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Abstract: The recent focus on sustainability and improved efficiency requires innovative approaches1

in industrial automation. We present SemKoRe, a knowledge graph developed to improve machine2

maintenance in the industrial domain. SemKoRe is vendor-agnostic, it helps original equipment3

manufacturers (OEMs) to capture, share and exploit the failure knowledge generated by their4

customers machines located around the world. Based on our interactions with actual customers, it5

usually takes several hours to days to fix a machine-related issue. During this time, production stops6

and incurs cost in terms of lost production. SemKoRe significantly enhances the maintenance process7

by reducing the failure diagnostic time, and by centralizing machine maintenance knowledge fed8

by the experts and technicians around the world. We developed flexible architecture to cover our9

customers’ varying needs, along with failure and machine domain ontologies. To demonstrate the10

feasibility of SemKoRe, a proof-of-concept is developed. SemKoRe gathers all failure related data in11

the knowledge graph, and shares it among all connected customers in order to easily solve future12

failures of the same type. SemKoRe received the approval of several substantial clients located in USA,13

UK, France, Germany, Italy and China, associated with various segments such as pharmaceutical,14

automotive, HVAC and food & beverage.15

Keywords: Failure diagnostics, Industry 4.0, Industrial Internet of Things (IIoT), knowledge graph,16

machine maintenance, semantic web.17

1. Introduction18

Industrial Internet of Things (IIoT) has emerged as an enabler of the rapid integration of advanced19

technologies in the industrial world [1]. Factories are becoming fully connected and smart, thereby20

allowing manufacturers to improve process efficiency, sustainability, and safety while decreasing costs.21

Many industries are making heavy investments in smart manufacturing and production systems. In22

return, they expect optimal and sustainable production with minimum maintenance efforts. This23

makes maintenance one of the most important aspects of industrial process activities. Formerly24

considered as part of general enterprise costs, it has become a real source of data and critical for25

business continuity & performance[2].26

Systems such as computerized maintenance management system (CMMS), manufacturing27

execution system (MES) and enterprise resource planning (ERP) are used to perform maintenance28

activities in several industries [3]. These systems provide features such as predictive and preventive29

maintenance, maintenance planning, scheduling, execution, monitoring and traceability. However,30

these systems have two inherent drawbacks. First, they are intended to optimize the maintenance31
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process at given location (a factory or a site). This means that two different factories (or sites) cannot32

share the details of a specific machine’s maintenance operations without a human expert in the loop.33

Such sharing is useful when machines share the same characteristics and perform the same operations34

regardless of their locations. While cloud-based offers are a potential remedy, several customers still35

do not want to have their data on multiple vendor cloud platforms.36

The second drawback of these systems is that they are not interoperable at the semantic level.37

Schneider Electric works with several Original Equipment Manufacturers (OEMs) who design, build38

and ship machines for their customers around the world. In our experience, there is no easy way to39

align the data coming out of these maintenance systems and to thereby get a uniform understanding.40

This issue is complicated by the heterogeneity of these systems and the associated silos since each41

business segment and customer is unique and operates under different regulatory and geographic42

constraints. Despite these challenges, our customers are increasingly demanding better visibility about43

the performance of their assets, reductions in maintenance costs & downtime, improved productivity44

and more agility in their end-to-end processes.45

In this paper, we present the early outcomes of our work, SemKoRe: how we use it to construct46

knowledge graphs of machine failures and exploit it to address various issues. SemKoRe is a vendor47

agnostic solution that uses formal, shared and explicit models to capture the details of machine48

domains, the failures of these machines and the applied repairing procedures. SemKoRe is designed49

to speed-up the maintenance process and to allow for quick recovery from failures. When a new50

machine is installed in a factory today, there is no existing knowledge of its failures. In any given51

factory, each failure is only discovered at its first occurrence. The maintenance process includes52

diagnostics to determine the reasons for a failure, its impact, and to define and apply the correct repair53

procedures. This process is repeated at different locations for the same machines having the same54

failures. In reality, failure details are usually captured manually, e.g., using spreadsheets (e.g. Excel).55

This approach is not fault proof as each person filling out the sheet cannot be expected to provide all56

the required information and even if that information is given, there will be semantic mismatch, e.g.,57

one person describes issue as “abnormal rotation speed” while another person describes the same58

issue as “irregular spinning rate”. Both mean the same but use different semantics (we provide more59

details on it based on interactions with our actual customers in Section 2).60

SemKoRe helps to avoid this semantic mismatch, and captures all the machine, failure and61

maintenance data as a knowledge graph, allowing several actors to benefit (Section 4 and Section 5).62

For example, Operators & Technicians can benefit from the knowledge provided by other operators at63

different sites to address their issues. This will also reduce the risk of mismanipulation of machines by64

incompetent operators, which is a considerable industrial threat in reality [4]. OEM Machine Builders65

can improve the next generations of the machines they build, thanks to the knowledge captured in66

SemKoRe that helps them to know why certain machines have higher failure rates. Analytic teams can67

improve their work, as SemKoRe will provide a global view of machine failures and the background68

of a variety of contexts.69

We implement our SemKoRe system using GraphDB (cloud/gateway triplestore), IBM Node-Red70

