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Abstract

THIS ARTICLE USES WORDS OR LANGUAGE THAT IS CONSIDERED
PROFANE, VULGAR, OR OFFENSIVE BY SOME READERS.

Disparate biases associated with datasets and trained classifiers in hateful and 1

abusive content identification tasks have raised many concerns recently. Although the 2

problem of biased datasets on abusive language detection has been addressed more 3

frequently, biases arising from trained classifiers have not yet been a matter of concern. 4

In this paper, we first introduce a transfer learning approach for hate speech detection 5

based on an existing pre-trained language model called BERT (Bidirectional Encoder 6

Representations from Transformers) and evaluate the proposed model on two publicly 7

available datasets that have been annotated for racism, sexism, hate or offensive content 8

on Twitter. Next, we introduce a bias alleviation mechanism to mitigate the effect of 9

bias in training set during the fine-tuning of our pre-trained BERT-based model for 10

hate speech detection. Toward that end, we use a regularization method to reweight 11

input samples, thereby decreasing the effects of high correlated training set’ s n-grams 12

with class labels, and then fine-tune our pre-trained BERT-based model with the new 13

re-weighted samples. To evaluate our bias alleviation mechanism, we employed a 14

cross-domain approach in which we use the trained classifiers on the aforementioned 15

datasets to predict the labels of two new datasets from Twitter, AAE-aligned and 16

White-aligned groups, which indicate tweets written in African-American English (AAE) 17

and Standard American English (SAE), respectively. The results show the existence of 18

systematic racial bias in trained classifiers, as they tend to assign tweets written in AAE 19

from AAE-aligned group to negative classes such as racism, sexism, hate, and offensive 20

more often than tweets written in SAE from White-aligned group. However, the racial 21

bias in our classifiers reduces significantly after our bias alleviation mechanism is 22

incorporated. This work could institute the first step towards debiasing hate speech and 23

abusive language detection systems. 24

Introduction 25

Disclaimer: This article uses words or language that is considered profane, vulgar, or 26

offensive by some readers. Owing to the topic studied in this article, quoting offensive 27

language is academically justified but neither we nor PLOS in any way endorse the use 28

of these words or the content of the quotes. Likewise, the quotes do not represent our 29

opinions or the opinions of PLOS, and we condemn online harassment and offensive 30

language. 31

Owning to the recent proliferation of user-generated textual contents in online social 32

media, a wide variety of studies have been dedicated to investigating these contents in 33
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terms of hate or toxic speech, abusive or offensive languages, etc., [1–6]. With regard to 34

the mobility and anonymous environment of online social media, suspect users, who 35

generate abusive contents or organize the hate-based activities, exploit these online 36

platforms to propagate hate and offensive contents towards other users and 37

communities [2, 7]; where it leads to personal trauma, hate crime, cyber-bullying, and 38

discrimination (mainly racial and sexual discriminations) [8]. Therefore, online social 39

media have been persuaded to define policies to remove such harmful content from their 40

platforms since 2015 [9, 10]. 41

The spread of hate speech and offensive language on online social media has received 42

considerable attention from both academic and industrial environments to detect 43

different types of hatred and toxicities (threats, obscenity, etc.). For example, different 44

workshops and challenges such as the third Workshop on Abusive Language Online [11] 45

and Kaggle’s Toxic Comment Classification Challenge [12] are conducted to address this 46

issue by proposing different automated tools for identification of hate speech and 47

abusive language on social media. 48

Three main aspects of hate speech detection that rise to some challenges in this task 49

are: 1) Definition of hate speech; 2) Designing and developing an automatic tool for 50

identification of hate speech; 3) Tackling the problem of unintended data-driven and 51

algorithm-driven biases in automatic hate speech detection tools; described as follows. 52

There is considerable disagreement about what exactly hate speech is [7, 13], and 53

how different terms can be inferred as hatred or offensive in certain circumstances. For 54

example, some terms such as “n*gga” and “c*on” were used to disparage African 55

American communities, however, they were not known as offensive when used by 56

peoples belonging to these communities [14]. In this study, we employ a commonly used 57

definition of hate speech as any communication criticizing a person or a group based on 58

some characteristics such as gender, sexual orientation, nationality, religion, race, etc., 59

with or without using offensive or profane words. 60

To define automated methods with a promising performance for hate speech 61

detection in social media, Natural Language Processing (NLP) has been used jointly 62

with classic Machine Learning (ML) [2–4] and Deep Learning (DL) techniques [6, 15, 16]. 63

The majority of contributions in classic supervised machine learning-based methods, for 64

hate speech detection, rely on different text mining-based features or user-based and 65

platform-based metadata [4, 17,18], which require them to define an applicable feature 66

extraction method and prevent them to generalize their approach to new datasets and 67

platforms. However, recent advancements in deep neural networks and transfer learning 68

approaches allow the research community to address these limitations. Although some 69

deep neural network models such as Convolutional Neural Networks (CNNs) [16], Long 70

Short-Term Memory Networks (LSTMs) [6], etc., have been employed to enhance the 71

performance of hate speech detection tools, the requirement of a sufficient amount of 72

labeled data and the inability of methods to be generalized have remained as open 73

challenges. To address these limitations some transfer learning methods are proposed 74

recently [15,19]. However these methods enhanced the performance of hate speech 75

detection models, they did not address the existing bias in data and algorithm. 76

From the bias’s perspective, despite previous efforts into generating well-performed 77

methods to detect hate speech and offensive language, the potential biases due to the 78

collection and annotation process of data or training classifiers have raised a few 79

concerns. Some studies ascertain the existence of bias regarding some identity terms 80

(e.g., gay, bisexual, lesbian, Muslim, etc.) in the benchmark datasets and try to mitigate 81

the bias using an unsupervised approach based on balancing the training set [20] or 82

debiasing word embeddings and data augmentation [8]. Moreover, some racial and 83

dialectic bias exist in several widely used corpora annotated for hate speech and 84

offensive language [14,21,22]. Therefore, it is crucial to consider data-driven and 85
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algorithm-driven biases included in the hate speech detection system. Additionally, 86

these kinds of race and gender discriminations caused by exciting biases in dataset or 87

classifiers lead to unfairness against the same groups that the classifiers are trained to 88

protect. 89

This study is an extended version of our previous work [15] at which we proposed a 90

transfer learning approach for identification of hate speech in online social media by 91

employing a combination of the unsupervised pre-trained model BERT [23] and new 92

supervised fine-tuning strategies. Here, we investigate the effect of unintended bias in 93

our pre-trained BERT-based model and propose a new generalization mechanism in 94

training data by reweighting samples and then changing the fine-tuning strategies in 95

terms of the loss function to mitigate the racial bias propagated through the model. 96

