarily join
or leave the network. We review hereafter some of the most
discussed protocols in this category namely: PoW, memory
bound PoW and BitcoinNG.

3) Proof of stake and its variants: Proof-of-Stake (PoS)
was first proposed as an alternative to the costly PoW for
use in the PPCoin . Instead of a hash-calculation competition
between validators, participants who desire to join validators
board and forge the new block have to lock a certain amount of
coins into the network as a financial stake. Thus, the chances
for a node to be selected as the next validator depends on
the size of the stake. Different implementations of PoS exist.
We present here some of the typical representatives including
Ethereum PoS, DPoS (EOS), Ouroboros and its variants, and
Snow white.

4) DAG-based Protocols:

a) IOTA [4]: is a hybrid consensus protocol, marrying
between PoW at the entry level and a custom transaction
validation algorithm. IOTA relies on PoW to protect the
network against spamming as the transactions are fee-less. In
order to add a new transaction to the IOTA underlying DAG
(called Tangle), the end-user (or IOT end-devise) has to per-
form a proof-of-work. Moreover, the new transaction should
randomly approve two previous valid transactions (called tips)
by extending them and thus increasing their initial weights. To
choose the tips a user can eventually(as no rule is imposed
by the protocol) use the recommended Markov Chain Monte
Carlo (MCMC) weighted random walk, which is biased toward
transactions with more weight. Moreover, the IOTA network
has special nodes called Coordinators —managed by the IOTA
foundation— responsible for protecting the network by recog-
nizing periodically (often indirectly) the valid transactions in
the tangle by issuing a signed milestone transaction. These
milestones checkpoints serve to finalize transactions and to
indicate the main tangle to the nodes that might be building a
sub-tangle.

b) Avalanche: Avalanche is a recent leaderless Byzantine
fault tolerance protocol built on a metastable mechanism
via network subsampling. Avalanche protocol is based on
a metastable mechanism, whereby a node repeatedly takes
a uniform random sample from the network, sends queries
repeatedly in multiple rounds and collects responses. Once a
given threshold is met the node adopts the decision transmitted
by the majority. Consequently, the correct nodes converge,
with low communication complexity, to the same decision
without requiring a leader. To improve its efficiency and
security, Avalanche organises transactions in a DAG, where
a new transaction extends one or more parent transactions. In
presence of conflicting transactions, Avalanche harnesses the
DAG structure and uses a transaction’s progeny (all children
transactions) such that corrected nodes vote positively on valid
transactions based on the validity of the entire ancestors. With
regard to safety, Avalanche provides a strong probabilistic
safety in the presence of f ≤ n/3 Byzantine nodes. Further,
the concurrent random sampling and leaderless nature enables
it to achieve high throughput and scalability. Furthermore,
Avalanche adopts a financial mechanism (AVA token) to
protect the network against sybil attacks, since it provides open
membership, as well as enabling economic governance.

c) Hashgraph [28]: is an asynchronous Byzantine fault
torrent protocol. Hashgraph uses a DAG as data structure
for storing events (transaction and its related details) and
a voting algorithm combined with gossip protocol to reach
consensus. In Hashgraph a node randomly gossips about its
known events with other nodes either received from other
nodes or initiated by the node itself. This gossip process allows
for an exponential diffusion of the transactions. Moreover, the
shared event includes two hashes referencing two past events
(the previous event created by the gossip receiver and the
event created by the sender), which is then signed by the
Gossiping node. Therefore, every node of the network ends up
with a copy of the transaction history along with information
about the other nodes that previously received the information.
To ensure agreement on the transactions order and validity,
nodes proceed to a virtual voting, where no actual votes are
cast or exchanged but instead a node calculates what other
nodes should vote, based on its knowledge of the DAG (the
gossip history) and events timestamping. If any transaction
is validated by 2/3 of the nodes in the network, then it is
considered as a valid transaction. It is worth noting that the
vote is possible as currently the number of nodes is known
because of the closed membership.

5) Federated BFT: Ripple [29] was the first implemen-
tation of a federated Byzantine agreement system (FBAS, for
short), which was extended later by Stellar [30] protocol. FBA
revisits BFT settings by providing an open membership service
based on a trust model. In fact, FBA protocols depart from
the concept that each node interacts only with a limited group
of its trusted peers — the unique node list (UNL) in Ripple
and the quorum slice in Stellar. Thus, unlike traditional BFT
protocols, the federated Byzantine agreement (FBA) does not
require a global and unanimous agreement among the network
participants. Ripple consensus (or RPCA) proceeds in rounds
where validators of a server’s UNL try to reach a supermajority
(at least 80%) on a set of transactions. Thus, as long as 80% or
its equivalent of the UNL are honest, validated transactions are
applied to the new last closed ledger. Therefore, Ripple toler-
ates a Byzantine minority of f <n/5 nodes to operate correctly.
However, if more than 20% of nodes in the network disagree
with the rest, the network may temporarily halt. In addition,
the good configuration of servers and the intersection of a
pair of correct nodes’ UNLs determine the network’s safety
and liveness. According to the ripple project, the minimum
overlap requirement is 20% of the UNL by any two nodes
in different UNLs. However, an independent analysis [31]
suggested that the correct requirement was instead about 40%.
Stellar Consensus Protocol (SCP) is an evolution of Ripple
protocol providing first provably safe consensus —assuming
the transitivity and the strong connectedness of the network.
Unlike Ripple, SCP allows a lot of flexibility in terms of how
nodes configure their quorums. In order to assure network
consensus, SCP relies on Federated voting [32], which allows
the network to reach consensus as long as quorum slices
intersect with each other.

V. EXECUTION LAYER

In this section we identify the fundamental components of
the execution layer, and their properties. Then we present the
execution component widely adopted in the state-of-the-art.

A. Components and properties

In a DLT system, business logic, agreed to by counterpar-
ties, can be codified using a set of instructions and embedded
into the ledger in specific format. The ruleset execution is
enforced by the distributed consensus mechanism, thereby an
external actor cannot influence or corrupt the execution of
the instruction set to get advantageous results. Generally, we
distinguish between two main models for rules codification:
Smart contracts and built-in scripts.

1) Execution environment:
a) Smart contract model: In this model, clauses be-

tween counterparties are codified as a self-executed program
acting on a defined set of states. Typically, this program
(known as smart contract) is implemented either in a dedicated
language or using an existing programming language such
as Java or C++. The smart contract execution is handled
by a dedicated environment such as a virtual machine or a
compiler, which proceeds the clauses defined in the triggering
transaction, returns an output and often results in updated
states. Commonly, the smart contracts live and executes on
the DLT as an independent entity with reserved states and
tends to offer a generic oriented tool to implement versatile
logic beyond the manipulation of a native asset (Token or
cryptocurrency). Although they are qualified as ‘smart’, they
are not autonomous programs, as they need external triggering
transactions, nor contracts in a legal sense.

b) Scripting model: Unlike the smart contract model, the
scripting model enables codifying a desired logic using only
a usage-oriented and predefined set of rules defined by the
protocol, which limits the possible scenarios to implement.
The idea behind this limitation is to avoid security problems
and reduce the complexity of the system. Typically, scripting
model is implemented in the DLTs that focuses on securing the
manipulation of built-in assets rather than providing a platform
for running universal programs

2) Turing completeness: Generally speaking, a given en-
vironment or programming language is said to be Turing-
complete if it is computationally equivalent to a Turing ma-
chine [33]. That is, a Turing-complete smart contract language
or environment is capable of performing any possible calcula-
tion using a finite amount of resources. Some DLTs are capable
of supporting a Turing-complete execution environment, which
provides its users with the flexibility to define complex smart
contracts, Whereas other DLTs provides Non-Turing complete
execution environments, because they suffer from some in-
herent limitations (For example, the impossibility to have an
iteration structure with an arbitrarily high upper bound).

3) Determinism: Determinism is an essential characteristic
of the execution environment in DLT systems. Since the
distributed program (e.g. smart contract) is executed across
multiple nodes, the deterministic behaviour is needed to yield

coherent and identical outputs to obviate discrepancies in the
network. In order to ensure determinism, DLTs have to handle
non-deterministic operations (e.g. Floating-point arithmetic,
or random number generation, etc.) either by disabling these
features or by enabling them in a controlled environment.