(flow-based development tool), Microsoft Azure (for cloud service), Azure IoT Hub (for IoT71

connectivity), and Docker (to package SemKoRe services) (Section 6). To support the needs of different72

actors, SemKoRe is developed using the semantic web and ontologies [5]. This approach helps73

to accommodate future requirements and to provide a clear separation of concerns between the74

application needs and the domain knowledge which in this case is machine domain and failure domain75

knowledge. We adopted a distributed architecture in which knowledge collection is performed on the76

edge layer. The collected knowledge is shared with other actors and machines through a cloud-based77

instance.78

We elaborate the lessons learned in Section 7.1, and offer future research directions in Section 7.279

and conclude in Section 7.3.80
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2. Motivating Scenario & Requirements81

In this section, we talk about some key motivating scenarios, with practical examples, that82

would help to envision the core idea of the problem domain. Then we present the set of customers83

requirements that guided us during the elaboration of our solution.84

2.1. Motivating Scenario85

The following scenario is based on our interactions with real customers who want to improve86

their existing maintenance process. Let us consider three actors: Bob the machine operator, Alice the87

maintenance technician and Joe the OEM machine builder. On a given day, Bob is working on factory88

floor operating several machines when suddenly one machine stops working. Bob spends some time89

to fix the issue himself but is unable to do so, since Bob’s main job is to operate the machine. He90

might be able to fix small issues due to his experience but he is supposed to call a qualified technician91

for anything major. He then calls Alice to come to factory floor to check on the machine. When92

Alice checks the machine she finds that she is also not able to solve the issue so she calls the OEM93

or Schneider Electric service bureau, where a machine expert guides her through the repair process.94

Finally, Alice is able to fix the issue and the machine starts working.95

The whole process took a long time and while Bob is now able to operate his machine, if the same96

issue occurs in a similar type of machine located in a different city the same process would likely be97

repeated because only Alice knows how to quickly solve this particular issue. However, if Alice can98

describe what she learned from the service bureau and share her experience with the technicians in99

other sites by using some appropriate mechanism, they could all benefit from this common knowledge.100

Another beneficiary of this common knowledge is Joe. Today, when Joe gets reports about the101

issues with his machines from different customers, he has no easy way to get the finer details that can102

only come from the technicians like Alice. These details could be useful and help him to understand103

why some of his machines are facing particular issues. This can help him to improve the design &104

engineering process of his machines, especially in the case of hundreds or thousands of machines105

being used worldwide, the scale of problem and timely action in resolving the issue becomes hugely106

difficult. Another benefit is that using the insights from customer A, Joe can help customer B to quickly107

respond to machine issues while respecting of privacy and sensitive nature of the information, if both108

customers have the same type of machines. The importance of the quick resilience after failure aspect109

is discussed in details by Alcaraz et al. in [6].110

2.2. Requirements111

Based on the motivating scenario described above, we now present the following set of112

requirements. The first requirement is that the proposed solution should make it easy to capture113

and share knowledge among various actors. The second requirement is that the proposed solution114

should be usable both on cloud (public or private) and on-premise systems. Indeed many customers115

are willing to connect their machines and factories to the cloud, while others choose to fully isolate their116

factories in order to protect their industrial property and to keep their private data locally. The third117

requirement is that the solution should have built-in mechanism to protect the sensitive information118

about the processes and the business. During our interactions with customers, this requirement came119

up as the make or break point for them. The fourth requirement is that the solution should support120

root cause analysis and make it easy to identify the component(s) that cause the failures. The fifth121

requirement is that the solution should be platform-independent and thus should not depend on any122

particular hardware or software platform. The sixth and last requirement is that the proposed solution123

should be open and extensible to cover the current as well as future needs. These requirements are also124

thought to avoid introducing security issues or affecting the machines’ performances in the customers125

sites [7] .126
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3. Related Works127

E. Kharlamov et al. present one of the earlier works, from a major industrial company on capturing128

industrial information models using W3C standards [8]. This work proposes an application front-end129

to allow non-semantic experts to develop ontologies. The front-end is a modified Web-Protegé [9], that130

hides the complexity associated with the desktop Protegé version. The work highlights the benefits of131

involving domain experts to capture the domain knowledge and to create different services using it.132

However, the solution does not cover our main requirements.133

N. Zaini et al. [10] propose a generic online tool for building collaborative ontology without134

prior deep knowledge of the domain. An initial ontology is built, populated and enriched by multiple135

participants in a collaborated manner. The goal is to simplify the ontology based modeling of136

domain knowledge for the users without ontology expertise. However, the ontology concepts are not137

sufficiently abstracted, as these concepts are simply renamed. This means that despite simplification,138

substantial semantic expertise is needed to make the necessary modifications to the ontology. Another139

important missing element is that there are no checks to ensure consistency which can be an issue in a140

multiple user environment.141

There is a large pool of work on industrial maintenance. D. L. Nunez et al. [11] created a taxonomy142

of the Prognostics and Health Management in manufacturing. They propose a formal ontology for143

failure prognostics based on industrial ISO standards for failure mode analysis, failure diagnostics144