The main contributions of this work are as follows: 97

� Following our previous study [15], we conduct a comprehensive experiment to 98

inspect the impact of our transfer learning approach in a shortage of labeled data 99

and in capturing syntactical and contextual information of all BERT transformers’ 100

embeddings. 101

� A new regularization mechanism is proposed to mitigate data-driven and 102

algorithm-driven bias by reweighting the training data and improving their 103

generalization apart from their classes. We use two publicly available datasets for 104

hate speech and offensive language detection. 105

� New fine-tuning strategy, in terms of the loss function, is employed to fine-tune 106

the pre-trained BERT model by new re-weighted training data. 107

� Finally, we perform a cross-domain validation approach to show the efficiency of 108

the proposed bias mitigation mechanism. 109

Previous works 110

In this section, we present in their respective subsections a comprehensive study of 111

related works on hate speech detection, transfer learning, and data-driven and 112

algorithm-driven bias analysis. Concerning these matters, we connect our work to the 113

existing body of knowledge and convey our computational motivations. 114

Automatic hate speech detection 115

A majority of contributions have been provided towards the identification of hateful and 116

abusive content in online social media [4, 16,24–26]. Applying a keyword-based 117

approach is a fundamental method in hate speech detection task. Although using 118

external sources such as the HateBase lexicon leads to a high-performing system in hate 119

speech detection, maintaining and upgrading these resources are challenging [13]. 120

Furthermore, using specific hateful keywords in training data results in many false 121

negatives related to the hateful samples, which are not containing those keywords [4, 13]. 122

Hence, we do not employ such external resources in this study. 123

Machine learning approach: To detect hateful and abusive contents, different 124

machine learning approaches utilizing distinguishable feature engineering techniques 125

have been employed in the literature [2, 3, 27], and it is asserted that surface-level 126

features such as a bag of words, word-level and character-level n-grams, etc., are the 127

most predictive features in this task. Regarding classification perspective, different 128

algorithms such as Näıve Bayes [1], Logistic Regression [2, 4], Support Vector 129

Machines [28], multi-view tacked Support Vector Machine (mSVM) [13], etc., have been 130

used to train a classifier for predicting the hateful contents. 131
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As a baseline, Waseem et al. [2] addressed the problem of hate speech detection in 132

Twitter by making a general definition of hateful content in social media based on 133

guidelines inspired by Gender Studies and Critical Race Theory (CRT). Regarding that, 134

they tried to annotate a corpus of 16,849 tweets as “Racism”, “Sexism” and “Neither” 135

by themselves, and the labels were inspected by “a 25-year-old woman studying gender 136

studies and a non-activist feminist” for identifying potential sources of bias. To train 137

their model, they used different sets of features such as word and character n-grams up 138

to 4, gender, length, and location and investigated the impact of each feature on the 139

classifier performance. Their results indicated that character n-grams are the most 140

indicative features, and using location or length is detrimental. Furthermore, Davidson 141

et al. [4] studied hateful and offensive contents in Twitter by sampling and annotating a 142

24K corpus of tweets as “Hate”, “Offensive” and “Neither”. They developed a variety 143

of multi-class classifiers such as Logistic Regression, Näıve Bayes, Decision Trees, 144

Random Forests, etc., on a set of features including Term Frequency–Inverse Document 145

Frequency (TF-IDF) weighted n-grams, Part Of Speech (POS) tagging, sentiment 146

scores, some tweet-level metadata such as the number of hashtags, mentions, retweets, 147

URLs, etc. Although their results illustrated that Logistic Regression with L2 148

regularization performs the best in terms of accuracy, precision, and F1-scores, there are 149

some social biases regarding anti-black racism and homophobia in their algorithm. 150

Malmasi et al. [28] proposed an ensemble-based system that used some linear SVM 151

classifiers in parallel to distinguish hate speech from general profanity in social media. 152

Recently, MacAvaney et al. [13] discussed different aspects of an automatic hate speech 153

system. They mainly addressed challenges pertaining to the definition of hate speech, 154

dataset collecting and annotation process and its availability, and the characteristics of 155

existing approaches. Furthermore, they proposed a multi-view tacked Support Vector 156

Machine (mSVM) based approach that achieved near state-of-the-art performance; 157

using word and character n-grams up to 5 as feature vectors. However, the issue of bias 158

in data and trained models were not addressed there. 159

Deep learning approach: Concerning the word representation as a dense vector 160

pre-trained on a large amount of data, some basic deep learning approaches proposed to 161

tackle the problem of hate speech [16,29]. The most frequently used word embeddings 162

approaches are Word2Vec [30], Glove [31] and FastText [32]. 163

As the first attempt, Djuric et al. [33] proposed a neural network-based model 164

advantaging pagraph2vec embeddings to distinguish between hate speech and clean 165

content. The proposed model incorporated two steps: in the first step, paragraph2vec 166

embeddings were extracted from a continuous bag of words model, and in the second 167

step, hateful and non-hateful contents were identified by applying a binary classifier 168

counting on the extracted embeddings. Badjatiya et al. [6], who experimented on the 169

dataset provided by Waseem and Hovy [2], investigated three deep learning 170

architectures: FastText, CNN, and LSTM. They used a combination of randomly 171

initialized or GloVe-based embeddings with an LSTM neural network and a gradient 172

boosting classifier. Their results outperformed the baseline from Waseem and Hovy [2]. 173

Different feature embeddings such as word embeddings and character n-grams were 174

defined by Gambäck et al. [16], to solve the problem of identification of hate speech 175

based on a CNN model. Afterward, a CNN+GRU (Gated Recurrent Unit network) 176

neural network model was proposed by Zhang et al. [29] in which the model captured 177

both word/character combinations (e. g., n-grams, phrases) and word/character 178

dependencies (order information) with employing a pre-trained word2vec embeddings. 179

Waseem et al. [17] brought a new insight to hate speech and abusive language detection 180

tasks by proposing a multi-task learning framework to deal with datasets across 181

different annotation schemes, labels, or geographic and cultural influences from data 182

sampling. They proposed a transfer learning technique in which solving two hate speech 183
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detection tasks simultaneously and utilizing similarities between these two tasks leads to 184

better generalization. Their experiments revealed that the multi-task learning 185

framework produces better performance by switching between using a task as auxiliary 186

and the other as primary. Using raw texts and domain-specific metadata from Twitter, 187

Founta et al. [34] proposed a unified classification model at which different types of 188

abusive language such as cyberbullying, hate, sarcasm, etc., were efficiently performed. 189

Transfer learning 190

In the machine learning domain, transfer learning is a concept in which prior knowledge 191

gained from one domain and task will be applied to solve another problem from a 192

different domain and task but related one somehow. In NLP tasks, the word embeddings 193

models that encode and represent an entity such as word, sentence, document, etc., to a 194

fixed-length vector, were the first attempts toward applying the transfer learning 195

approach to adjust to the best performance. Using pre-trained word embeddings such as 196