4) Runtime openness: In most DLTs, the execution environ-
ment or runtime is by design an isolated component without
connections with external networks (e.g. Internet). However, in
many case scenarios, the need for accessing information (e.g.
weather forecast, stock price, or exchange rate) from outside
the DLT, manifested as a necessity. Thus, to allow such a
feature, different design choices were introduced. At this level
we distinguish between three approaches:

• Isolated: where interactions between the smart contract
execution environment and the external environments are
not allowed

• Oracle-based: where interactions with external environ-
ments are managed by members of the network who
are called oracles. An oracle refers to a third-party or
a decentralized data feed service that provides external
data to the network.

• Open: The execution layer is able to connect to the
external environments.

5) Interoperability: DLT operating networks are currently
by-design siloed and isolated from each other. The interop-
erability, which we consider as the ability to exchange data,
assets or transactions between different DLTs, is a complex
operation that requires passing transactions between them, in
a trustless manner without the intervention of third parties.
Interoperability is a highly desired property as it improves
performance, allows cross value transfer and represents an
indispensable direction of scaling. Due to its importance,
multiple solutions were developed to enable the interoperabil-
ity between different existing DLTs. These solutions can be
categorized in the following groups:

• Sidechain [34]: is a blockchain running in parallel with
another chain (known as main chain) that allows trans-
ferring data (cryptocurrency) from the main chain to
itself. Sidechains operate generally in two modes; one-
way pegged or two-way peg way. Such that in the former
data can be moved from and back to the main blockchain
by using locking mechanisms, and in the later data is
moved only toward the sidechain.

• Multichain [35]: is a network of interconnect chains, upon
which other chains can be built. In a multichain one major
ledger rules all the sub-ledgers.

• Interoperability protocols: represent protocols and means
(e.g. smart contracts) added to the original DLT to enable
interoperability with other DLTs.

• Interoperable DLT: represents a DLT designed with the
goal to enable interoperability between other DLTS.

B. Execution layer: state of the art

In this section, we provide an overview of the most widely-
used execution environments implemented in the industry

and the literature with a discussion of their properties. We
pay special attention to the Ethereum virtual machine as it
is being adopted by a large number of the existing DLTs.
Broadly speaking, we can consider the current DLT-based
smart contract platforms divided into two main groups: EVM-
compatible platform and non EVM-compatible platform.

1) Execution environments:
a) Ethereum Virtual machine: In Ethereum, smart con-

tracts represent a computer program written in a high-level lan-
guage (e.g. Solidity, LLL, Viper, Bamboo, etc.) [36] and com-
piled into a low-level machine bytecode using an Ethereum
compiler. This bytecode is stored in a dedicated account
—therefore has an address— in the blockchain. Then, it
is loaded and run reliably in a stack-based virtual machine
called Ethereum Virtual Machine (EVM for short), by each
validating node when it is invoked. The interactions with smart
contract clauses or functions happen through transactions
carrying inputs and the designation of the called function.
Then, the corresponding code is executed, simultaneously, in
the Ethereum virtual machines of the network, according to
the invoking transactions payload. If the execution terminates
correctly, the contract states are updated on the blockchain
(State tree).

To enable the execution of the bytecode and state update, the
EVM operates as a stack-based virtual machine. It uses a 256-
bit register stack from which the most recent 16 items can be
accessed or manipulated at once. The stack has a maximum
size of 1024 possible entries of 256-bits words. The EVM
has a volatile memory operating as a word-addressed byte
array, where each byte is assigned its own memory address.
The EVM has also a persistent storage space which is a
word-addressable word array. The EVM storage is a key-value
mapping of 2256 slots of 32 bytes each. Unlike the memory
which is volatile, storage is non-volatile and it is maintained
as part of the system state. The EVM is a sandboxed runtime
and a completely isolated environment. That is, every smart
contract running inside the EVM has no access to the network,
file system, or other processes running on the computer hosting
the EVM. The EVM is a security-oriented virtual machine,
designed to permit the execution of unsafe code. Thus, to
prevent Denial-of-Service (DoS) attack, EVM adopts the gas
system, whereby every computation of a program must be
paid for upfront in a dedicated unit called gas as defined
by the protocol. If the provided amount of gas does not
cover the cost of execution, the transaction fails. Assuming
given enough memory and gas, the EVM can be considered a
Turing-complete machine as it enables to perform all sorts of
calculations.

b) Bitcoin scripting: Bitcoin uses a simple stack-based
machine to execute Bitcoin scripts. A Bitcoin script is written
using a basic Forth-like language. It consists of a sequence
of instructions (opcodes), loaded into a stack and executed
sequentially. The script is run from left-to-right using a push-
pop stack. A script is valid if the top stack item is true
(non-zero) at the end of its execution. Bitcoin defines two
main scripts to validate the transaction and transfer the coins,

namely ScriptPubKey and ScriptSig. ScriptPubKey is a lock-
ing script placed on the output of a Bitcoin transaction that
requires certain conditions to be met in order for a recipient
to redeem the output. Conversely, ScriptSig is the unlocking
script that satisfies the conditions placed on the output by the
ScriptPubKey.

c) Stellar: Stellar does not provide a smart contract
language nor a built-in virtual machine to execute general-
purpose code. A Stellar Smart Contract (SSC) is expressed as
compositions of transactions that are executed under various
defined constraints. A participant in a Stellar smart contract,
is not directly interacting with code on chain, but instead
agreeing to the conditions of a transaction. Transactions are
constructed out of a predefined set of 13 operations, where
each operation is an individual command that mutates the
ledger. On top of these operations, various constraints are
defined to the transaction - Stellar has support for built-in
Multisignature, Batching, Atomicity, Sequence ,Time bounds,
and more [37]. SSCs are not Turing complete and can be
written in multiple languages(Python, C#, Ruby, Scala, C++)
using an SDK.

d) NXT and Ardor: NXT provides a suit of built-in
smart contracts templates or smart transactions [38] in order
to eliminate code insecurity. Its evolution, Ardor [39], adopts
Java virtual machine (JVM) as a smart contract runtime. Be-
sides it introduces the Lightweight Contracts as a framework
for developing a layer of automation on top of the existing
Ardor APIs. Concretely, the lightweight contract is a Java
class uploaded to the blockchain and executed by a subset
of nodes selected to run the ContractRunner addon. Unlike
NXT, Ardor’s contracts are considered to be Turing-complete.

e) NEO virtual machine: NEO proposes the lightweight
NeoVM (NEO Virtual Machine) , a virtual stack-based ma-
chine for processing smart contracts. The NeoVM provides
a general-purpose solution where, the NEO’s compiler (Neo-
Compiler), compiles contract source code written in Java,
C# or other high-level languages (with limitations into a
unified bytecode achieving thus cross-platform programming.
Notably, NeoVM provides a stack isolation mechanism which
allows each contract to only access its own stack area, thereby
securing execution of smart contracts. NeoVM is Turing-
complete by design and also relies on a gas concept identical
to Ethereum’s gas concept.

f) EOS virtual machine: The EOS VM is based on the
WASM (WebAssembly)-LLVM (Low Level Virtual Machine)
architecture. EOS adopts C++ as the contract’s development
language and compiles them using EOS’s tool-chain into a
low-level bytecode, which is executed by block producers.
Therefore, the smart contracts are stored in the blockchain
in the form of pre-compiled Web Assembly and acts as an
application registered in the EOS blockchain and runs on the
EOS nodes.

g) Cardano CCL: Cardano’s smart contracts platform, or
Cardano Computation Layer (CCL), was designed to address
security and correctness concerns in Ethereum. The CCL
consists of two layers: a language framework and a formally

specified virtual machine. Also, CCL provides two virtual
machines; IELE [40] a register-based machine, like LLVM,
empowered with formal K semantics; and KEVM, a complete
formal K semantics of the Ethereum Virtual Machine. The
CCL supports solidity and a new general purpose smart
contract language, inspired from Hashkall, called Plutus [41].
Similarly, to the EVM, KVM and IELE use gas to limit
resource usage and prevent DoS attacks.

h) Zilliqa virtual machine: Zilliqa [42]delivers a smart
contract platform based on a programming language called
Scilia , a safety-oriented and intermediate-level language for
writing formally verified smart contracts. Since Scilia is an
intermediate-level language, it can serve as a compilation
target for high-level languages (such as Solidity) and also as
an independent programming framework.

i) Java virtual machine: Hyperledger Fabric embraces
a different approach by adopting existing runtimes and lan-
guages instead of building new ones. In fact, Hyperledger Fab-
ric adopts Java Virtual Machine (JVM for short) and Node.js
runtime as smart contract environments. Therefore, smart
contracts (Known as Chaincodes) are written in JavaScript,
TypeScript, Java, Go or any other language that can run on
one of the supported runtimes. adopts Kotlin and Java as the
main language for smart contracts.

j) Stratis CLR: Stratis utilizes the popular Microsoft
.NET Common Language Runtime (CLR) as an execution
environment for its smart contracts rather than using a virtual
machine. Its smart contracts are coded using C# and com-
piled into Common Intermediate Language (CIL) [43]. Hence,
Stratis supports Common Intermediate Language (CIL), theo-
retically any language that can be translated into CIL can be
used for writing smart contracts. Stratis also relies on the ”gas”
concept for payable execution which is identical to Ethereum’s
gas concept.