& prognostics (e.g. ISO 13372, ISO 13379, ISO 13381 and others). Failure knowledge is described in145

ontologies from ISO standards. Semantic Web Rule Language (SWRL) [12] is used to define rules in146

order to generate warning messages in case of abnormal states. However no approach is described to147

share the acquired failure knowledge among different users.148

In [13], M. Melik-Merkumians et al. used ontologies for fault diagnosis for industrial control149

applications. They utilized reasoning capability to check the model consistency over the time and to150

raise early-alarms for critical failures.151

L. Palacios et al. [14] propose an ontology based support for fault diagnosis for aircraft152

maintenance operations. An aircraft maintenance ontology is modeled and fed by the (manual)153

alignment of several existing ontologies related to the avionics domain to discover the relations154

between the causes and failure symptoms, explain the failures and any unscheduled maintenance155

requirements as well as the possible procedures that can be applied to each situation.156

An ontology-based approach is adopted by H. Peng et al. [15] for the fault diagnostics of conveyors.157

The knowledge about fault symptoms, fault causes and fault solutions was modeled with multiple158

ontologies. The resulted ontologies were mapped together based on a mathematical formulation of159

conveyor fault diagnostics. Some reasoning rules were defined in order to infer additional relations160

between faults, symptoms and potential causes.161

In [16], R. Chen et al. used ontologies to model the knowledge of fault diagnosis for rotating162

machines. Their proposed ontology model describes fault diagnosis knowledge considering the163

vibration characteristics as main fault factor. The model’s reasoning capability is considered by164

defining some SWRL rules for fault diagnostics.165

F. Xu, et al. [17] also relied on ontologies to design a loader fault diagnosis system. It aims to166

help users find the fault causes, locations and fault maintenance measures of loaders in a reasonable167

amount of time. Ontology is used to model the loader information and describe the relative failures.168

This work uses the condition based reasoning (CBR) method to diagnose loader faults by finding169

similar corresponding situations in the past. When no corresponding case is found, CBR fails and the170

(SWRL-based) rule based reasoning (RBR) approach is proposed for fault diagnosis.171

In [18], S. Wan, et al. developed a Collaborative Maintenance System Planning that allows many172

stakeholders to collaborate to ensure maintenance process quality. An ontology-based approach is173

adopted to model a large field of knowledge: the machine domain model, failure knowledge and174

stakeholders knowledge are modeled together to ensure the interoperability between their systems, the175

maintenance planning and Resources and Constraints knowledge. However, this centralized solution176



Version September 2, 2020 submitted to Appl. Sci. 5 of 19

(a) Local SemKoRe Architecture (b) Cloud based architecture (c) Hybrid architecture

Figure 1. SemKoRe Architectures; IoT gateway connected to a real machine: Local server

focuses mainly on preventive maintenance planning. In addition, the managed failure knowledge is177

relatively basic and does not consider root causes or symptoms.178

All the works mentioned above use ontologies to model machine data models and failure179

knowledge. However, none of these works satisfy all of the requirements that we identified from180

our motivating scenario. These works developed various ontology models and some exhaustively181

described potential failures and their characteristics. However, to the best of our knowledge no182

machine failure ontology is available for reuse or for extension. Also, neither of our two major183

requirements, i.e., knowledge sharing and data confidentiality have been considered.184

Also, many Cloud-based solutions are proposed to enhance the maintenance process for different185

domains like smart grids, shop-floors, ... etc. Different aspects were analyzed: such as remote186

maintenance [19], fault detection [20], machines monitoring [19,21], preventive maintenance scheduling187

[22], predictive maintenance [23], or data confidentiality [24]. However, none of these studies188

considered sharing experiences or knowledge between different actors for maintenance purpose.189

4. Architecture and Ontology Models190

In this section, we discuss our contributions & our proposed architectures, along with the191

developed ontology models.192

4.1. High-level Architecture193

As mentioned before, our customers require different deployment options, and so we divided194

them into three categories and developed three architectures. In the first category, customers prefer to195

not connect their machines to the cloud and some even do not want to connect to the Internet due to the196

sensitive nature of their business, and to protect their data. The architecture proposed for this category197

is shown in Fig. 1a. The second category of customers opted for an entirely connected architecture, in198

which the machines/gateways in their factories are directly connected to the cloud. For this category,199

we proposed the architecture shown in Fig. 1b. The third architecture targets the customers who refuse200

to connect their machines to the cloud, but are ready to deploy a local on-premise server between the201

cloud and their machines. For this use case, we proposed a hybrid architecture Fig. 1c, where most of202

the collected data stays in the local server, and only an anonymized part of the data is transmitted to203

the cloud.204

In all these cases, each machine is connected to an industrial IoT gateway, e.g., Modicon M262 1
205

to collect the run-time data of the machine and the information provided by maintenance personnel206

and/or operators. Each gateway is connected to a central entity (either a Local SemKoRe or a SemKoRe207