Word2Vec [30], Glove [31], and FastText [32] exploited from a large text corpus such as 197

Wikipedia, news articles, etc., result in great advances in different NLP tasks especially 198

for problems at which there may not be enough training data. However, these 199

pre-trained models suffer for their disability to better disambiguate between the correct 200

sense of a given word regarding different contexts in which it appears. To address this 201

issue, different contextual-based pre-trained models such as Universal Language Model 202

Fine-Tuning (ULMFiT) [35], Embedding from Language Models (ELMO) [36], OpenAI’ 203

s Generative Pre-trained Transformer (GPT) [37], and Google’s BERT model [23] 204

emerged. In these models, a universal language model is pre-trained on a 205

general-domain corpus by applying different techniques such as bi-directional 206

LSTM [36], unidirectional transformer [37], and bidirectional transformer [23] and then 207

a downstream task will be fine-tuned using discriminative methods. 208

For the first time, Waseem et al. [17] applied a multi-task learning strategy as a 209

transfer learning model to transfer knowledge between two different hateful and 210

offensive datasets. Their results indicated the ability of multi-task learning to generalize 211

to new datasets and distributions in hate speech detection tasks. Afterward, using a 212

combination of GloVe and pre-trained ELMO words embeddings, Rizoiu et al. [19] 213

proposed a transfer learning approach for hate speech and abusive language detection 214

(two datasets provided by [2, 4]). To adjust the ELMo representation to the hate speech 215

detection domain, they applied a bi-LSTM layer independently trained left-to-right and 216

right-to-left on both tasks simultaneously and then extracted sentence embedding using 217

a max-pooling approach. At the end, a specific classifier was trained for each task. Due 218

to the jointly solving both tasks, the insights learned from one task can be transferred 219

to the other task. Comparing the results from these two transfer learning-based studies 220

indicates that the approach of Waseem et al. [17] outperforms Rizoiu et al. [19], 221

therefore, we consider the approach of Waseem et al. [17] as our baseline here and 222

compare our proposed method with that. 223

Due to the lack of undoubted labeled data and the inability of surface features to 224

capture the subtle semantics in text, identification of hateful and offensive content is an 225

intricate task [28]. To address this issue, we use the pre-trained language model BERT 226

for hate speech classification and try to fine-tune a specific task by leveraging 227

information from different transformer encoders. 228

Bias detection and mitigation in hate speech systems 229

Recently the great efforts have taken to examine the issue of data bias in hate speech 230

and offensive language detection tasks. Dixon et al. [20] confirmed the existence of 231

unintended bias between texts containing general identity terms (e.g. lesbian, gay, 232
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Islam, feminist, etc.) and a specific toxicity category; attributed to the disproportionate 233

representation of texts containing certain identity terms through different categories in 234

training data from Wikipedia Talk pages dataset. Therefore, they tried to quantify and 235

mitigate this form of unintended bias by expanding training and test datasets under 236

some generalization strategies for identity terms. Following some debiasing methods 237

(Debiased Word Embeddings, Gender Swap, and Bias fine-tuning), Park et al. [8] tried 238

to measure and debias gender bias in abusive language detection system. Afterward, 239

Wiegand et al. [22] conveyed that unintended biases in datasets are not just restricted 240

to the identity terms and gender, and they are by cause of focused data sampling 241

approaches. Consequently, the high classification scores on these datasets, mainly 242

containing implicit abuse, are due to the modeling of the bias in those datasets. 243

Datasets containing biased words resulted from biased sampling procedure cause a huge 244

amount of false positives when testing on other datasets. They showed that some query 245

words used for sampling data from Tweeter that are not correlated with abusive tweets 246

but are included in tweets with sexist or racist remarks are biased as well. For example, 247

query words such as commentator, sport, and gamergate used by Waseem et al. [2] to 248

sample data from Twitter, are not correlated with Sexism class but are one of the most 249

frequent words in this category. Furthermore, Badjatiya et al. [38] proposed a two-step 250

bias detection and mitigation approach. At first, various heuristics were described to 251

quantify the bias and a set of words in which the classifier stereotypes were identified. 252

Then, they tried to mitigate the bias by leveraging knowledge-based generalization 253

strategies in training data. The results show that their approach can alleviate the bias 254

without reducing the model performance significantly. 255

Recently, Davidson et al. [21] and Sap et al. [14] investigated the racial bias against 256

African American English (AAE) dialects versus Standard American English (SAE) in 257

the benchmark datasets with toxic content, especially from the Twitter platform. They 258

declared that the classifiers trained on these datasets tend to predict contents written in 259

AAE as abusive with strong probability. Furthermore, Sap et al. [14] introduced a way 260

of mitigating annotator bias through dialect, but they did not mitigate the bias of the 261

trained model. 262

We propose a pre-trained BERT-based model to address the problem of hate speech 263

detection and the data-driven and algorithm-driven biases, which extends the prior 264

literature in two significant ways. First, it outperforms previous methods in terms of 265

F1-measure by applying different fine-tuning strategies and employing different 266

syntactic and semantic information embedded in different layers of BERT. Second, it 267

addresses unintended bias in data or trained models and tries to mitigate the racial bias 268

in our pre-trained BERT-based classifiers. Our bias mitigation approach is close to what 269

Davidson et al. [21] did at which they just addressed the racial bias in the benchmark 270

hate speech datasets. However, in this study, we propose a bias mitigation mechanism 271

to alleviate racial bias included in datasets and trained classifiers. 272

Materials and methods 273

In this section, we introduce our proposed framework for hate speech detection and 274

unintentional bias analysis and mitigation. As shown in Fig 1, our approach contains 275

two main modules: (1) Hate Speech Detection module and (2) Bias Mitigation 276

module; where the pre-trained BERTBASE component is shared between two modules. 277

Here, we describe and analyze more deeply the hate speech detection module, proposed 278

in our previous study [15], and then the details related to the proposed bias mitigation 279

mechanism will be provided in Section Bias mitigation module. 280
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Fig 1. The proposed framework for hate speech detection and bias mitigation tasks. It consists of
two different modules: Hate Speech Detection and Bias Mitigation with different inputs as a result of different
pre-processing approaches. The pre-trained BERTbase is a common component between two modules that is
fine-tuned differently in respect of each module’ s goal.

