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ABSTRACT 

Estimating lightpath Quality of Transmission (QoT) is crucial in network design and service provisioning. Recent 

studies have turned to Machine Learning (ML) techniques to improve the accuracy of QoT estimation. We 

distinguish two categories of solutions: the first category aims to build ML-based QoT estimation models that 

outperform the analytical model while the second category uses ML algorithms to reduce uncertainties on 

parameters provided as input to analytical model. In this overview, we describe the solutions in each category and 

discuss their practical feasibility and added benefit for operational networks. 
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1. INTRODUCTION 

Optical transport networks have steadily evolved through a number of technological advances such as coherent 

transmission, flexible modulation and tunable transponder. This has resulted in a plethora of new parameters and 

configurations to be considered for network design and operation, which makes estimation of the Quality of 

Transmission (QoT) difficult and complex task. 

Currently, QoT estimation is based on analytical models that approximate linear and non-linear impairments. 

Each analytical model relies on a set of assumptions and requires the knowledge of a set of parameters. The 

Gaussian Noise (GN) model [1], for instance, is based on three assumptions : i) the nonlinear effects are small 

enough to be modeled as perturbations; ii) the transmitted signal behaves as stationary Gaussian noise; and iii) the 

nonlinear disturbance is manifested as additive Gaussian white noise. In optical systems where these assumptions 

are validated, SNR prediction precision is around 1dB [2]. To cope with the lack of accuracy of the QoT estimation 

due to the violation of assumptions and an imprecise knowledge of parameter values, design margins are added by 

operators and vendors [3]. QoT overestimation can lead to unfeasible lightpaths during network operation, while 

QoT underestimation can generate greater expenditure on network equipment. 

Recent studies on improving the accuracy of QoT estimation have focused on Machine Learning (ML) solutions. 

Based on data collected from the optical network, ML algorithms are able to capture the behavior of a physical 

phenomenon implicitly, simply through the variations in the data [4]. 

We summarize recent works that apply ML methods to estimate the QoT, and propose a method to classify them 

into two categories according to the intended usage of ML. The first category uses ML to create a model to estimate 

QoT metrics and assess lightpath feasibility while considering a specific set of parameters. By learning the effect 

of each transmission parameter on the QoT, these solutions are designed to offer an alternative to analytical models. 

The second category deals with the problem of parameter uncertainty. ML algorithms are therefore utilized to 

accurately compute the parameters that will be used as input for the analytical model. 

This paper is organized as follows. In section 2, we present the solutions of each category. In section 3 we discuss 

the results of this survey, and comment on the practical feasibility of the approaches. Section 4 concludes the paper 

and suggests likely avenues for future efforts. 

2. ML-BASED SOLUTIONS’ DESCRIPTION 

2.1 ML FOR THE ESTIMATION OF LIGHTPATH QOT 

The authors in [5] use an Artificial Neural Network (ANN) model to assess the feasibility of potential lightpaths 

based on a Q-factor threshold. The model takes as input features that are related to the lightpath but do not depend 

on the physical layer impairments (see Table 1). In addition to achieving an accuracy score between 92% and 95%, 

the authors claim that their approach is rapid and self-adaptive, as it can adapt to the behavior of the network in 

which it is trained. This study also evaluates the model’s performance during lightpath provisioning. It proves that 

using the ML-based model for QoT estimation together with a routing algorithm leads to fewer blocked lightpaths 

compared to only using an analytical model.  

Random Forest and K-Nearest-Neighbors (KNN) classifiers are used in [6] to predict the probability that the 

BER of a lightpath will exceed a given threshold (or not). The model’s input features consist of the end-to-end 

parameters of the lightpath, as well as the parameters of the neighboring channels in the transmission in order to 

consider cross-channel impairments. The results prove to have an accuracy of up to 96% on several topologies. 



This paper also evaluates the impact of various factors on the QoT estimation, such as dataset size, feature selection 

and dataset collection methods (e.g., the use of probes). This comprehensive study takes into consideration the 

variation of lightpath routes and parameters, and the proposed model provides probability forecasts used to sort 

potential lightpaths according to their QoT and feasibility. 