1 https://www.se.com/ww/en/product-range/65771-modicon-m262/



Version September 2, 2020 submitted to Appl. Sci. 6 of 19

Server) which collects the data from all the gateways and then aggregates and shares with the gateways208

connected to the same type of machine.209

Though, the Achilles heel of our proposal remains the case of the first category of customers,210

i.e. who don’t want to connect their factories to the cloud. The unique technical solution to share the211

maintenance knowledge consists of using physical supports (e.g. USB keys, CDs, ...) with human212

intervention. However, the internal business case analysis is still in progress. We believe that once the213

business case is finalized, the technical adaptation of the SemKoRe services will be trivial and will not214

require lot of efforts.215

In this paper, we focus on the cloud-based architecture because it covers all the constraints and216

features of the other architectures. This architecture is also implemented in a proof-of-concept to217

demonstrate the feasibility (see Section 6).218

4.2. Detailed Architecture219

Figure 2 shows the detailed architecture of the SemKoRe.

Figure 2. SemKoRe Detailed Architecture
220

The SemKoRe consists of three entities:221

1. A SemKoRe Agent: Runs on industrial IoT gateways connected to the machines. It collects222

data when failures occur in the connected machines. According to the chosen architecture, the223

collected data is then shared with either the SemKoRe Server or Local SemKoRe. The SemKoRe224

Agent is designed to fit in all architectures (see Fig. 1).225

2. A SemKoRe Server: Running on the cloud, it manages several failure data producers, i.e.,226

Local SemKoRes or SemKoRe Agents. The collected failure data is validated by an expert and227

aggregated and afterwards shared with the SemKoRe Agents and/or Local SemKoRes.228

3. Local SemKoRe: Lightweight instance of the SemKoRe Server deployed on a local server to229

manage the machines located in a site or factory. It collects data produced by the SemKoRe230

Server (if available) and the SemKoRe Agents on local gateways. The data aggregation is done231

locally, and only aggregated data is shared with the SemKoRe Server. The cloud then merges232

its aggregations with the Local SemKoRe aggregation, and pushes back the updates to the233

corresponding entities.234

We use in the cloud a message broker to connect the machine gateways to the SemKoRe Server235

for bi-directional data sharing. We also developed a REST interface on the SemKoRe Server side to236

directly call remote services e.g., commissioning service.237
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4.3. Machine Failure Ontology Model238

The first part of our work is collecting information on machine failures to be able to answer the239

following questions:240

• What are the failure symptoms? Symptoms reflect the perceptible aspects of failures whether241

they are visual, sonic, odor or heat related.242

• What is the impact of the failure? This may or may not be detected easily. Each failure impact is243

relative to a machine or to one of its components.244

• What are the root causes of a particular failure? This question is difficult to answer, since245

it assumes prior knowledge about the cause-effect relations specific to each machine type.246

Answering this question requires the knowledge of a machine domain expert.247

• After knowing the failure type and impact, how can we repair the machine?248

• After knowing the root causes of a specific failure, is there a preventive maintenance procedure249

that can help us to avoid that failure?250

To answer all of these questions, we defined the data model of the machine failures using Semantic251

Web standards because of the schema-less nature of RDF, RDFS, OWL and the explicit formalism252

supported by these languages. The failure ontology is created by interacting with the machine builders253

and by using the initial set of requirements described in section 2.2. It acts as a common data model254

and will be enriched with new concepts by domain experts over time. Progressively, our design,255

engineering, configuration and maintenance tools will use this ontology to create the knowledge256

about the failures and allow us to develop different services over it. SemKoRe targets the industry257

automation business, in which the failure knowledge can be significantly different from one customer258

to another. The concept uses a flat ontology model, containing only the most common general concepts259

required for current needs. The subsequent specialization concepts will be easily and naturally added260

by domain experts as the knowledge collection progresses.261

To develop the machine failure ontology presented in Fig. 3, we adopted the Seven-step method,262

developed by the Medical Information Center of Stanford University [25]. Its seven steps are as follows:263

1. Determine domain and scope: This work focuses on industrial machine failures.264

2. Consider reusing existing ontologies: No existing machine domain or machine failure ontology265

was found for reuse, therefore we developed both for this work. Regarding upper-level266

ontologies, there are several candidates like basic formal ontology (BFO), ISO-15926, Gist, and267

suggested upper merged ontology (SUMO) but we still need to finalize one.268

3. List important terms in the ontology: After interactions with the machine domain experts, the269

following important terms were identified Failure, Symptom, Impact, Root cause, Solving Procedure,270

among others.271

4. Define classes and class hierarchy: Several classes were created including the important terms272

listed above. However, since no specialization concept will be introduced, the ontology is flat.273

Only the classes relative to types (e.g. Failure Type, Symptom Type) are grouped as sub-classes of274

the Types class.275

5. Define object properties of classes: We defined a set of object properties that link all the defined276

classes together. For example, the property hasSymptoms links a Symptom to a specific Failure.277

The complete list is illustrated in Fig. 4b278

6. Define data properties of classes: We also defined several of the data properties of classes, with279

cardinality and type constraints, as shown in Fig. 4c.280

7. Create instances and check exceptions: Instances of SemKoRe ontology are divided into two281

parts. The first part, defined by experts during the design time, concerns the generic concepts282

that will be used for most industrial use cases, such as Severity level (Catastrophic, Critical,283