BERT-based hate speech detection module 281

According to Fig 1, given tweets in the training set as input data, the pure texts of 282

them are extracted from the pre-processing component regarding a set of specific rules, 283

described in the related subsection. Then, the processed tweets are fed into the 284

pre-trained BERT model to be fine-tuned according to different strategies with 285

task-specific modifications. At the end, using the trained classifiers we predict the labels 286

of the test set and evaluate the results. 287

To analyze the ability of the BERT transformer model on the identification of hate 288

speech, we describe the mechanism used in the pre-trained BERT model at first. BERT 289

is a multi-layer bidirectional transformer encoder trained on the English Wikipedia and 290

the Book Corpus containing 2,500M and 800M tokens, respectively, and it has two 291

models named BERTBASE and BERTLARGE detailed as follows: 292

� BERTBASE: contains 12 layers (transformer blocks), 12 self-attention heads, and 293

110 million parameters. 294
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� BERTLARGE: contains 24 layers, 16 attention heads, and 340 million 295

parameters. 296

Each of BERTBASE and BERTLARGE has two versions: uncased and cased. The 297

uncased version has only lowercase letters. In this study, we use the uncased version of 298

the pre-trained BERTBASE model. A sequence of tokens, as a pre-processed sentence, in 299

maximum length 512 is fed to the BERT model as input. Then two segments are added 300

to each sequence as [CLS] and [SEP] by BERT tokenizer. [CLS] embedding, which is 301

the first token of the input sequence, is used as a classification token since it contains 302

specific classification information in each layer. The [SEP] token, an artifact of 303

two-sentence tasks, separates segments and we will not use it in our classification 304

because we have only single-sentence inputs. As the output, BERT produces a 305

768-dimensional vector to represent each input sequence. 306

Fine-tuning strategies 307

As we are dealing with textual content from social media in our task and the BERT 308

model is pre-trained on general corpora, it is crucial to analyze the contextual 309

information extracted from pre-trained BERT’s transformer layers. Different levels of 310

syntactic and semantic information are encoded in different layers of the BERT model, 311

and according to [23] the lower layers of the BERT model may contain information that 312

is more general whereas the higher layers contain task-specific information. Hence, we 313

need to fine-tune it on our hate speech detection task with annotated datasets. Here, 314

fine-tuning means to train and update the entire pre-trained BERT model along with 315

the additional untrained classifier layers of 768 dimensions (considering different 316

fine-tuning strategies) on top of the pre-trained BERTBASE transformer (more 317

information about these transformer encoders’ architectures are presented in [23]). In 318

the following, a brief description of different fine-tuning strategies, explained in detail in 319

our previous study [15], are included. 320

BERT based fine-tuning: To fine-tune BERT with this strategy, we use the 321

output of the [CLS] token, a vector of length 768, from 12th transformer encoder and 322

feed it as input to a fully connected neural network without hidden layer. To classify 323

each input sample a softmax activation function is employed to the hidden layer. 324

Insert nonlinear layers: Similar to the previous strategy, the output of the [CLS] 325

token, a vector of length 768, from the latest transformer encoder is used as an input to 326

a fully connected neural network with two hidden layers in size 768. Leaky Relu 327

activation function with negative slope = 0.01 is applied on two hidden layers and, at 328

the end, a softmax activation function for the final layer is used. 329

Insert Bi-LSTM layer: Contrary to the previous strategies, all outputs of the 330

latest transformer encoder are fed to a bidirectional recurrent neural network (bi-LSTM) 331

on the top of the BERT model. The final hidden state is directed to a fully connected 332

neural network with a softmax activation function to do the classification operation. 333

Insert CNN layer: Rather than using the output of the latest transformer 334

encoder, here we use the outputs of all transformer encoders in the BERT model as an 335

input to a convolutional neural network with a window size: (3 and hidden size of BERT 336

which is 768 in BERTBASE model). Then, by applying a MaxPooling method on the 337

convolution’s outputs, the maximum values of each transformer encoder are extracted, 338

and a vector is generated to be fed as input to a fully connected neural network. In the 339

end, the classification function is performed by applying a softmax activation function. 340
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Experiment setup 341

This section presents details about the datasets and the pre-processing step used for the 342

identification of hate speech. Furthermore, we provide some technical details related to 343

the implementation part at the end of the section. 344

Dataset description 345

In this study, we experiment with three publicly available datasets widely studied on 346

Twitter provided by Waseem and Hovy [2], Waseem [39] and Davidson et al. [4], which 347

are detailed in the following: 348

Waseem and Hovy [2]/Waseem [39]: Within two months period, Waseem and 349

Hovy [2] collected 136,052 tweets from Twitter and, after some filtering, annotated a 350

corpus containing 16,914 tweets as “Racism”, “Sexism” and “Neither”. First using an 351

initial ad-hoc approach, they tried to search common slurs and terms related to 352

religious, sexual, gender, and ethnic minorities. Secondly, from the first results, they 353

identified the most frequent terms in tweets containing hate speech. For example, 354

hashtag “#MKR” which was related to a public Australian TV show, My Kitchen 355

Rules, and caused many sexist tweets directed at the female participants. At the end to 356

make their sampling process more general, they crawled more tweets containing clearly 357

abusive words and potentially abusive words but they are not abusive in context, as 358

negative sampling. The final collected corpus (16K) was annotated by experts and 359

ascertained by a 25 years old woman studying gender studies and non-activist feminist 360

to reduce annotator bias. Waseem [39] also provided another dataset to investigate the 361

impact of expert and amateur annotators on the performance of classifiers trained for 362

hate speech detection. Therefore, they collected 6,909 tweets for hate speech and 363

annotated them as “Racism”, “Sexism”, “Neither” and “Both” by amateurs from 364

CrowdFlower crowdsourcing platform and experts having a theoretical and applied 365

knowledge of the abusive language and hate speech. Their efforts result in a set of 4,033 366

tweets where there was an overlap of 2,876 tweets between their new dataset and the 367

one provided by Waseem and Hovy [2]. Since both datasets are overlapped partially and 368

they used the same strategy in definition of hateful content, we merged these two 369

datasets following Waseem et al. [17] to make our imbalance data a bit larger (we 370

followed all the rules provided in Section 3.2 of Waseem et al. [17] paper to merge two 371

datasets. For more details, please refer to that paper). In the rest of the paper, we refer 372

to this aggregated dataset as Weseem-dataset. 373

Davidson et al. [4]: Employing a set of particular terms from a pre-defined 374

lexicon of hate speech words and phrases, called HateBase [40], Davidson et al. [4] 375

crawled 84.4 million tweets from 33,458 twitter users. To annotate collected tweets as 376

“Hate”, “Offensive” or “Neither”, they randomly sampled 25k tweets and asked users of 377

CrowdFlower crowdsourcing platform to label them. After labeling each tweet by 378

annotators, if their agreement was low, the tweet was eliminated from the sampled data. 379

In the rest of the paper, we refer to this dataset as Davidson-dataset. 380

Table 1 shows a brief description of class distribution in both datasets. 381

Pre-processing 382

For simplicity and generality, we consider the following criteria in order to filter the raw 383

dataset and make it clean as the input of our model: 384

� Converting all tweets to lower case. 385

� Removing mentions of users, for the sake of protecting the user’s identities. 386

� Removing embedded URLs in tweets’ content. 387
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Table 1. Datasets description. The columns show the total number of tweets, the different categories
and the percentage of tweets belong to each one in the datasets, respectively.