2) Interoperability: The inability for siloed DLTs to com-
municate with one another has been a major hindrance to
the development of the blockchain space, therefore different
proposals have aimed to solve this problem. In this subsection
we present the most important approaches implemented at the
execution layer to solve this problem.

a) Sidechains: Multiple sidechains have been proposed
in the DLT ecosystem. Rootstock [44] is a sidechain of
Bitcoin, equipped with RVM a built-in compatible Ethereum
virtual machine. Rootstock chain is connected to the Bitcoin
(BTC) blockchain via a two-way peg enabling transfers from
BTC to SBTC (Rootstock’s built-in currency) and vice versa
using Bitcoin scripts, whereby users lock up their BTC in a
special address and get an equivalent amount of RBTC on
the sidechain. Similarly, Counterparty is another sidechain of
Bitcoin where coins to be transferred are burned or locked by
sending them to an unspendable address and generating the
equivalent in the Counterparty chain. Drivechain is another
proposal for transferring BTC between Bitcoin blockchain
and sidechains. Unlike most DLTs where the sidechain is
a separate project, Cardano has introduced Cardano KMZ
sidechain as part of its ecosystem. Cardano KMZ is a protocol

which serves for moving assets from its two-layer CSL to
the CCL (Cardano Computation Layer), or other blockchains
that support the Cardano KMZ protocol. Another sidechain-
based project is Plasma . It aims for creating hierarchical trees
of sidechains (or child blockchains) using a combination of
smart contracts running on the root chain (Ethereum). The
idea is to build connected and interoperable chains operated
by individuals or a group of validators rather than by the entire
underlying network. Thus, Plasma helps scaling Ethereum by
moving transactions toward the sidechains.

b) Interoperability protocols: Interledger (ITL) [45]is a
protocol standardized by the World Wide Web Consortium
for sending payments across different ledgers. Interledger is
constructed of a network of untrusted connectors linking dif-
ferent ledgers and leveraging escrow transactions (conditional
locks of funds) to make transfers between accounts on dif-
ferent ledgers. Moreover, Atomic swap enables trading digital
assets across unrelated blockchains. Atomic swaps leverage
Hashed Time-Lock Contracts (HTLC) to allow coordinating
operations (e.g. trading digital assets), on different chains.
These operations will have the same trigger —usually the
revelation of the preimage of a particular hash. Alternatively,
Hyperledger project proposes Hyperledger labs blockchain
integration framework [46], a communication model to enable
permissioned blockchain ecosystems to exchange any on-chain
data independent of the platform (e.g. Hyperledger Fabric,
Quorum, etc.) without a middleman.

c) Multi-chains: Polkadot [47] is a network of inter-
connected chains constructed of a central connector called
Relay chain to which are connected multiple ledgers called
‘Parachains’. The relay-chain is responsible for finalizing all
the transactions, completing cross-chain transactions [48] and
sharing states. Besides, in order to connect the Relay chain
with external chains (e.g. Ethereum or Bitcoin), Polkadot
provides bridge Parachains [49] that enable two-way compat-
ibility. Similarly, to Polkadot, COSMOS [50] is constructed
of “Zones” which are networks of blockchains interconnected
via a central hub called Cosmos Hub Network. Each zone
maintains its own states, and operates with its own validators.
Alongside, all zones can exchange messages and tokens via
the cosmos hub using a protocol called Inter-Blockchain
Communication (IBC) [51].

d) Interoperable chains: Gravity Hub, is a blockchain
with the inherent ability to communicate with other
blockchains, such as Waves[52], or Ethereum. Gravity Hub
nodes are able, for example, to obtain block headers from
the Ethereum network and send them to Waves Platform to
prove that a specific transaction has taken place on Ethereum.
Another DLT with built-in interoperability is Wanchain [53].
Wanchain is a cross-chain blockchain infrastructure designed
to provide interoperability between Bitcoin, Ethereum and
ERC-20 tokens, EOS. Recently, the project introduced the
T-Bridge framework [53], a generalized framework for data
and asset transfer between heterogeneous public and private
blockchains. More details about the interoperability solutions
discussed in this subsection along other projects (such Block-

net, ARK, the POA network, AIO, etc.) can be found in this
survey [54].

3) Determinism : To deal with the non-determinism issue,
three general approaches are adopted. The first approach is to
guarantee determinism by design. For instance, in Ethereum
the EVM does not support, by-design, any non-deterministic
operations (e.g. floating point, randomness, etc.). Nevertheless,
due to the importance of randomness, the RANDAO [55]
project has been proposed as an RNG (Random number
generator) of Ethereum based on an economically secure coin
toss protocol. The idea behind is to build DAO (decentralized
autonomous organisation) for registering random data on the
blockchain. The second approach, adopted by other projects
such as Multichain [35], Corda, or Stratis which use existing
runtime environments, ensure determinism by adapting these
environments to force determinism processing.

C. Environment openness

Most DLTs rely on oracles to read data from external
sources. Simply put, an oracle is a smart contract maintained
by an operator that is able to interact with the outside world.
Several data feeds are deployed today for smart contract
systems such as Ethereum. Examples include , Town Crier
[56] and oracle Oraclize.it [57].

VI. APPLICATION LAYER

In this section we briefly introduce the components and
properties our DCEA framework defines for the application
layer as well as an overview of the state-of-the-art.

A. components and properties

a) Integrability: As a new technology, which is often
perceived as hard to adopt, DLT systems try to offer a better
user-experience by providing necessary tools (APIs, frame-
works, protocols.) to enable better integrability with existing
technologies and systems (e.g. Web, mobile). The integrability
of a DLT can be considered as a qualitative property, thus it
is possible to deduce a ”Level of Integrability ”. That is, we
establish a small integrability scale from “high” to “low”:

• High: Indicates that the DLT ecosystem has a good
integrability with other technologies, especially web and
programming technologies.

• Low: Indicates that the DLT ecosystem does not provide
any official integrability tools or provides few with lim-
ited ability.

• Medium: Defines an intermediate level between the two
extremes.
b) DApp orientation and DLT’s purpose : Decentralized

applications (or DApps for short) are software applications
whose server and client tiers are decentralized and operating
autonomously, with no controlling entity. Broadly speaking,
DApps are two-tier applications which include a front-end
client connected to a back-end running on the blockchain. The
key-advantage of DApps is the distribution of its execution
and potentially the hosting of front-end components, a design
feature that improves reliability and security. Therefore, we

can assume that a DApp is unstoppable and free from external
control or manipulation. We do not consider an application as
DApp, if it uses the DLT as a mere database to store data or
to exploit its timestamping while its components live outside
the DLT. Due to the importance of DApps, we consider a DLT
as DApp-oriented if it focuses on offering the necessary tools
for building and maintaining decentralized applications, using
different protocols and APIs.

c) Wallet and identity management: Wallets are an
important component of the application layer. Generally, they
manage user’s cryptographic identities. Since in most DLTs,
identities and ownership are determined by their public/private
pairs, a wallet represents a high-level entry-point to the net-
work. Wallets are responsible for all cryptographic operations
related to the creation or storage of the user’s keys or digital
certificates as well as the management of transactions.