Moderate, Low). The second type of instances concern the data provided by the users during284

the runtime of the SemKoRe. Users instances include details about the failures and symptoms.285

To check for exceptions, we used Pellet reasoner [26] to verify the correctness of our ontology286

model.287
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Figure 3. Failure Ontology
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(a) Machine Model Ontology (b) SemKoRe object properties (c) SemKoRe data properties
Figure 4. SemKoRe ontology design

In addition to the failure ontology, we also created a machine domain ontology (Figure 4a)288

to describe the machine components to satisfy our requirement to link failures to specific machine289

components when and where they occur, as simply knowing about a failure is not useful on its290

own. We also need to identify the components that caused a failure or that show failure symptoms,291

so that they can be identified as candidates for repair or inspections. For simplification, we only292

described two types of machines in our machine domain ontology, a Tray Sealers Machine and a293

Packaging Machine. Each machine type is composed of many components (PLC, Drive, Actuator, Sensor,294

and others), connected through different communication buses. To integrate both ontologies, we created295

OWL Class FailureAsset, to associate failures to the corresponding components in the machine domain296

ontology.297

However, we faced another issue to identify the exact component of a machine that has failed or298

is impacted by the failure. For example, consider that a machine has two Servo Drives of the same299

type. These Servo Drives are described in the machine domain ontology as two instances (SDA and300

SDB) of the “ServoDrive” class and are associated with the instance of a machine. When a failure occurs301

in SDA, we should be able to identify it through ontology. Such detailed identification is especially302

useful when the failure knowledge is shared with the other sites using the same machine type, as it303

will help them to recognize the exact component responsible or impacted by the failure.304

To address this issue, each component in the machine domain ontology has a unique number305

“FunctionID”, to distinguish its role in the machine compared to other components of the same type.306

We used both desktop Protégé [27] and Web-Protégé [9] to create our ontologies. The latter307

allowed us to include machine domain experts in the ontology development process and to gather and308

organize their feedback.309

It is important to mention that our main focus in this work has been on the validation of the310

idea to the OEMs, that formalized knowledge about machines and their failures can be useful for311

quick resolution of failures and to improve overall equipment effectiveness (OEE). The ontology, in its312
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current form, will be extended to cover the needs of the OEMs. To guarantee the ontology generality, a313

potential extension basis could be the adoption of taxonomy of ISO standards for failure mode analysis314

(similarly to [11]). Relevant actors can be involved to extend these ontologies with new concepts and315

relationships by using appropriate tools like the ones mentioned in section 7.1.316

5. SemKoRe Process317

Figure 5. SemKoRe Process

Figure 5 shows the SemKoRe process of failure data collection and sharing. The process is318

distributed on two layers: on the edge with the SemKoRe Agent, and on the cloud with the SemKoRe319

Server.320

The failure data collection starts when a machine failure occurs. The failure information collection321

service generates the human machine interface (HMI) for the user (Bob or Alice) to offer the details322

of the failure Fig. 6. Through the survey, we first try to know if the failure has really occurred or it323

was only a false positive case triggered by some failure detection service. Then the user is asked to324

provide details about the symptoms of the failure by selecting known symptoms or by creating new325

ones, when necessary.326

The user checks if the identified failure is already known by the SemKoRe before providing327

additional details. If the failure already exists, the user follows the instructions to repair the machine.328

Otherwise, the failure will be documented by Alice or by machine domain experts as shown in Fig.329

5. Sometimes, the impacts of a failure may differ from one machine to another. So, existing repair330
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Figure 6. Screenshot of the Failure Survey

procedures might be adapted or new procedures might be created to repair the machine. This process331

ends, in the edge level, by sharing the collected data with the SemKoRe Server in the cloud.332

When the SemKoRe Server receives failure data from a SemKoRe Agent instance, the data must333

be validated by a machine domain expert before it is integrated into the SemKoRe Knowledge Graph.334

After the validation process, data is anonymized to protect the data & customer privacy and business335

sensitive information of the customers (see section 6.3). The anonymized data is then aggregated (see336

section 6.4) in order to get insights about the occurrence frequency of failures, their impacts and the337

most adapted/used repairing procedures .338

The aggregated data is then shared with the SemKoRe Agents instances connected to the same339

machine type. On the other side, each SemKoRe Agent instance integrates the data it receives from the340

cloud into the local triplestores (Graph databases).341

6. SemKoRe Implementation342

In this section, we describe the services implemented for the SemKoRe. It must be noted that343

the services deployed on Local SemKoRes are the same as the ones deployed on a SemKoRe Server.344

As stated previously, we only focus on the architecture where gateways are directly connected to the345

cloud (since its an overarching architecture and covers all the scenarios we described in Fig. 1).346

6.1. Startup Commissioning347

Knowing that our Failure ontology will evolve, it is only deployed on the SemKoRe Server.348