Dataset #Tweets Classes and percentage of membership

Waseem-dataset [2] [39] 19697
Racism (10.73%)

Sexism (21.15%)

Neither (68.12%)

Davidson-dataset [4] 24783
Hate (5.77%)

Offensive (77.43%)

Neither (16.80%)

� Removing common emoticons, because in this study we do not consider emotions 388

in our analysis. 389

� Identifying elongated words and converting them into short and standard format; 390

for example, converting “yeeeessss” to “yes”. 391

� Removing hashtag signs (#) and replacing the hashtag texts by their textual 392

counterparts, where there is not any space between them; for example, we convert 393

hashtag “#notsexist” to “not sexist”. 394

� Removing all punctuation marks, unknown uni-codes and extra delimiting 395

characters 396

� Keeping all stop words, because our model trains the sequence of words in a text 397

directly. 398

� Eliminating tweets with a length of less than 2 after applying all aforementioned 399

pre-processing steps. 400

Implementation 401

Our hate speech detection and bias mitigation modules are implemented with publicly 402

available pytorch-pretrained-bert library [41]. We utilize the pre-trained BERT model, 403

text tokenizer, and pre-trained WordPiece provided in the library to prepare the input 404

sequences and train the model. Using BERT tokenizer, we tokenize each tweet (as input 405

sentence) in such a way that invalid characters are removed and all the words are 406

lowercased. Following the original BERT [23], words are split to subword by employing 407

WordPiece tokenization. Due to the shortness of input sentences’ length, the maximum 408

sequence length is set to 64 and in any case of shorter or longer length, it will be 409

padded with zero values or truncated to the maximum length, respectively. We train 410

our classifiers with different fine-tuning strategies with a batch size of 32 for 3 epochs 411

on Google Colaboratory tool [42] with an NVIDIA Tesla K80 GPU and 12G RAM; as 412

the implementation environment. During training, we use an Adam optimizer with a 413

learning rate of 2e-5 to minimize the Cross-Entropy loss function; furthermore, the 414

dropout probability is set to 0.1 for all layers. 415

Evaluation metrics 416

In general, classifiers with higher precision and recall scores are preferred in 417

classification tasks. However, due to the imbalanced classes in the hate speech detection 418

datasets, we tend to make a trade-off between these two measures. Therefor, we 419

summarize models’ performance into macro averaged F1-measure, which is the 420

geometric mean of precision and recall and gives more insights into the performance 421

characteristics of each classification model. 422
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Experiment results 423

Here, we investigate the impact of using a pre-trained BERT-based model with different 424

fine-tuning strategies on the hate speech detection task. Additionally, we show different 425

aspects of our transfer learning-based approach by analyzing the proposed model deeply. 426

To train the model, we need to split Waseem-dataset and Davidson-dataset into 427

training, validation and test sets. Considering the disparate distribution of tweets in 428

different classes described in Table 1, it is justifiable that we are dealing with 429

imbalanced datasets (to adjust the classes’ distribution of the datasets, we do not 430

oversample or undersample the datasets because hate speech and offensive languages are 431

real phenomena and we want to provide the datasets to the classifiers as realistic as 432

possible). Using a stratified sampling technique 0.8, 0.1 and 0.1 portions of tweets in 433

each class: Racism, Sexism, and Neither or Hate, Offensive, and Neither are selected for 434

training, validation, and test sets in each dataset, respectively. 435

We consider models proposed by Davidson et al. [4] and Waseem et al. [17] as our 436

baselines in which a classic method and a deep neural network model are created 437

respectively. To do so, following the original work [4], we create an SVM classification 438

method proposed by the authors and we train a machine learning model using a 439

multi-task learning framework proposed by Waseem et al. [17]. In addition to these two 440

baselines, we compare our results with the methods proposed in [2, 13,29,43] on the 441

corresponding datasets. Using two hate speech datasets, we examine the performance of 442

our model, with different fine-tuning strategies, in contrast to the baselines and 443

state-of-the-art approaches. The evaluation results on the test sets are reported in terms 444

of macro averaged F1-measure in Table 2. The differences between the results provided 445

in Table 2 and what were reported in the original works are due to we implemented 446

some models and report macro averaged F1-measures. 447

Table 2. Performance evaluation. Performance of different trained classifiers on Waseem-dataset and
Davidson-dataset in terms of F1-measure are reported in a and b, respectively.

Model F1-Measure

Waseem and Hovy [2] 75
Waseem et al. [17] 80
Zhang et al. [29] 82
Park et al. [43] 83

BERTBASE 81
BERTBASE + Nonlinear Layers 76
BERTBASE + bi-LSTM 86
BERTBASE + CNN 88

(a) Performance evaluation on Waseem-dataset.

Model F1-Measure

Davidson et al. [4] 84
Zhang et al. [29] 94
Waseem et al. [17] 89
MacAvaney et al. [13] 77

BERTBASE 91
BERTBASE + Nonlinear Layers 87
BERTBASE + bi-LSTM 92
BERTBASE + CNN 92

(b) Performance evaluation on Davidson-dataset.

Table 2 shows that, in both datasets, all the BERT-based fine-tuning strategies 448

except BERT + nonlinear classifier on top of it outperform the existing approaches or 449

they achieve competitive results. According to Table 2a, on Waseem-dataset, the 450

highest F1-measure value is achieved by BERTBASE + CNN which is 88% and there is a 451

5% improvement from the best performance achieved by Park et al. [43] method. In 452

addition, applying different models on Davison-dataset, reported in Table 2b, also 453

confirms the previous observation and shows that using the pre-trained BERT model as 454

initial embeddings and fine-tuning the model with a CNN yields the best performance 455

in terms of F1-measure; where it is 92%. On Davidson-dataset, comparing the best 456

F1-measure value achieved by BERTBASE + CNN model with the best-performed 457

model proposed by Zhang et al. [29] indicates that our model achieved a 2% decrease in 458
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performance than [29]; where the F1-measure is 94%. We posit that this is due to the 459

fact that Zhang et al. [29] have merged the Hate and Offensive classes of 460

Davidson-dataset together and solved the problem of hate speech detection as a binary 461

classification which it made the task more simplified counter to our specific multi-class 462

classification approach. 463

From deep learning neural network perspective, according to the literature [44], 464

CNN works well with textual data that have a spatial relationship. In hate speech 465

classification tasks, there is an order relationship between words in a document and 466

CNN learns to recognize patterns across space. In the combination of BERT + CNN, 467

although convolutions and pooling operations lose information about the local order of 468

words, it has already captured by BERT encoders and its position embeddings in 469

different layers. On the other hand, from the language modeling perspective, BERT + 470