B. Application layer: state of the art

Due to the vastness of different approaches and tools pro-
vided by different DLTs at the application layer, we overview
only the application layer of few notorious DLTs.

a) Integrability: DLTs generally introduce a layer of in-
tegration between external entities and their data and execution
layer. DLTs like Ethereum NEO or EOS and others, have a
richer toolset and integration tools. Ethereum offers a robust
and lightweight JSON-RPC API with a good support for the
JavaScript language. It provides Web3.js, an official feature-
rich JavaScript library for interacting with Ethereum compat-
ible nodes over JSON-RPC. Further, for a better integration
into legacy systems, Camel-web3j [58] connector provides an
easy way to use the capabilities offered by web3j from Apache
Camel DSL. In addition, Infura [59] provides online access
for external actors to communicate with the Ethereum chain,
through Metamask [60], dropping the need for running an
Ethereum node or client making the DApp easier for the end-
user. Similarly, EOS presents a wide set of tools and features,
easing its integration and interaction with external systems.

b) DApp Orientation and DLT purpose: Bitcoin and
similar projects (e.g. Zcash, Litecoin) are created with the
purpose to serve as mere secure digital cash networks. Thus,
they are considered Cryptocurrency-oriented. Other DLTs try
to propose along the cryptocurrency other types of P2P value
transfers. In the case of storage oriented DLTs such as Sia
Network, Storj, FileIo, Ipfs, the network manages data storage
alongside a cryptocurrency. Similarly, the service-oriented
DLTs propose services consuming the inherent token, such as
“Steemit” which runs a social network or Namecoin which
aims to provide a decentralized DNS. On the other hand,
various DLTs are DApp-oriented and allow developers to build
generic applications.

VII. EVALUATION AND DISCUSSION

In this section, we present our comparative analysis and
evaluation of the selected DLTs based on the properties defined
by our framework.

Table II summarizes the comparison between a large rep-
resentative sample of DLTs implemented in the industry or
introduced by the recent research literature. The compari-
son covers four aspects: four-component DCEA framework
composition, operational scope, decentralization level, and the
higher taxon to which it belongs. In this subsection we focus,
among the evaluated properties on analyzing the governance,
conflict resolution approaches and evaluate decentralization as
these properties play a major role to decide whether a system
is a blockchain or not.

Decentralization is an essential characteristic that should
be at the core of the design of DLTs. In our evaluation,
when we investigate the decentralized nature of a DTL, we
investigate its architectural topology, the cost of running full
nodes and their distribution, alongside the governance scheme
adopted in the decision-making process. Thus, we consider
a DLT as decentralized if it is not controlled physically
or logically by a single entity in terms of the aforemen-
tioned considerations. The 44 DLTs, presented in Table II,
were reviewed on a three-step scale from centralized, semi-
decentralized —where some processes are centralized or some
entities in the network have substantial decisional power.—
to decentralized. Our comparison shows that multiple DLT
projects sacrifice full decentralization in favor of improving
performance and scalability. For instance, Ripple, Stellar and
Libra choose to accord operational and decisional privileges
to central entities to achieve better performance. For better
scalability and security, Ripple adopts a “starter” membership
list of trusted nodes, which can be updated by users. However,
because divergent lists invalidate safety guarantees [31], users
rarely update their initial list, leading to a centralized system
dominated by the nodes of the starter list. Besides, the Ripple
company holds a big amount of XRP (Ripple’s token) and thus
it is able to influence the network. Similarly, [61] shows that
the entire stellar system can fail completely in sequence if only
the two nodes operated by the Stellar foundation are deleted.
On the other hand, most PoS-based DLTs are decentralized.
However, PoS is criticized for favoring entities with a bigger
amount of tokens, which lead in case of unfair distribution
of tokens to centralized validation. [62] shows that the ratio
between the block reward and the total network stake has a
significant impact on the decentralization of the network. IOTA
is an example of semi-decentralized DLTs as it makes use
of coordinator (COO) nodes run by the IOTA foundation to
secure the network from 34% attacks and transactions cannot
be confirmed unless they are confirmed by the Coordinator
(via milestones). DPoS-based DLTs are criticized for being
prone to validation centralization because elected validators
can collude between them instead of being in competition.
For example, in EOS, there is a correlation between votes
[63] for different candidates and it is possible to deduce the
existence of alliances within the EOS system. Besides, the
high concentration of tokens on EOS is worrisome as the top
100 holders collectively own 75.13% [63] of the total of EOS
currency. Therefore, the selection of validators can be in the
hand of a small fraction of the network. In relation, researchers

TABLE II
A SUMMARY TABLE OF COMPARISON AND ANALYSIS OF THE SELECTED DLTS

DATA LAYER CONSENSUS LAYER EXECUTION LAYER APPLICATION LAYER

DLT
solution

D
at

a
St

ru
ct

ur
e

D
at

a
sh

ar
ea

bi
lit

y

St
at

es
m

an
ag

em
en

t

Im
m

ut
ab

ili
ty

C
on

se
ns

us

G
ov

er
na

nc
e

G
ov

er
na

nc
e

na
tu

re

Tr
an

sa
ct

io
n

or
de

re
r

Fo
rk

m
an

ag
em

en
t

(N
on

-m
al

ic
io

us
fo

rk
s)

Tu
ri

ng
co

m
pl

et
e-

ne
ss

E
nv

ir
on

m
en

t
op

en
ne

ss

E
xe

cu
tio

n
en

vi
ro

nm
en

t

D
et

er
m

in
is

m

L
an

gu
ag

es

In
te

ro
pe

ra
bl

e

O
ri

en
ta

tio
n

In
te

gr
ab

ili
ty

Pu
rp

os
e

Æternity CoB G On S GHOST, Bitcoin-NG (for security)
and PoS (for governance)

De Bl Randomly selected miner Lc Tc Op
(Built-in
oracle)

Æternity VM Dc Sophia, Varna,
solidity

No Cy and
DA

H Ge

Algorand CoB G On S Algorand Ol Ex Randomly selected leader
(stake weighted election)

Nf NTc Is (OB) Algorand VM Dc TEAL No Cy and
DA

M Ge

Ardor CoB (One
parent chain
with multiple
child chains)

G On S PoS Ol Bl Forging account (NXT
forging algorithm)

Lc NTc Op Deterministic Java
VM

Dc Java Yes (between child
chains)

Cy and
DA

M Ge

Bigchaindb
2.0

HDS (a
database and a
CoB)

G On/Off W Tendermint Ol or De Ex Elected leader orders
transactions by arrival
time

Nf Nsp No DA M Bo

Bitcoin CoB G On S PoW An Bl
and
Ex

Randomly selected miner Lc NTc Is Script runtime Dc Bitcoin scripting,
Miniscript

No Cy M Po

BitShares CoB G On S DPoS De Bl Elected Witness Lc NTc Is Bitshares runtime Dc C++ No Cy L So
Byzcoina Skipchain G On S Byzcoin An Ex Randomly selected miner Lc NTc Is Byzcoin runtime Dc Go No Cy L Ge
Cardano CoB G&R On S Ouroboros De Bl Randomly selected leader Lc Tc Is IELE VM Dc IELE and Plutus Yes (with cardano

sidechain)
Cy and
DA

M Ge

Corda (R3) DDB G Off W RAFT, BFT-SMaRt or KAFKA Di, Ol or
De

Ex BFT-SMaRt distributed
notary

Nf Tc Is (OB) Java VM NDc Kotlin, Java No DA H Bo

Cosmos CoB (Hub and
multiple zones)

G&R On S Tendermint De (with
Veto)

Bl Elected block producer Nf Tc Is WebAssembly VM Dc Wasm lan-
guages(cosmos
SDK)

Yes (Cross-chain In-
teroperability)

Cy and
DA

M Ge

Decred CoB G On S PoW and PoS De Bl Randomly selected miner Lc NTc Is Script runtime Dc Modified bitcoin
scripting

No Cy L Po

Elrond SCoB
(Metachain
and shards)

G On S Secure PoS (variant of Algorand) De Bl Randomly selected pro-
poser

Lc Tc Is (OB) Elrond VM Dc IELE, Wasm lan-
guages

Yes (between
Metachain and
shards)

Cy and
DA

L Ge

EOS CoB G Off W Transactions-as-PoS Ol Bl Elected block producer Lc Tc Is (OB) WebAssembly VM Dc Wasm languages Yes (with EOSYS
sidechain)

Cy and
DA

H Ge

Ethereum
1.0

CoB G On S PoW (ETHASH) An Ex Randomly elected miner Lc Tc Is (OB) Ethereum VM Dc Solidity, Vyper,
LLL, Julia

No Cy and
DA

H Ge

Ethereum
Enterprise

CoB G&R On W PoA, RAFT or IBFT Di, Ol or
De

Ex Elected leader Lc Tc Is Ethereum VM Dc EVM languages No DA H Bo

Exonum En-
terprise

CoB G & R On S Exonum protocol Di, Ol or
De

Bl Predefined leader Nf Tc Op
(Built-in
oracle)

Java VM and Rust
runtime

NDc Java, Rust Yes (one way with
Bitcoin)

DA M Bo

Elastos CoB (main
chain and
sidechains)