In [7], a regression ANN is proposed to predict the Q-factor of lightpaths in optical systems with different 

configurations in terms of fiber type, modulation and span number (between 2 and 4 spans). Contrary to [5] and 

[6], the output of the model is the value of the Q-factor. The main problem in ML based QoT estimators is the 

generalization of the model. A model trained on a specific optical system might not be suitable in a different 

system. Therefore, the authors propose a solution based on transfer learning. First the model is pre-trained on 

samples from an initial network configuration. Then, for each different system, the model is retrained on a small 

number of training samples in order to learn the characteristics of the target network. The results show that the 

ANN model is able to predict the Q-factor with a maximum error of 0.2 dB on the initial system. Moreover, the 

transfer learning technique can achieve similar results on different systems (0.67 dB of max error on the worst 

case system), and is also more accurate and faster than simply retraining the model from scratch. 

An ANN is proposed in [8] to estimate nonlinear SNR (SNRnl) exclusively. The particularity of this paper is that 

three sets of features are combined. The first set of features consists of noise covariance coefficients calculated 

from constellations detected by the Digital Signal Processor (DSP). The second set is the SNRnl output of two 

variants of GN-based analytical models (coherent and incoherent). The third set is related to network level features. 

Table 1 lists the most important of these features. After testing different combinations of these features, the results 

of the ANN algorithm show that the best performance (0.33 dB of SNRnl deviation) is achieved using all of them 

at the same time. The study goes further to check the model’s ability to adapt to optical power parameter 

uncertainty. The ANN trained with all features learns to rely more on the certain parameters in order to give the 

same level of accuracy. This work proposes an interesting solution that uses ML alongside monitoring and 

analytical tools. 

In [9], the goal is to tackle QoT estimation in Spectrally-Spatially Flexible Optical Networks (SS-FONs) with 

multicore fibers (MCFs), where inter-core cross talk is a serious impairment. A deep graph convolutional network 

is used to represent the features of the deployed lightpaths in order to model inter-channel interferences. The graph 

is composed of an adjacency matrix mapping out the lightpaths that share at least one link, in addition to a vector 

of end-to-end parameters for each lightpath, including MCF characteristics such as the allocated core number. The 

model checks if the deployment of a new lightpath will destabilize the previous network state by comparing the 

BER of each lightpath in the new network state with a given threshold. The model uses BER measurements of 

already-deployed lightpaths as a feature, assuming that they are available through a closed control loop. The model 

is capable of correctly classifying up to 97% of the new lightpaths. 

2.2 ML TO REDUCE UNCERTAINTY ON PARAMETERS 

The researchers in [10] propose collecting the QoT measurements (Qac) of initial lightpaths during the greenfield 

phase. The corresponding analytical QoT (Qan) is calculated using an analytical model. Assuming that there is an 

uncertainty in some network parameters, the Qan must deviate from the Qac. The difference between the values of 

Qan and Qac is used by a gradient descent algorithm to update the uncertain parameters and gets iteratively reduced 

until it becomes minimal. The new values are then used in the brownfield phase with analytical models to output 

a more precise QoT. This method was tested considering the input power and the noise figure as the uncertain 

parameters. A synthetic dataset was simulated using two analytical models (SAMBA and EGN) by selecting an 

initial distribution of parameters, and then shifting the distribution to generate uncertainty. The algorithm was 

proven to reduce the QoT error by up to 1.9 dB and 4.18 dB with SAMBA and EGN, respectively. Different 

distribution configurations were tested and the effect of dataset size was evaluated. The drawback of this method 

is that the derivatives of the analytical formulas have to be computed, which might be impractical especially in the 

case of black box analytical tools. 