On-premises, the gateways must run the commissioning service in order to get the latest failure model349

corresponding to the type of the connected machine. The startup commissioning service retrieves two350

types of information from the SemKoRe Server:351

• The machine failure T-Box, containing the concepts defined in the failure ontology; and,352
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• A-Box data, containing the instances of the T-Box concepts. Knowing that the SemKoRe Server353

manages data relative to several types of machines, the A-Box retrieved by a gateway contains354

only the information relative to the machines connected to it.355

The startup commissioning service sends a request to the SemKoRe Server with the identity and the356

type of the connected machines. The SemKoRe Server runs then a Construct SPARQL query to create a357

sub-graph containing all the data (T-Box and the A-Box) related to the provided machine type. The358

resulting sub-graph is sent back to the gateway.359

6.2. Failure Data Collection360

This service runs exclusively in the SemKoRe Agent and is used during or after the maintenance361

phase. It consists of the following two parts:362

6.2.1. Failure Survey363

This part collects the failure information using an ordered set of predefined questions. It facilitates364

the collection of perceptible symptoms of the failures as well as the reporting of new symptoms and365

failures. During our interactions with machine domain experts, we found that the content of the survey366

is strongly correlated with the machine types and the kinds of failures they encounter. Our on-field367

interactions with the operators, technicians and experts highlighted the importance of an intuitive user368

interface.369

6.2.2. Failure Ontology Instantiation370

We use the model driven interfaces (MDI) to dynamically generate the user interfaces using the371

Failure ontology. This procedure has two advantages: One, the UIs allow instantiation of the Failure372

ontology by non-technical users without any knowledge about the Semantic Web or ontologies; and373

Two, the UIs enforce the constraints defined in the ontology model and ensure that all the inputs are374

valid. These UIs rely on the annotations defined in the ontology such as, @rdfs:label and @rdfs:comment.375

The former is used as a human readable label of the input fields shown to the user, while the latter376

is displayed to explain the nature of the field and the expected input. We defined an additional377

annotation @semkore:hidden to hide a field on the UI in case it should be defined automatically or378

exclusively by an expert.379

The ontology model incorporates two types of constraints: value and cardinality constraints, as380

described below.381

Value Constraints382

In the W3C OWL reference [28], a value constraint is used to enforce restrictions on the range383

of a property when applied to a particular class description. Value constraints can be applied to384

data properties, for which the value is a data literal, and object properties, for which the value is an385

individual. We handle each type of property differently:386

• Data properties: Users can input a value in the text box which will be validated to make sure387

that the data type is correct as per the defined constraints; and388

• Object properties: A select box is provided with the list of all possible values. For example, for389

the object property Machine hasComponent AllValuesFrom Component, will lead to a select box390

with the list of all available Component instances. With this approach, the probability of getting391

an invalid input is eliminated altogether.392

Only the owl:someValuesFrom constraint was managed differently from the W3C standard [28] definition,393

as it defines a constraint that is applied to at least one value, which means that the property could394

have other values without any restrictions. Since our UIs are targeting non-expert users, and to395

guarantee the consistency of our model, we considered owl:someValuesFrom as being similar to the396

owl:allValuesFrom constraint in our implementation.397
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Cardinality Constraints398

In the W3C OWL reference [28], a cardinality constraint restricts the (min, max, or extact) number399

of values a data or object property can have. To satisfy the cardinality, single/multiple input fields400

are generated for each property, allowing to the user to provide the correct number of values for each401

property.402

6.3. Anonymization Service403

Privacy protection is a very important concern for our customers. They do not want to share any404

machine and process-related data in a way that could potentially expose sensitive business information.405

To address this concern, we implemented a simple service (described below), in the SemKoRe Server406

in the cloud, to anonymize the collected data before sharing it with other sites or locations.407

When a failure occurs, the gateway creates an instance of “Failure Occurrence Class”, containing408

information about the failure, e.g., symptoms, impact, root causes if known, and the failure context,409

which includes the machine ID, its location, timestamp when failure occurred, and a snapshot of the410

current parameters. The whole process consists of three steps:411

1. The SemKoRe Server removes the machine ID, location, and owner-related information and does412

not share this information.413

2. A human expert reviews and validates all of the failure information before integrating it into414

the SemKoRe Knowledge Graph. This additional check helps to protect sensitive business415

information.416

3. Finally, all the validated failure information is aggregated and then shared with the connected417

gateways. This process ensures that no one can deduce the origin of the data, the failure location418

or the ownership details.419

This service is a subject for future SemKoRe versions. The goal is to automate this process so that little420

to no human involvement is required.421

6.4. Failure Data Aggregation422

Hosted in SemKoRe Server, this service and aggregates failure data collected from different423

gateways in order to produce deep insights on the machine failures and their characteristics including424

symptoms, impacts, and root causes. Once the aggregation is done, the data is shared by the SemKoRe425

Server with the connected gateways that need it. We have defined a list of simple aggregations that are426

applied to the failure data:427

1. For each machine type, get the list of all failures and their frequency;428

2. For each failure, compute the list of all possible symptoms with the frequency of each symptom;429

3. For each failure, compute the list of all possible impacts with the frequency of each impact;430

4. For each failure, compute the list of all possible root causes with the frequency of each root cause;431

and432

5. For each failure, get the list of solutions with the number of times each solution was successfully433

used to repair that failure.434

For each of these aggregations, a dedicated SPARQL query is executed and the results are injected435

into the Knowledge Graph. The aggregation service executes after every new data collection to keep436

the Knowledge Graph up-to-date.437

6.5. Failure Data Sharing438

The failure data sharing is done through the SemKoRe Server’s message broker. Each gateway439

subscribes to the topic “.../failure_updates/{machine_type}”, where {machine_type} is the type of machine440

to which the gateway is connected. When failure data is sent to the SemKoRe server (through the441