G On S DPoS and POW (merged mining
with Bitcoin)b

De Bl Randomly elected miner Lc Tc Is CAR runtime, EVM
(Ethereum Sidechain)
, NEOVM(NEO
sidechain)

Dc C++, Java,
Swift, JavaScript,
Golang, solidity

Yes (Sidechains can
transact with each
other)

Cy and
DA

M Ge

Filecoin CoB G On S Proofs-of-Spacetime Ol Bl Elected leader (using Ex-
pected Consensus (EC))

Lc/
Hcc

Tc Is FilecoinVM Dc Golang Nod DA H DSo

Hashgraph DAG
(Transaction-
based DAG)

G&R On W Hashgraph Ol Bl Fair ordering via Consen-
sus Time Stamping

Nf Tc Is (OB) Ethereum VM Dc EVM languages Yes (with
Hyperledger Fabric)

Cy and
DA

M Ge

Hyperledger
fabric

HDS G&R Off W PBFT Ol or De Ex Ordering service node Nf Tc Op Java VM and Nodejs
runtime

Dc Go, JavaScript No DA H Bo

IOTA DAG
(Transaction-
based DAG)

G On W IOTA Ol Ex End-user and coordinator
node

Hb Nsp (Qubic a smart contract protocol is under development)e Yes (with
Hyperledger Fabric)

Cy M IOT

Lisk CoB (Main and
sidechains)

G On S DPoS De Bl Elected leader Lc Tc Is NodeJs runtime Dc JavaScript No Cy and
DA

H Ge

Multichain CoB G&R On/Off W Mutlichain protocol (variant of
PBF)

Ol Ex Predefined leader Lc Multichain do not support smart contracts No DA L Ge

NEO CoB G&R On S DBFT (Delegated Byzantine Fault
Tolerance)

Ol, De Bl
and
Ex

Elected leader Nf Tc Is (OB) NeoVM Dc .NET and JVM
languages (Java,
Kotlin)

Yes (Between
private blockchains
connected to NEO)

Cy and
DA

M Ge

Omniledgerf SCoB G On/Off S ByzCoinX (Variant of Byzcoin) Ns Ns Randomly elected leader Nf Not supported Yes (with its shards) - - Ge
Parity
substrate

CoB G&R On W Pluggable consensus (Hybrid
PBFT, Aurand, Rhododendron,
Shaft, ouroboros, PoW)

Ol Bl Depends on the chosen
consensus mechanism

Nf Tc Is WebAssembly VM Dc WASM
languages

Yes (with Polkadot) DA H Bo

Polkadot
(Relay
chain)

CoB (relay
chain)g

G On S GRANDPA and BABE (PoS) De Bl Randomly elected leader Lc Tc Is WebAssembly VMh Dc WASM
languages

Yes (Cross-chains in-
teroperability)

Cy and
DA

H Io

Quorum CoB G&R On W IBFT or RAFT or Clique POA Di, Ol or
De

Ex Elected leader Nf Tc Is (OB) Ethereum VM Dc EVM languages No DA H Ge

Qutum CoB G On S PoS De Bl Elected leader Lc Tc Is (OB) Ethereum VM and
X86 VM

Dc EVM languages,
C, C++, Rust,
Python

Yes (Atomic swap
with bitcoin)

Cy and
DA

Hign Ge

Ripple DDB (chain of
ledgers stored
as key-value)

G On S Ripple (FBA) Ol Ex Validating nodes converge
toward a canonical order

Nf NTc Is Built-in specialized
payment types

Dc JavaScript No Cy M Po

Rootstock CoB G On S POW (merged mining with Bit-
coin)

Ol Bl Randomly selected miner Lc Tc Is (OB) Ethereum VM Dc EVM languages Yes (with bitcoin) Cy and
DA

L Ge

Steem CoB G On S DPoS De Bl Elected leader Lc Not supported Cy L So
Stellar DDB (chain of

ledgers stored
as key-value)

G On S Stellar (FBA) Ol Ex Validating nodes (using
transactions sequence
number)

Nf NTc Is Stellar runtime Dc Java, JavaScript,
Go

Yes (Atomic
swap with other
blockchains)

Cy Hign Po

Sia CoB G On S PoW An Ex Randomly elected miner Lc Not supported No DA M DSo
Stratis CoB (Main

chain and
sidechains)

G On S PoA or PoS Ol Ex Randomly elected miner Lc Tc Is .NER runtime Dc .Net languages
(e.g C#)

Yes (with its
sidechains and
with bitcoin)

Cy and
DA

M Ge

Nano DAG (block-
lattice)

G On S Open Representative Voting (ORV)
(based on DPoS)

Ol Bl Users (Sender and recipi-
ent)

Nfi Not supported No Cy L Ge

Tezos CoB G On S DPoS (Liquid PoS) and Emmy De Bl Elected miner Lc Tc Is (OB) Tezos interpreter Dc Michelson No Cy and
DA

M Ge

Wanchain CoB G&R On S PoS De Bl Elected miner Lc Tc Is (OB) Ethereum VM Dc EVM languages Yes (Cross-Chain
Communication
Protocol)

Cy and
DA

L Io

Waves CoB G On S Waves-NG (PoS based on Bitcoin-
NG)

An Bl Elected miner (PoS) Lc NTc Is (OB) Waves runtime Dc Rideon Yes (Atomic
swap with other
blockchains)

Cy and
DA

L Ge

Zilliqa SCoB G On S PBFT and POW (Ethash) De Bl Elected leader Nf Tc Is (OB) Zilliqa VM Dc Scilla No Cy and
DA

M Ge

Libra (Face-
book)

DDB G On W LibraBFT Ol Ex Elected leader Nf Tc Is Libra VM Dc Move No Cy M Po

Artis CoB G On S HoneyBadgerBFT Ol Bl Correct nodes Nf Tc Is (OB) Ethereum VM Dc EVM languages Yes (with Ethereum) DA M Ge
VeChain CoB G On S PoA Ol Bl Elected leader (determin-

istic pseudo-random pro-
cess)

Lc Tc Is (OB) Ethereum VM Dc EVM languages No Cy and
DA

M Ge

Red Belly CoB G On S DBFT Democratic BFT Ns Ns Elected proposers Nf NTc Is Script runtime Dc Bitcoin-like
scripting

No Cy L Ge

LEGEND :
CoB: Chain of blocks, SCoB: Sharded Chain of blocks, DDB: Distributed database, HDS: Hybrid data structure
G: Global, S: Strong, R: Restricted, W: Weak, Cy: Cryptocurrency, DA: DApps, Ol: Oligarchic, De: Democratic, An: Anarchic, Di: Dictatorship
Bl: Built-in, Ex: External, Ns: Not specified, Nsp: Not supported, Nf: No forks, Lc: Longest chain, Hb: Heaviest branch, Hc: Heaviest chain,
Op: Open, Is: Isolated, OB: Oracle-based, Dc: Deterministic, NDc: Non-Deterministic, H: High, M: Medium, L: Low, Ge: General.
Bo: Business-oriented, Po: Payment-oriented, So: Service-oriented, DSo: Decentralized storage-oriented, IOT: IOT-oriented, Io: Interoperability-oriented

a Based on the implementation available on https://github.com/dedis/cothority/tree/master/byzcoin
b Elastos sidechains can have any consensus mechanism
c Filecoin gives weight to blocks that offer more storage power
d Filecoin ensures interoperability between different implementations of Filecoin protocol.
e https://qubic.iota.org
f Based on the minimalistic implementation available on https://github.com/dedis/student 18 byzcoin
g Parachains can have their own data structure
h Parachains are individual chains with their own runtime logic.
i In Nano, each user maintains its own DAG and a balance-weighted voting system is used to handle conflicting transactions.

https://github.com/dedis/cothority/tree/master/byzcoin
https://qubic.iota.org
https://github.com/dedis/student_18_byzcoin

such as Micali argue that inappropriate incentive systems may
lead to significant centralization [64]. Also, Kwon and al.
discuss why it is hard to achieve good decentralization [65] in
permissionless blockchains.