An elaborate closed loop controller architecture for optical networks is proposed in [11]. It uses feedback from 

network measurements to improve the QoT estimation. Their QoT estimation module uses an analytical model of 

the physical layer to calculate the Q-factor and the margins of the candidate lightpath, which will later be used for 

decision making by the routing deployment module. Once a lightpath is provisioned, its QoT is measured and is 

then used to adjust the parameters of the physical layer model. This adjustment is achieved by the following 

method: the difference between the estimated and the measured values is calculated, and then the parameters are 

updated according to their contribution in the difference. To test their method, authors use data collected from a 

testbed in which an initial probing phase is used to reduce uncertainty in the noise figure parameter, and then both 

noise figure and nonlinear coefficient uncertainties are reduced iteratively using the aforementioned method. The 

continuous update of the parameters makes this solution able to adapt to changes in the network. 

The authors in [12] propose two different approaches for QoT estimation. The first is a purely ML based 

estimator that assesses SNR value. The second approach iteratively reduces the uncertainty of the parameters 

required as the input of an analytical model, improving the model’s QoT estimation similarly to the solution in 

[10]. However in this case, the analytical model is considered as a black box. This means that traditional 



optimization algorithms cannot be used, since it is not possible to compute derivatives of the error function. This 

study therefore proposes to use nonlinear fitting techniques to overcome this problem. In each iteration, a nonlinear 

curve is fitted to the data, as a function of the missing parameters. The parameters are then updated to reduce the 

distance between the curve and the data. This method is flexible and analytical-model agnostic. It performs slightly 

better (its design margin reduction is up to 1.95 dB) than the straightforward ML based regression estimator (whose 

design margin reduction is up to 1.8 dB), but requires more training time. 

3. DISCUSSION 

Table 1: Characteristics of ML-based QoT estimation models 

Ref ML 

methods 

Input data Output data Dataset Performance 

Estimation of lightpath QoT 
[5] Feed-forward 

NN 

Length of the lightpath, number of EDFA in the path, 

maximum link length of the lightpath, degree of 

destination node, the wavelength used, ANN bias. 
Asm.: QoT data of previously established connections 

is provided and used to train the model  

Classification 

of Q-factor 

based on a 
threshold 

Synthetic: 

generated using 

Q-factor model 

Accuracy close to 92%-

95% compared with Q-

factor model.  

[6] KNN, 

Random 
Forrest 

Lightpath length, longest link length, number of links, 

traffic volume, modulation format, left/right 
guardband, left/right traffic volume, left/right 

modulation format. 

Asm.: EDFAs are identical, equally spaced and have 
fixed gain and NF. 

Ppos probability 

that the BER of 
the lightpath 

exceeds a 

predefined 
threshold 

Synthetic: 

generated using 
BER E-Tool 

Accuracy up to 96% on 

certain topologies 

[7] ANN Output power and modulation format for each of the 

11 channels considered by the study. 
Asm.: span loss is compensated by EDFA. 

Q-factor value Experimental 

data from a 
testbed 

Q-factor max error: 0.2 dB 

on initial system. Up to 0.6 
dB on different systems 

[8] ANN Noise covariance, number of spans, max span length, 

average power, launch power, link length, chromatic 
dispersion, average fiber gamma, average fiber alpha, 

number of channels.  

Nonlinear SNR Synthetic: 

simulated using 
split step 

Fourier method 

0.33 dB of SNRnl deviation 

using combination of all 
features 

[9] Deep graph 

convolution-
al neural 

network 

Channel adjacency matrix, lightpath length, max link 

length, central frequency, number of slots, core 
identifier, modulation format, number of EDFA, 

number of links, BER of the deployed lightpaths. 

Asm.: same fiber core is allocated along the lightpath 

BER 

classification 
based on 

threshold 

Synthetic  Accuracy rates between 

92% and 97% 

Reduce uncertainty on parameters 
[10] Gradient 

descent 
Target SNR value, initial noise figure value, initial 
input power value. 

Asm.: same distance between EDFAs and 

amplification gain is perfectly flat. 