CNN uses all the information included in different layers of pre-trained BERT during 471

the fine-tuning phase. This information contains both syntactical and contextual 472

features coming from lower layers to higher layers of BERT. Therefore, this model works 473

the best of all models tested. 474

Performance evaluation with a limited amount of training data 475

In common practice the more the fraction of training set is, the higher the performance 476

of algorithms will be. One advantage of leveraging the pre-trained model is to be able to 477

train a model for downstream tasks within a small training set. Due to the lack of a 478

sufficient amount of labeled data in some classification tasks, mainly hate speech 479

detection here, using the pre-trained BERT model can be effective. We inquire into the 480

performance of hate speech detection models in terms of F1-measure when the amount 481

of labeled data is restricted. Fig 2 shows the evaluation results of the baselines and our 482

pre-trained BERT-based model on different portions of training examples, over a certain 483

concentration range [0.1− 1.0]. We train and test each model 10 times and report the 484

results in terms of their mean and standard deviation. For each dataset, we select 485

training and test sets according to the description included in Section Experiment 486

results. We do not use the validation set (10% of the dataset) for Davidson et al. [4] 487

baseline model but it is used in Waseem et al. [17] baseline. In Waseem et al. [17] 488

baseline model we are dealing with a multi-task learning approach, therefore in each 489

iteration, the training and validation sets of a specific task which is going to be trained 490

are selected. For our proposed method, we report the performance of the pre-trained 491

BERT model fine-tuned with inserting a CNN layer on top of it; the best performing 492

fine-tuning strategy. To see how the models perform on different portions of training 493

and validation sets, we restrain the amount of training and validation sets in such a way 494

that only a specific portion of them are available for the models during the training. 495

The experiment results demonstrate that our pre-trained BERT-based model brings 496

a significant improvement to small size data and has comparable performance on 497

different portions of training data in comparison to the baseline models. According to 498

Fig 2a, the smallest portion of training data, which is 0.1, used in the training phase of 499

our model is able to yield the F1-measure of almost 87% where it is 72% for Davidson 500

baseline. By increasing the portion of training data, the performance of the Davidson 501

baseline gradually increases up to 83% (where the portion of the training set is 0.5) and 502

then remains considerably stable, whereas the performance of our model does not 503

significantly improve. This finding supports the theory that using a pre-trained 504

BERT-based model causes a decrease in the size of the required training data to achieve 505

a specific performance. From Fig 2b, we can observe that the performance of the 506

multi-task learning approach proposed by Waseem et al. [17] gradually increases and it 507

depends on the portion of training data. However, the performance of our model is 508

mostly stable during the growth of training data, especially by including more than 0.3 509
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of training data. 510

(a) Davidson-dataset (b) Waseem-dataset

Fig 2. The performances of hate speech detection models trained with a variation of training sets on
Davidson and Waseem datasets. The x-axis is the portion of the training and validation sets used for training
our BERT-based model and the baselines, the y-axis shows the F1-measure.

BERT embeddings analysis 511

To see how informative different 12 layers of transformer encoders of the BERT model 512

are, we extract embeddings for each sentence in our datasets, from pre-trained BERT 513

model before and after fine-tuning. Here, we use the uncased BERTBASE model with 12 514

transformer blocks, 12 attention heads, and a hidden layer size of 768. For this purpose, 515

we use an online service called bert-as-service [45] to map a variable-length sentence into 516

a fixed-length vector representation and extract sentence embeddings from different 517

layers of the BERT model. 518

We extract the vector representation of all samples in Davidson and Waseem datasets 519

separately from the original pre-trained BERT model and the one we fine-tuned on our 520

downstream tasks. Each sample is translated into a 768-dimensional vector. As [CLS] 521

special token appeared at the start of each sentence does not have richly contextual 522

information before fine-tuning the model on a specific classification task, we take all the 523

tokens’ embeddings in a sentence and apply a REDUCE-MEAN pooling strategy to get 524

a fixed representation of a sentence. Given the sentence representations from the 525

pre-trained BERT model before and after fine-tuning, Principal Component Analysis 526

(PCA) builds a mapping of 768-dimensional vector’s representation to a 2D space shown 527

in Fig 3 for Waseem-dataset. There are three classes of the data, illustrated in purple, 528

red, and yellow corresponding to Racism, Sexism, and Neither classes, respectively. 529

Sentence Embeddings from the first 4 layers (1-4) and the last 4 layers (9-12) of 530

pre-trained BERT model before fine-tuning on Waseem-dataset are represented in 531

Fig 3a. Regarding the fact that different pre-trained BERT layers capture different 532

information, we can see that sentences’ representation from each class in the first 4 533

layers is highly sparse which means the Euclidean pairwise distance between sentences 534

in each class is large in the high dimensional space. However, the sentence embeddings 535

in the last 4 layers are a bit more clustered in comparison to the first 4 layers according 536
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to the class which they belong to; Especially for racism samples. This observation is on 537

the grounds that, pre-trained BERT model is trained on Wikipedia and Book Corpus 538

data and encodes enough prior knowledge of the general and formal language into the 539

model. However, this knowledge is not specific to a particular domain; here hate speech 540

contents form social media with informal language. Therefore, before fine-tuning the 541

model on our task different layers of BERT cannot capture the contextual and semantic 542

information of samples in each class and cannot congregate similar sentences in a 543

specific class. 544

After fine-tuning our model, on Waseem-dataset, with BERTBASE + CNN strategy, 545

which performs as the best fine-tuning strategy on both datasets, we can observe in 546

Fig 3b that the model captures contextual information in which racism, sexism, and 547

neither content exist and clusters samples strongly tight in the last 4 layers. It causes 548

the high-performance evaluation result using this fine-tuning strategy in our previous 549

study [15]. The same result is yielded by Davidson-dataset’s embeddings visualization 550

included in S1 Fig. 551
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(a) Before fine-tuning

(b) After fine-tuning

Fig 3. Waseem-samples’ embeddings analysis before and after fine-tuning. To investigate the
impact of information included in different layers of BERT, sentence embeddings are extracted from all the
layers of the pre-trained BERT model before a and after b fine-tuning, using the bert-as-service tool.
Embedding vectors of size 768 are visualized to a two-dimensional visualization of the space of all
Waseem-dataset samples using PCA method. For sake of clarity, we just include visualization of the first 4
layers (1-4), which are close to the training output, and the last 4 layers (9-12), which are close to the word
embedding, of the pre-trained BERT model before and after fine-tuning.
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Error analysis 552

As we observed in Experiment result section, although we have very interesting results 553

in terms of F1-measure, it is needed to examine how the model predicts false positives 554

and false negatives. To understand better this phenomenon, in this section we perform 555

an analysis of the error of the model. We investigate the test datasets and their 556

confusion matrices resulted from the BERTBASE + CNN model as the best fine-tuning 557

approach; depicted in Tabel 3. According to Tabel 3a for Waseem-dataset, it is obvious 558

that the model can separate sexism from racism content properly. Only two samples 559

belonging to racism class are misclassified as sexism and none of the sexism samples are 560

misclassified as racism. A large majority of the errors come from misclassifying hateful 561

categories (racism and sexism) as hatless (neither) and vice versa. 0.9% and 18.5% of all 562

racism samples are misclassified as sexism and neither respectively whereas it is 0% and 563

12.7% for sexism samples. Almost 12% of neither samples are misclassified as racism or 564

sexism. As Tabel 3b makes clear for Davidson-dataset, the majority of errors are related 565

to hate class where the model misclassified hate content as offensive in 63% of the cases. 566

However, 2.6% and 7.9% of offensive and neither samples are misclassified respectively. 567

Table 3. Confusion matrix of the both Waseem-dataset (a) and Davidson-dataset (b).