In our evaluation, we were also interested in assessing
decentralized governance of the selected DLTs. In order to
modify the parameters of a DLT protocol and upgrade the
network rules, multiple decision-making approaches are de-
fined by different projects ensuring different political forms of
governance. Bitcoin and similar networks (e.g. Ethereum) are
anarchically governed. In such systems, a proposer initially
presents an improvement proposal to solve a problem or to
enhance the protocol performance (e.g. rising block size).
Afterwards, the proposal is publicly discussed and once it
attracts enough favorable peer review, the proposal is im-
plemented into the project’s codebase. Depending on the
technical requirements a proposal may require a Soft-fork
or a Hard-fork implementation, such that in the former the
implementation is forward-compatible and does not need to
be implemented by all the nodes in the network, whereas
the later requires the nodes to imperatively upgrade their
software otherwise they will be isolated (intentionally or not)
in a different network as upgraded nodes will disconnect
and ban nodes which are adopting a different version of the
protocol. In Bitcoin, Soft-forks implementations have an on-
chain governance feature, called Version bits voting [66] to
measure miner support and accept or not the implementation.
Other projects like Qutum, try to avoid the problem of hard-
fork for minor modifications (e.g. the block size and gas
parameters) by providing built-in mechanisms enabling the
actors to decide democratically how to tune the system using
dedicated smart contracts (Decentralized governance protocol).
Similarly, Tezos adopts Tezos governance protocol which
enables stakeholders and node operators to democratically
decide on upgrading the system’s rules. For enterprise-grade
DLTs such as Hyperledger, Corda which are intended to be
primarily used in private or consortium contexts, the situation
is different. In these DLTs, governance is externally managed
by a governing body formed by members of the network. For
instance, for upgrading the DLT version a technical committee
takes the decision, stops the network [67] and applies the
upgrade.

Another interesting aspect in the selected DLT systems
is their approaches for ordering transactions and resolving
conflicts. In the systems based on the Nakamoto consensus
protocols, the transactions are ordered freely by the miners
in blocks, validated then included in the canonical chain. In
presence of conflicting chains, nodes shift toward the longest
chain. Other protocols adopt Nakamoto’s longest chain rule
due to its resilience and reliability. For example, in DPoS
protocols, the longest chain rule applies when a block is not
voted on by the majority (2/3 +1) of the block producers. also
some PoS protocols (e.g Ouroboros) and Nevertheless, a recent
study [68] argues that the “longest-chain PoS” rule is not
safe when applied to PoS protocols. Conversely, Nano’s DAG
abandons leader election and delegates transaction ordering to

users and their representatives to resolve conflicts. In other
networks such as Fabric, a special ordering service called the
Ordering Service Nodes (OSN) establishes a total order on the
transactions before committing the blocks into the ledger. The
OSN (or, simply, orderers) is ensured by a set of nodes that
collectively establish, using RAFT or KAFKA, the total order
of all transactions to be committed by the other nodes, and
thus resolve conflicting transactions. Similarly, in Corda, the
notary service [69] orders transactions and detects conflicts
using multiple consensus mechanisms such as RAFT, PBFT
and others. Once the notary service approves a transaction, it is
considered as final and committed by all the parties. In IOTA,
the ordering is partially ensured by the transaction senders and
transactions weights. In fact, the transaction sender randomly
selects two previous tips to which his transaction will be
appended. The network continuously assigns a cumulative
weight to each transaction. Due to this model of cumulative
weight, the valid tangle is determined by the heavier branch.
Moreover, coordinators in IOTA validate (mostly indirectly)
periodically the valid transactions in the tangle by issuing
milestone transactions, serving, among other things, to in-
dicate transaction’s order and the main tangle to the nodes.
Hashgraph aims to guarantee “ordering fairness” based on
its gossip-about-gossip protocol, ensuring that transactions are
processed in the order of their reception by the nodes. Due to
the importance of an accurate and fair ordering, Avi Asayag
and al. proposed Helix [70], and Kelkar and al. proposed
Aequitas [71] as new blockchain-based consensus protocols
providing fair ordering.

Over the last few years, the application of blockchain
and blockchain-like technologies has spread to many fields.
Although their applications areas overlap, we can definitely
deduce that they serve different business scenarios with con-
trasting requirements. Broadly speaking, we can state that
Blockchain systems tend to better serve global decentralized
B2C or C2C models whereas blockchain-like platforms are
better suited to B2B models or for internal usage within
a single organization. Blockchain-like systems are mostly
adopted in the corporate sector where there is a need for
controlled governance and restriction over shared data. For
example, a consortium of banks can build a blockchain-like
system where financial transaction details are only shared
with the concerned parties. On the other hand, blockchain
systems are more suitable for egalitarian networks with a
high level of freedom for the end user. For example, most
blockchains manage cryptocurrencies and allow global money
transfer without involving a middleman.

VIII. CONCLUSION & FUTURE RESEARCH DIRECTIONS

In this paper, we have provided a comprehensive survey
of the current DLTs with a multi-layered state of the art.
Moreover, we have used the proposed framework as a ref-
erence to investigate the different approaches adopted by
different DLTs at the four layers: data structure, execution,
consensus and application layers. Additionally, we conducted

a qualitative and comparative analysis of a large number of
existing DLTs. In conducting this survey, we came across a
plethora of challenges that we believe had a direct effect on
DLT’s performance, of which we summarise, at the four layers,
the ones most important to us in the following.

a) Blockchain Bloat: While surveying multiple
blockchain projects, we identified a common problem
known as blockchain bloat. This problem refers to the
difficulty of managing the storage of a growing size ledger
without harming decentralization. Hence, the cost of this
maintenance grows with the size of the blockchain, there will
be a level where only few entities will be able to bear the
cost of managing the whole ledger.

b) Smart contract security: It is clear that smart contract
Security is a real problem in DLT space, particularly for public
blockchain where financial risks are at stake. Many solutions
have been proposed to further aid in securing smart contract,
by providing code analyzers and secure smart contracts li-
braries.

c) Data immutability in private or consortium DLTs: In
permissioned private DLTs it is difficult to guarantee a strong
level of immutability as is ensured by public blockchains.
Given that immutability is a cornerstone in DLTs, this problem
is questioning the usage of DLTs in such environments.

d) Decentralized governance mechanisms: Governance
in decentralized networks remains a complex problem. In the
absence of any form of authority, the decision-making process
can be very challenging. DAO (Decentralized Autonomous
Organization) was a primitive attempt to build an organization
with decentralized management and heightened transparency,
but the experiments showed its limitations including the lack of
a decentralized reputation system for DAO, of Sibyl-resistant
identities, and of a regulatory framework for DAO actions, etc.

e) Forkless runtime upgrades: Hard forking is a standard
method of upgrading public blockchains. However, in large
scale networks, this process remains inefficient, and error-
prone due to the levels of offline and online coordination
required to avoid splitting the network. Some recent solu-
tions[47] are exploring the possibility to deploy the upgrade
using a portable technology (e.g. WASM) on-chain to manage
nodes upgrade without external intervention.

REFERENCES

[1] S. Nakamoto, “Bitcoin : A Peer-to-Peer Electronic Cash System,” pp.
1–9, 2008.

[2] L. Team, “Litecoin.” [Online]. Available: https://litecoin.org/
[3] S. King and S. Nadal, “Peercoin–secure & sustainable cryptocoin,” Aug-

2012 [Online]. Available: https://peercoin. net/whitepaper (), 2012.
[4] S. Popov, “The Tangle,” Tech. Rep., 2017.
[5] H. Foundation, “Hyperlegder Project.” [Online]. Available: https:

//www.hyperledger.org/
[6] Hedra, “Hedera Hashgraph.” [Online]. Available: https://www.hedera.

com/
[7] E. N. Dawson, A. Taylor, and Y. Chen, “ISO/TC 307 Blockchain

and distributed ledger technologies.” [Online]. Available: https:
//www.iso.org/committee/6266604.html

[8] ISO/TR, “ISO/TR 23455:2019 Blockchain and distributed ledger tech-
nologies — Overview of and interactions between smart contracts in
blockchain and distributed ledger technology systems.”

[9] I. S. Association, “IEEE blockchain standards.” [Online]. Available:
https://blockchain.ieee.org/standards

[10] ITU, “Focus Group on Application of Distributed Ledger Technology.”
[Online]. Available: https://www.itu.int/en/ITU-T/focusgroups/dlt/Pages/
default.aspx

[11] W. Pugh, “Skip lists: a probabilistic alternative to balanced trees,”
Communications of the ACM, vol. 33, no. 6, pp. 668–676, 1990.

[12] S. Delgado-Segura, C. Pérez-Solà, G. Navarro-Arribas, and J. Herrera-
Joancomartı́, “Analysis of the Bitcoin UTXO set,” in Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), vol. 10958 LNCS.
Springer Verlag, 2019, pp. 78–91.