REST interface), it is validated, anonymized, aggregated and then published on the message topic442
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corresponding to the right machine type. The gateways receiving this data will simply update the443

locally stored graph data.444

6.6. Implementation Details445

Figure 7. SemKoRe implementation setup. Simulated virtual Edge Gateways with SemKoRe Agents
managed by a SemKoRe Server instance hosted on Microsoft Azure cloud.

To demonstrate the feasibility of the SemKoRe approach, we developed a proof-of-concept (Fig.446

7) using the following technologies:447

• GraphDB: We used GraphDB [29] as triplestore in the cloud and in the gateway. It provides high448

performance and scalability in addition to the reasoning capabilities.449

• Node-Red : Node-Red was used to develop all above-mentioned services for the SemKoRe Server450

and the SemKoRe Agent. Node-Red is a flow-based development tool for visual programming451

originally developed by IBM for wiring together hardware devices, APIs and online services452

as part of the Internet of Things [30]. Node-Red is gaining popularity for rapid application453

development in Schneider’s Industrial Automation business.454

• Microsoft Azure: The SemKoRe Server services are hosted on Microsoft Azure, which provides455

high-performance cloud services. The server uses Azure IoT Hub [31] to connect the IoT devices456

to the cloud using several communication protocols, including the MQTT messaging protocol457

[32], which we used to simplify the data flow transmission between our SemKoRe agent and458

server services. For the edge, the Azure IoT Edge service was used to easily connect the edge459

gateways to the cloud via Azure IoT Hub as shown in Fig. 7.460

• Docker: This is a popular container-based virtualization [33] tool. Docker supports many461

operating systems and hardware architectures, and allows self contained applications to be462

packaged and executed with a high level of portability and reproducible results [34]. We used463

Docker to package all of the services of SemKoRe Server and SemKoRe Agent. In reality464

SemaKoRe agent will reside with many other components. Docker allows us to have the465

flexibility of deploying different components easily and manage/extend them without impacting466

others.467

As we are still in early stage, we were not able to implement the SemKoRe in real conditions with468

SemKoRe Agent running on Industrial Gateways connected to real machines. The main obstacle was469

that the current hardware available for this work had ARM architecture and so it would require a470

significant effort to port the triplestore and other software components. That effort was beyond the471
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scope of our work. However, after the successful PoC, the business team decided to use an industrial472

PC as a gateway with enough RAM (8GB), processing (Intel Atom) and storage (64GB) capability. The473

next iteration of this work will use this industrial PC when it is ready for commercialization. In the474

meantime, we evaluated our implementation by simulating many virtual SemKoRe Agent instances475

on a PC equipped with an Intel(R) Core(TM) i7-7820HQ processor, and 16Gb of RAM. We used a single476

GraphDB server to manage separate triplestores for all the SemKoRe Agent instances. We randomly477

defined a set of three machine types {Packaging Machine, Palletizing Machine, Pasteurization Machine}478

that we associated to the active SemKoRe Agents. Each machine type was associated with at least479

two SemKoRe Agent instances which were then connected to the cloud SemKoRe Server. Our current480

implementation choices will facilitate an easy transition to industrial PCs in future.481

We generated random machine failure data by defining a set of potential failures for each machine482

type. Each failure was then associated to a set of potential characteristics: symptoms, impacts, root483

causes and solving procedures. For each machine failure occurrence, we randomly picked one of the484

potential failures of the machine, and then picked a random number of the failure characteristics from485

the predefined sets.486

We were able to demonstrate that the failure data was collected by each SemKoRe Agent and487

successfully shared with the SemKoRe Server. The data was aggregated and shared back with the488

SemKoRe Agent instances connected to the same machine type.489

7. Conclusions and Future Work490

7.1. Learned Lessons491

Conducting this study helped us to learn several lessons. The first lesson is that the use of semantic492

web technologies to solve complex industrial problems is still a largely unexplored area. Even today493

most of the solutions on the market focus on the enterprise and IT side than on the operational side of494

large industries. This means that there are mature solutions that use semantic web technologies to495

bridge siloed enterprise data in RDBMS and unstructured data like documents but there is no mature496

solution that can do the same for data described in operation technology protocols e.g. OPC-UA [35].497