Noise figure, 
input power 

 

Synthetic: 
generated using 

SAMBA and 

EGN models 

Error reduced by up to 1.9 
dB and 4.18 dB compared 

with SAMBA and EGN 

respectively 

[11] Custom 
linear 

regression 

Target Q-factor value, initial noise figure value, initial 
nonlinear coefficient value. 

Asm.: EDFA gain in the ROADM compensates for 

span losses and the losses inside the ROADM. 

Noise figure, 
nonlinear 

coefficient 

Experimental 
data from a 

testbed 

Error reduced from 1.4 dB  
to 0.6 dB 

[12] Nonlinear 

curve fitting 

Target SNR value, initial values of attenuation, 

dispersion and non-linear coefficients. 

Asm.:  EDFA compensates for span loss. 

Attenuation, 

dispersion and  

non-linear 
coefficients 

Synthetic Design margin reduction is 

up to 1.95 dB 

 

In Table 1, we summarize the characteristics of the solutions mentioned in Section 2. We observe that most models 

achieve satisfying results in terms of accuracy and error reduction. However there are still concerns about their 

practical feasibility in operational networks, especially, in terms of generalization in a large scale network, data 

collection and deployment cost. 

The estimation of the QoT requires the knowledge of many equipment parameters which may explode the list of 

features of the dataset. Therefore, studies as shown in Table 1 define assumptions (Asm). In some cases, these 

assumptions can mask the engineering complexity as in [6] and [10] where EDFA are assumed to be equally spaced 

and have the same gain. In other cases, the studies assume the existence of some features that are hard to obtain 

such as [5] that assumes the knowledge of the OSNR of the pre-established lightpath. These assumptions limit the 

practical feasibility of the solutions in a real network and their generalization to address any optical network 

topology and configuration. Moreover, relying on synthetic data conceals issues related to the collection and 

availability of data in a real optical network. In addition to that, data collected from operational networks may not 

be suited for learning tasks as it may not capture enough variation to train the model, for example with regards to 

data related to the case of unfeasible lightpaths. 

From another perspective, any assessment of the accuracy of the proposed ML-based solutions should also 

consider their implementation cost. A dedicated monitoring and control architecture, such as that proposed in [13] 

must be adopted in order to support ML methods, which incurs additional costs. For instance, in case where 

parameters could not be obtained in operational networks, dedicated hardware should be installed for monitoring 



(e.g., mini optical spectrum analyzer to measure OSNR). Studies [6] and [9] seem to be the most pragmatic in this 

regards, since they use operationally available end-to-end parameters, to estimate a fairly reliable indicator (i.e., 

pre FEC-BER). Given the satisfying results offered by analytical models as shown in [2], the question from an 

operator’s point of view is whether the reported improvement in QoT accuracy can justify the additional costs of 

deploying ML-based solutions. 

We propose that the use of ML algorithms to improve QoT estimation should focus on supporting analytical 

models rather than on proposing an alternative to these models. Indeed, a purely ML based estimation requires 

juggling extensive data collection and induces generalization concerns. Therefore, it would be better to use ML to 

reduce uncertainty on some parameters or to assess specific impairments in order to improve the precision of 

analytical model that could dispense with monitoring those parameters that are difficult to obtain or which cannot 

be measured. 

4. CONCLUSION 

We provide an overview of the ML-based studies that estimate the QoT in optical networks. We classify the 

proposed solutions into two classes. The first class uses ML as a quick and reliable standalone tool to estimate the 

QoT and check lightpath feasibility, while the second uses ML to reduce the uncertainty of network parameters 

and provide accurate inputs to the analytical tools. While the results of the proposed algorithms are generally 

satisfactory, some concerns remain regarding their ability to generalize in order to support complex optical 

transport network topologies and various equipment configurations. Moreover, the additional cost related to the 

data monitoring and implementation of these solutions calls into question their practicability and their actual added 

value. From our perspective, we believe that ML-based solution should be used together with an analytical model-

based tool to assess specific impairments that are difficult to model analytically and to reduce the uncertainty of 

some parameters that vary during the life-cycle of the network. 
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