[13] I. Eyal, A. Gencer, and E. Sirer, “Bitcoin-ng: A scalable blockchain
protocol,” 13th USENIX Symposium, 2016. [Online]. Available: https:
//www.usenix.org/system/files/conference/nsdi16/nsdi16-paper-eyal.pdf

[14] P. Jovanovic, “ByzCoin: Securely Scaling Blockchains,” Hacking, Dis-
tributed, August, 2016.

[15] K. Nikitin, E. Kokoris-Kogias, P. Jovanovic, N. Gailly, L. Gasser,
I. Khoffi, J. Cappos, and B. Ford, “{CHAINIAC}: Proactive software-
update transparency via collectively signed skipchains and verified
builds,” in 26th {USENIX} Security Symposium ({USENIX} Security
17), 2017, pp. 1271–1287.

[16] A. Kiayias and G. Panagiotakos, “On trees, chains and fast transactions
in the blockchain,” in Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), vol. 11368 LNCS. Springer Verlag, 2019, pp. 327–351.

[17] A. Churyumov, “Byteball: A decentralized system for storage and
transfer of value,” URL https://byteball. org/Byteball. pdf, 2016.

[18] C. LeMahieu, “RaiBlocks: A feeless distributed
cryptocurrency network,” URL https://raiblocks.
net/media/RaiBlocks Whitepaper English. pdf, 2017.

[19] M. Hearn, “Corda: A distributed ledger,” Corda Technical White Paper,
vol. 2016, 2016.

[20] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis,
A. De Caro, D. Enyeart, C. Ferris, G. Laventman, and Y. Manevich,
“Hyperledger fabric: a distributed operating system for permissioned
blockchains,” in Proceedings of the Thirteenth EuroSys Conference,
2018, pp. 1–15.

[21] I. Grigg, “Eos-an introduction,” White paper.
https://whitepaperdatabase. com/eos-whitepaper, 2017.

[22] T. McConaghy, R. Marques, A. Müller, D. De Jonghe, T. Mc-
Conaghy, G. McMullen, R. Henderson, S. Bellemare, and A. Granzotto,
“Bigchaindb: a scalable blockchain database,” white paper, BigChainDB,
2016.

[23] S. Brakeville and P. Bhargav, “Blockchain ba-
sics: Glossary and use cases,” 2016. [Online].
Available: https://developer.ibm.com/technologies/blockchain/tutorials/
cl-blockchain-basics-glossary-bluemix-trs/

[24] L. Lamport, “Proving the Correctness of Multiprocess Programs,” IEEE
Transactions on Software Engineering, vol. SE-3, no. 2, pp. 125–143,
1977.

[25] R. Pass, L. Seeman, and A. Shelat, “Analysis of the blockchain protocol
in asynchronous networks,” in Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), vol. 10211 LNCS. Springer Verlag, 2017,
pp. 643–673.

[26] C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the presence
of partial synchrony,” Journal of the ACM (JACM), vol. 35, no. 2, pp.
288–323, 4 1988.

[27] L. Lamport, R. Shostak, and M. Pease, “The Byzantine generals
problem,” ACM Transactions on Programming, 1982. [Online].
Available: http://dl.acm.org/citation.cfm?id=357176

[28] L. Baird, “THE SWIRLDS HASHGRAPH CONSENSUS ALGO-
RITHM: FAIR, FAST, BYZANTINE FAULT TOLERANCE,” Tech.
Rep., 2016.

[29] D. Schwartz, N. Youngs, and A. Britto, “The ripple protocol consensus
algorithm,” Ripple Labs Inc White Paper, vol. 5, no. 8, 2014.

[30] D. Mazieres, “The stellar consensus protocol: A federated model for
internet-level consensus,” Stellar Development Foundation, vol. 32,
2015.

[31] F. Armknecht, G. O. Karame, A. Mandal, F. Youssef, and E. Zenner,
“Ripple: Overview and outlook,” in Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture

https://litecoin.org/
https://www.hyperledger.org/
https://www.hyperledger.org/
https://www.hedera.com/
https://www.hedera.com/
https://www.iso.org/committee/6266604.html
https://www.iso.org/committee/6266604.html
https://blockchain.ieee.org/standards
https://www.itu.int/en/ITU-T/focusgroups/dlt/Pages/default.aspx
https://www.itu.int/en/ITU-T/focusgroups/dlt/Pages/default.aspx
https://www.usenix.org/system/files/conference/nsdi16/nsdi16-paper-eyal.pdf
https://www.usenix.org/system/files/conference/nsdi16/nsdi16-paper-eyal.pdf
https://developer.ibm.com/technologies/blockchain/tutorials/cl-blockchain-basics-glossary-bluemix-trs/
https://developer.ibm.com/technologies/blockchain/tutorials/cl-blockchain-basics-glossary-bluemix-trs/
http://dl.acm.org/citation.cfm?id=357176

Notes in Bioinformatics), vol. 9229. Springer Verlag, 2015, pp. 163–
180.

[32] Stellar, “Intuitive Stellar Consensus Protocol - Developers
Blog.” [Online]. Available: https://www.stellar.org/developers-blog/
intuitive-stellar-consensus-protocol

[33] A. M. Turing, “On computable numbers, with an application to the
Entscheidungsproblem,” J. of Math, vol. 58, no. 345-363, p. 5, 1936.

[34] A. Back, M. Corallo, L. Dashjr, M. Friedenbach, G. Maxwell,
A. Miller, A. Poelstra, J. Timón, and P. Wuille, “Enabling Blockchain
Innovations with Pegged Sidechains,” pp. 1–25, 2014. [Online].
Available: http://www.blockstream.com/sidechains.pdf://www.bitcoin.fr/
public/divers/docs/sidechains.pdf

[35] G. Greenspan, “Multichain private blockchain-white paper,” URl:
http://www. multichain. com/download/MultiChain-White-Paper. pdf,
2015.

[36] S-tikhomirov, “GitHub - s-tikhomirov/smart-contract-languages: A
curated collection of resources on smart contract programming
languages.” [Online]. Available: https://github.com/s-tikhomirov/
smart-contract-languages

[37] Stellar, “Stellar Smart Contracts — Stellar Developers.” [On-
line]. Available: https://www.stellar.org/developers/guides/walkthroughs/
stellar-smart-contracts.html

[38] Nxter, “IGNIS — NXTER.ORG.” [Online]. Available: https://www.
nxter.org/understanding-ignis/#smarttransactions

[39] jelurida, “ARDOR Whitepaper.” [Online]. Available: https://www.
jelurida.com/sites/default/files/JeluridaWhitepaper.pdf

[40] T. Kasampalis, D. Guth, B. Moore, T. F. S, erbănut,ă, Y. Zhang, D. Fi-
laretti, V. S, erbănut,ă, R. Johnson, and G. Roşu, “IELE: A rigorously
designed language and tool ecosystem for the blockchain,” in Lecture
Notes in Computer Science (including subseries Lecture Notes in Ar-
tificial Intelligence and Lecture Notes in Bioinformatics), vol. 11800
LNCS. Springer, 10 2019, pp. 593–610.

[41] Plutus, “GitHub - input-output-hk/plutus: The Plutus language
implementation and tools.” [Online]. Available: https://github.com/
input-output-hk/plutus/

[42] Z. Team, “The ZILLIQA technical whitepaper,” Retrieved September,
vol. 16, p. 2019, 2017.

[43] startis academy, “Welcome to Stratis Academy — Stratis Academy
documentation.” [Online]. Available: https://academy.stratisplatform.
com/

[44] N. Mining, “Rootstock (RSK): Smart contracts on Bitcoin. Medium,”
2018.

[45] S. Thomas and E. Schwartz, “A protocol for interledger payments,” URL
https://interledger. org/interledger. pdf, 2015.

[46] Catus, “GitHub - hyperledger/cactus: Hyperledger Cactus is a
new approach to the blockchain interoperability problem.” [Online].
Available: https://github.com/hyperledger/cactus

[47] G. Wood, “Polkadot: Vision for a heterogeneous multi-chain frame-
work,” White Paper, 2016.

[48] Polkadot, “Validator · Polkadot Wiki.” [Online]. Available: https:
//wiki.polkadot.network/docs/en/maintain-validator

[49] Parachain, “Bridges · Polkadot Wiki.” [Online]. Available: https:
//wiki.polkadot.network/docs/en/learn-bridges

[50] J. Kwon and E. Buchman, “Cosmos: A network of distributed ledgers,”
URL https://cosmos. network/whitepaper, 2016.