The second lesson is that technologies such as triplestore are not easily adoptable to typical498

industrial use cases. Almost all triplestores are focused on big data and huge numbers of triples but,499

as our work demonstrates, there are several use cases where an efficient solution is needed for typical500

industrial gateways. Industrial PCs are an option but they are expensive and can only be used by large501

companies whereas small devices have a very large user base. While machine failures are reality, they502

do not occur every minute, and so there is no need to use a complex solution that supports billions of503

triples. Outside the vendor space, the open source community has some options like RedStore [36] but504

most are not in active development.505

The third lesson is that the development of industrial grade ontologies is still a herculean task506

and the existing tool set continues to act as a barrier to entry. In our experience, experts want to507

formalize their domain knowledge but they have no motivation to learn complex tools such as Protege508

that do not support collaborative ontology development. WebProtege is a possibility but lacks query,509

visualization and documentation capabilities. New efforts such as Modom.io [37] and Zazuko [38] take510

a more simplified approach for non-experts to create ontologies but they are still works in progress.511

Regarding ontology governance, there is no standard framework that can be applied to design and512

develop modular ontologies on an industrial scale. The evolution of ontologies is another area where513

no clear recommendations and no industrial tools are available to manage the required documentation,514

evaluation, release and versioning. While some academic works such as [39] exist, they are not mature515

and often not easy to deploy and use in industrial settings. The Semantic Web community as a whole516

needs to address these points and improve the developer experience in order to mainstream these517

useful technologies.518
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7.2. Future Potential519

We have also identified several avenues as the future potential to continue this work. They are520

mentioned here without any order of priority.521

7.2.1. Machine Learning for Data Anonymization522

The first item is to explore the use of machine learning for data anonymization services. In this523

work, we used a simple approach with validation by a human expert. But a far more efficient approach524

would be to investigate the use of artificial intelligence and machine learning to anonymize data based525

on several contexts.The state-of-the-art anonymization techniques achieve good precision scores (up to526

98%), which will make it unnecessary to involve humans. One might consider to collect anonymous527

data from the beginning to avoid the anonymization overhead and the complexity. However, with528

this approach we will miss important data that might be useful for things like audit (machine id,529

maintenance history, configuration) and other applications.530

7.2.2. GraphDB Multi-Tenant Support531

The second item is that currently, one GraphDB tenant is used in the cloud to collect the data of all532

customers, which could become an issue for scalability and data privacy. A potential solution may be533

to have separate GraphDB tenants for each customer and then create a common GraphDB instance to534

collect anonymized and aggregated data from the other customers’ instances. Managing these tenants535

and synchronizing them will be big challenges.536

7.2.3. Lightweight Triplestores537

The third area would be to work on lightweight triplestores for small industrial devices. Many538

triplestores for embedded/small platforms exist. Most of them are based on the Redland RDF Libraries539

[40], and are using SQlite as backend storage (e.g. RedStore [36]). However, all these solutions lack540

reasoning engines and do not support SWRL rules.541

7.2.4. Knowledge Graphs Synchronization542

Ensuring the knowledge synchronization between the SemKoRe Server and SemKoRe Agent is543

the fourth area. As mentioned before, not all customers are keen to have a cloud connection or can544

have always-on connection. Therefore, it is necessary to define a synchronization process to ensure545

that there is no inconsistent knowledge.546

7.2.5. UI Enhancement547

The fifth item of future work is that today UI interfaces are used to report machine failures through548

manual input from persons like Bob or Alice. This process can be enhanced by using AI/ML algorithms549

that observe the symptoms and prefill the UI form with accurate details. This can be further extended550

to automatically fetch the repair instructions from a SemKoRe graph before failures occur.551

7.2.6. Ontology extension by non-expert users552

In this work, we target a large set of customers from various domains and with different needs.553

We are not expected to create or to modify ontology for each and every customer. Therefore, the sixth554

item is to develop a framework along with a tool suite and set of services for non-experts to allow555

them to create and extend their ontology models. We will also need to address more advanced topics556

like ontology matching, alignment, and conflict resolution to ensure consistency.557

7.2.7. Use of upper-level ontologies558

Another future item to consider is the use of upper-level ontologies as a basis of the failure and559

the machine domain ontologies. There is a separate on-going work to decide on the right ontology560
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to provide maximum data integration for the future. For example, today the discussion revolves561

around using either BFO2 or ISO159263 or Gist4 as upper-level ontology. Some customers may also562

be interested in using domain ontologies like SSN5. Our view on this point is that once a decision is563

made, our current ontology can be easily refactored.564

7.3. Conclusion565

In this paper, we proposed a knowledge graph-based approach, SemKoRe, to enhance the566

maintenance process for the customers of Machine Builder OEMs. The idea consists of collecting567

machine failure data generated by different machines owned by many customers in different locations568

and in different business segments. The SemKoRe approach helps reduce the maintenance costs569

by sharing maintenance experiences between OEM customers. Based on this early work, our570

customers showed an interest in using the SemKoRe approach to enhance their industrial maintenance571

processes. Also, by using the SemKoRe approach, the overall machine building process can be572

optimized. The machine design phase can benefit from the maintenance feedback to identify any573

weaknesses of a machine and can improve its design. Also, the collected statistics will allow the574

performance comparison of a particular machine working in different locations and contexts. Thus,575

additional services and recommendations can be proposed to the customers in order to optimize576

their manufacturing process. Some customers also feel that our approach can help them to build577

Digital Twins to monitor the performance and efficiency of their machines. As mentioned in the Future578

Potential section, we plan to investigate on several work items to improve the features of SemKoRe.579
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