Label
Predicted

Racism Sexism Neither

Racism 169 2 39
Sexism 0 362 53
Neither 133 22 1160

(a) Waseem-dataset’s confusion matrix

Label
Predicted

Hate Offensive Neither

Hate 42 90 10
Offensive 29 1867 25
Neither 4 29 382

(b) Davidson-dataset’s confusion matrix

Our manual inspection on a subset of data showed that, in Davidson-dataset, the 568

model has more tendency to base predictions on certain words such as “n*gga”, “b*tch”, 569

etc., due to the imbalance dataset (Hate:5.77% and Offensive:77.43%). Furthermore, in 570

some cases containing implicit abuse (like subtle insults) such as: 571

Tweet: @user: Some black guy at my school asked if there were colored printers in 572

the library. ”It’s 2014 man you can use any printer you want I said. 573

our model cannot capture the hateful content and therefore misclassifies. It should 574

be noticed that even for a human it is difficult to discriminate against this kind of 575

implicit abuses. 576

According to the strategy used in collecting data in Davidson-dataset, some tweets 577

with specific language (written within the African American Vernacular English) and 578

geographic restriction (United States of America) are oversampled and result in high 579

rates of misclassification [17,21]. However, these misclassifications do not confirm the 580

low performance of our classifier because annotators tended to annotate many samples 581

containing disrespectful words as hate or offensive without any presumption about the 582

social context of tweeters such as the speakers’ identity and dialect or surrounding 583

context of the tweet; whereas they were just offensive or even neither tweets such as: 584

Tweet: @user: If you claim Macklemore is your favorite rapper I’m also assuming 585

you watch the WNBA on your free time fagg*t. 586

Tweet: @user: @user typical c*on activity. 587

These kinds of tweets are some samples containing offensive words and slurs that are 588

not hateful or offensive in all cases, and writers of them used this type of language in 589

their daily communications, but they were labeled as hate by annotators without 590

considering the context. 591
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Bias mitigation module 592

As depicted in Fig 1, our proposed framework consists of two main modules. This 593

section concentrates on the bias mitigation module at which we address the problem of 594

data-driven and algorithm-driven biases in hate speech detection. We explore existence 595

bias in the datasets and then try to mitigate the bias in the proposed pre-trained 596

BERT-based model by applying a generalization mechanism. 597

Towards unbiased training data 598

Although a lot of effort has been done in proposing and developing a real-world abusive 599

language and hate speech detection systems, their potential biases due to the collecting 600

and annotating process of data or training classifiers on them have raised a few concerns. 601

Recently, some studies tried to address this issue. As demonstrated in [14,21,22] there 602

is some racial and dialectic bias in several widely used corpora annotated for toxic 603

language (e.g., hate speech, abusive speech, or other offensive speech). 604

To the best of our knowledge, it is the first time that we are addressing bias 605

mitigation through trained classifier rather than data sampling and annotation process. 606

Here, we try to improve the generalization in the existence of the racial and dialect bias 607

by proposing a new generalization mechanism in the training data. To mitigate the bias 608

propagated through the models on which the benchmark datasets are trained, we 609

leverage a re-weighting mechanism, by inspiring from the recent work of Schuster et 610

al. [46]. First, we assess the explicit bias in the datasets and investigate phrases in 611

training set causing it. Then, we reweight the samples in training and validation sets to 612

make smooth the correlation between the phrases in training samples and the classes to 613

which they belong. After optimizing the bias in the training set, we acquire re-weighted 614

scores for each sample and feed our pre-trained BERT-based model with new training 615

and validation sets (as depicted in Fig 1, where tweets and corresponding weights are as 616

an input of the Bias Mitigation module). During the fine-tuning, the loss function of 617

the classifier will be updated with re-weighted scores to alleviate the existing bias in 618

training samples. 619

The high classification scores in hate speech detection and offensive language 620

systems are likely due to modeling the bias from training datasets. Therefore, we assess 621

the explicit bias in Davidson and Waseem datasets and investigate phrases in training 622

sets causing it. To do so, the n-gram distribution in training and test sets is inspected 623

and the high frequently n-grams, that are extremely correlated with a particular class, 624

are extracted. We use the Local Mutual Information (LMI) [47] to extract high 625

frequently n-grams in each class. For any given n-gram w and class c, LMI between w 626

and c is defined as follows: 627

LMI(w, c) = p(w, c).log(
p(c|w)

p(c)
) (1)

where p(c|w) and p(c) are calculated by count(w,c)
count(w) and count(c)

|D| , respectively. 628

Furthermore, p(c) and p(w|c) are calculated by count(c)
|D| and count(w,c)

|D| , respectively. 629

|D| = is the number of occurrences of all n-grams in the training set. 630

Figs 4 and 5 exhibit the 20 top LMI-ranked n-grams (n = 2) that are highly 631

correlated with the Racism and Sexism classes of Waseem-dataset and Hate and 632

Offensive classes of Davidson-dataset in the training and test sets, respectively. Using 633

training and test data, a heat map with legend color bar, column and row side 634

annotations is generated in Figs 4a and 4b for Racism and Sexism and Figs 5a and 5b 635

for Hate and Offensive classes. The legend color bar indicates the correlation between 636

LMI values and colors, and the colors are balanced to ensure the light yellow color 637
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represents zero value. LMI values indicate with LMI.10−6. Illustrating the most 638

frequently 2-grams in Racism class in Fig 4a shows that tweets in this class are 639

containing some domain-specific expressions such as ‘islam’ and ‘muslims’ at which they 640

are likely to be associated with Racism class (as hateful class). On the other hand, in 641

Fig 4b some general keywords such as ‘women’, ‘feminism’ and ‘sexist’ are highly 642

associated with Sexism class. These kinds of correlations are true for both training and 643

test sets’ samples except some phrases in which there is not any occurrence in the test 644

set and is indicated as nan value. Therefore, it is perceived that there are some 645

idiosyncrasies in the dataset construction for each class and they are described as 646

stereotype bias in the rest of the paper. 647

(a) Racism class (b) Sexism class

Fig 4. The top 20 LMI-ranked n-grams (n = 2) that are highly correlated with the negative classes of
Waseem-dataset (Racism and Sexism) in the training and test sets. nan value denotes computationally infeasible,
as the occurrence is zero in the test set.