[51] IBC, “ics/ibc at master · cosmos/ics · GitHub.” [Online]. Available:
https://github.com/cosmos/ics/tree/master/ibc

[52] Waves, “Open platform for Web 3.0 applications.” [Online]. Available:
https://wavesprotocol.org/

[53] Wanchain, “Wanchain 4.0 T-Bridge Framework Tech Explainer:
Part 1 — General Overview - Wanchain.” [Online]. Available:
shorturl.at/sZ145

[54] V. A. Siris, P. Nikander, S. Voulgaris, N. Fotiou, D. Lagutin, and G. C.
Polyzos, “Interledger Approaches,” IEEE Access, vol. 7, pp. 89 948–
89 966, 2019.

[55] Randaow, “GitHub - randao/randao: RANDAO: A DAO working
as RNG of Ethereum.” [Online]. Available: https://github.com/randao/
randao

[56] F. Zhang, E. Cecchetti, K. Croman, A. Juels, and E. Shi,
“Town Crier: An Authenticated Data Feed for Smart Contracts,”
dl.acm.org, vol. 24-28-Octo, pp. 270–282, 10 2016. [Online]. Available:
http://dx.doi.org/10.1145/2976749.2978326

[57] Provable, “Provable - blockchain oracle service, enabling data-rich
smart contracts.” [Online]. Available: https://provable.xyz/

[58] Camel-web3j, “camel/web3j-component.adoc at master · apache/camel
· GitHub.” [Online]. Available: https://github.com/apache/camel/blob/
master/components/camel-web3j/src/main/docs/web3j-component.adoc

[59] Infura, “Ethereum API — IPFS API Gateway — ETH Nodes as a
Service — Infura.” [Online]. Available: https://infura.io/

[60] Metamask, “MetaMask.” [Online]. Available: https://metamask.io/
[61] M. Kim, Y. Kwon, and Y. Kim, “Is Stellar as secure as you think?” in

2019 IEEE European Symposium on Security and Privacy Workshops
(EuroS&PW). IEEE, 2019, pp. 377–385.

[62] C. Nguyen, D. Hoang, D. Nguyen, D. N. I. . . . , and u. 2019,
“Proof-of-stake consensus mechanisms for future blockchain networks:
fundamentals, applications and opportunities,” ieeexplore.ieee.org. [On-
line]. Available: https://ieeexplore.ieee.org/abstract/document/8746079/

[63] E. Voting, “EOS Voting Pattern Analysis.” [On-
line]. Available: https://eosauthority.com/producers relation?TB
iframe=true&width=1367.1&height=678.6

[64] Coindesk, “Debate 2017. No Incentive? Algorand Blockchain Sparks
Debate at Cryptography Event.” [Online]. Available: https://www.
google.com/amp/s/www.coindesk.com/

[65] Y. Kwon, J. Liu, M. Kim, D. Song, and Y. Kim, “Impossibility of full
decentralization in permissionless blockchains,” in Proceedings of the
1st ACM Conference on Advances in Financial Technologies, 2019, pp.
110–123.

[66] Bips, “bips/bip-0009.mediawiki at master · bitcoin/bips ·
GitHub.” [Online]. Available: https://github.com/bitcoin/bips/blob/
master/bip-0009.mediawiki

[67] H. Fabric, “Procedure for Upgrading from v1.0.x —
hyperledger-fabricdocs master documentation.” [Online]. Avail-
able: https://hyperledger-fabric.readthedocs.io/en/v1.1.0-alpha/upgrade
to one point one.html

[68] J. Brown-Cohen, A. Narayanan, and S. M. Weinberg, “Formal Barriers
to Longest-Chain Proof-of-Stake Protocols *,” dl.acm.org, pp. 459–473,
6 2019. [Online]. Available: https://doi.org/10.1145/3328526.3329567

[69] Corda, “Notaries — Corda OS 4.4 — Corda Documen-
tation.” [Online]. Available: https://docs.corda.net/docs/corda-os/4.4/
key-concepts-notaries.html

[70] A. Asayag, G. Cohen, I. Grayevsky, M. Leshkowitz, O. Rottenstreich,
R. Tamari, and D. Yakira, “A fair consensus protocol for transaction
ordering,” in 2018 IEEE 26th International Conference on Network
Protocols (ICNP). IEEE, 2018, pp. 55–65.

[71] M. Kelkar, F. Zhang, S. Goldfeder, and A. Juels, “Order-Fairness for
Byzantine Consensus,” Tech. Rep., 2020.

https://www.stellar.org/developers-blog/intuitive-stellar-consensus-protocol
https://www.stellar.org/developers-blog/intuitive-stellar-consensus-protocol
http://www.blockstream.com/sidechains.pdf://www.bitcoin.fr/public/divers/docs/sidechains.pdf
http://www.blockstream.com/sidechains.pdf://www.bitcoin.fr/public/divers/docs/sidechains.pdf
https://github.com/s-tikhomirov/smart-contract-languages
https://github.com/s-tikhomirov/smart-contract-languages
https://www.stellar.org/developers/guides/walkthroughs/stellar-smart-contracts.html
https://www.stellar.org/developers/guides/walkthroughs/stellar-smart-contracts.html
https://www.nxter.org/understanding-ignis/#smarttransactions
https://www.nxter.org/understanding-ignis/#smarttransactions
https://www.jelurida.com/sites/default/files/JeluridaWhitepaper.pdf
https://www.jelurida.com/sites/default/files/JeluridaWhitepaper.pdf
https://github.com/input-output-hk/plutus/
https://github.com/input-output-hk/plutus/
https://academy.stratisplatform.com/
https://academy.stratisplatform.com/
https://github.com/hyperledger/cactus
https://wiki.polkadot.network/docs/en/maintain-validator
https://wiki.polkadot.network/docs/en/maintain-validator
https://wiki.polkadot.network/docs/en/learn-bridges
https://wiki.polkadot.network/docs/en/learn-bridges
https://github.com/cosmos/ics/tree/master/ibc
https://wavesprotocol.org/
shorturl.at/sZ145
https://github.com/randao/randao
https://github.com/randao/randao
http://dx.doi.org/10.1145/2976749.2978326
https://provable.xyz/
https://github.com/apache/camel/blob/master/components/camel-web3j/src/main/docs/web3j-component.adoc
https://github.com/apache/camel/blob/master/components/camel-web3j/src/main/docs/web3j-component.adoc
https://infura.io/
https://metamask.io/
https://ieeexplore.ieee.org/abstract/document/8746079/
https://eosauthority.com/producers_relation?TB_iframe=true&width=1367.1&height=678.6
https://eosauthority.com/producers_relation?TB_iframe=true&width=1367.1&height=678.6
https://www.google.com/amp/s/www.coindesk.com/
https://www.google.com/amp/s/www.coindesk.com/
https://github.com/bitcoin/bips/blob/master/bip-0009.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0009.mediawiki
https://hyperledger-fabric.readthedocs.io/en/v1.1.0-alpha/upgrade_to_one_point_one.html
https://hyperledger-fabric.readthedocs.io/en/v1.1.0-alpha/upgrade_to_one_point_one.html
https://doi.org/10.1145/3328526.3329567
https://docs.corda.net/docs/corda-os/4.4/key-concepts-notaries.html
https://docs.corda.net/docs/corda-os/4.4/key-concepts-notaries.html

	Introduction
	DCEA a taxonomy oriented-framework for conceptualizing and examining DLTs
	Presentation of DCEA framework

	DATA LAYER
	Components and properties
	Chained model
	Chainless model
	State management
	Data shareability
	Data immutability / Atomicity

	Data layer: state of the art
	Chained DLTs
	Skipchain
	Chainless DLT
	Decentralized Databases
	Hybrid DLTs
	Data shareability

	Consensus Layer
	Components and properties
	Basic Properties
	Network models
	Failure Models
	Adversary models
	Identity Model
	Governance Model
	Transactions ordering
	Conflict resolution model

	Consensus layer: state of the art
	 BFT consensus family (PBFT-like)
	Nakamoto consensus family
	Proof of stake and its variants
	 DAG-based Protocols
	 Federated BFT

	Execution Layer
	Components and properties
	Execution environment
	Turing completeness
	Determinism
	Runtime openness
	Interoperability

	Execution layer: state of the art
	Execution environments
	Interoperability
	Determinism

	Environment openness

	Application layer
	components and properties
	Application layer: state of the art

	Evaluation and discussion
	CONCLUSION & Future research directions
	References