The same stereotype bias exists in Hate and Offensive classes of Davidson-dataset 648

(Fig 5) where samples containing specific terms such as “n*gga”, “fagg*t”, “que*r”, etc., 649

are highly correlated with Hate class. On the other hand, the samples containing terms 650

such as “h*es” and “b*tch” are associated with Offensive class. This kind of stereotype 651

bias can be transferred to the classifier during the training process and creates a 652

tendency for predicting new samples containing this stereotype as a negative class. 653

Re-weighting mechanism 654

This section presents the mechanism to alleviate the bias in our hate speech detection 655

model. We describe how samples belonging to each class are assigned a positive weight 656

according to their correlation with the different classes. After that, samples with new 657

weights are fed to our pre-trained BERT-based model. To mitigate the bias initiated by 658

n-grams high correlated to each class in our proposed model, we use an algorithm 659

introduced by Schuster et al. [46], for debiasing a fact verification model, to reweight 660

the samples. We believe that it is the first attempt to reduce the systematic bias 661

existing in hate speech datasets with such kind of re-weighting mechanism. 662

Bias made by high frequently 2-grams per class in training and validation sets can 663

be constrained by defining a positive weight αi for each sample xi, tweet in training and 664

validation sets, in such a way that the importance of tweets with different labels 665

August 5, 2020 18/29



(a) Hate class (b) Offensive class

Fig 5. The top 20 LMI-ranked n-grams (n = 2) that are highly correlated with the negative classes of
Davidson dataset (Hate and Offensive) in the training and test sets. nan value denotes computationally infeasible,
as the occurrence is zero in the test set.

containing these phrases are increased. Considering each sample as xi, its label as yi 666

and each 2-gram in training set as wj , we define a bias toward each class c using Eq 2. 667

bj
c =

∑n
i=1 I[w(i)

j ]
(1 + α(i))I[y(i)=c]∑n

i=1 I[w(i)
j ]

(1 + α(i))
(2)

Where I
[w

(i)
j ]

and I[y(i)=c] are the indicators for wj to be in tweet xi and lable yi to 668

be in class c. 669

To find balancing weights α that result in the minimum bias, we have to solve an 670

optimization problem as follows: 671

min(

|V |∑
j=1

maxc(b
c
j) + λ||−→α ||2) (3)

It should be noted that we acquire α values in the pre-processing step and before 672

feeding training and validation sets to our BERT-based model. To integrate the weights 673

associated with each sample into our model, the loss function of our pre-trained 674

BERT-based classification model has to be changed. In our previous study [15] we used 675

Cross-entropy loss function [48] as a loss function when optimizing our classification 676

model on top of the pre-trained BERT model. However, in this study, we change the 677

loss function in such a way that it includes weights as well. 678

Let y = y1, ..., yn be a vector representing the distribution over the classes 1, ..., n, 679

and let ŷ = ŷ1, ..., ŷn be the classifier output .The categorical cross entropy loss 680

measures the dissimilarity between the true label distribution y and the predicted label 681

distribution ŷ, and is defined as cross entropy as follows: 682

Losscross−entropy(ŷ, y) = −
n∑

i=1

yi log(ŷ) (4)
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While for the re-weighted approach, the training objective is reweighted from the 683

Eq 4 to: 684

Weighted-Losscross−entropy(ŷ, y) = −
n∑

i=1

(1 + α(i))yi log(ŷ) (5)

Scrutinizing bias mitigation mechanism 685

To further analyze the impact of the proposed regularization mechanism through 686

training and validation sets and reweighting the samples for bias mitigation, we 687

investigate how the models trained on samples with and without weights predict on new 688

datasets (cross-domain data). We use a dataset collected from twitter by Blodgett et 689

al. [49] including a demographically associated dialectal language named African 690

American English (AAE), known as Black English, which is a dialect of American 691

English spoken by millions of black people across the United States. They exploited a 692

set of geo-located tweets by leveraging a distantly supervised mapping between authors 693

and the demographics of the place in which they live. They filtered out 16 billion 694

collected tweets in such a way that tweets geo-located with coordinates that matched a 695

U.S. Census blockgroup remained; which contains 59.2 million publicly available tweets. 696

Consequently, four different demographic categories of non-Hispanic whites, 697

non-Hispanic blacks, Hispanics, and Asians are created using the information about 698

population ethnicity and race from the U.S. Census. They proposed a probabilistic 699

mixed-membership language model to learn demographically aligned language models 700

for each of the four demographic categories utilizing words associated with particular 701

demographics. At the end, they calculated a posterior proportion of language from each 702

category in each tweet. Following Davidson et al. [21] recent work, to analysis racial 703

bias propagated with the pre-trained BERT-based model with and without the 704

re-weighting mechanism, we define two categories of tweets as follows: 705

AAE-aligned: filtering the tweets with the average posterior proportion greater 706

than 0.80 for the non-Hispanic black category and less than 0.10 for Hispanic + Asian 707

together to address the African Americal English language (AAE). 708

White-aligned: filtering the tweets with the average posterior proportion greater 709

than 0.80 for the non-Hispanic white category and less than 0.10 for Hispanic + Asian 710

together to address the Standard American English (SAE). 711

After filtering out the tweets not satisfying the above conditions, we result in a set of 712

14.5m and 1.1m tweets written in non-Hispanic white (White-aligned) and non-Hispanic 713

black (AAE-aligned) languages, respectively. These two new categories show the racial 714

alignment of the language that their authors used. In the following, we explain how we 715

use these datasets to evaluate our pre-trained BERT-based classifier with and without 716

re-weighting mechanism to alleviate racial bias. 717

Research Question : Our research question here is that, whether or not our 718

BERT-based classifiers trained on Waseem and Davidson datasets with and without the 719

re-weighting mechanism, have any preference in assigning tweets from AAE-aligned and 720

White-aligned categories to a negative class (Racism, Sexism, Hate or Offensive). If it is 721

yes, how our proposed bias alleviation mechanism reduces this tendency. 722

Considering each tweet t in AAE-aligned dataset as tblack and in White-aligned 723

dataset as twhite, we define two hypotheses H1 and H2 for each class ci where ci = 1 724

denotes membership of t in class i and ci = 0 in the opposite. Therefore, H1 is 725

equivalent to P (ci = 1|black) = p(ci = 1|white) in which the probability of t to be a 726

member of a negative class i is independent of the racial group at which it belongs to. 727

H2 is equivalent to P (ci = 1|black) > p(ci = 1|white) or 728

P (ci = 1|black) < p(ci = 1|white) in which the probability of t to be a member of a 729
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negative class i is dependent on the racial group at which it belongs to. 730

To assess our hypotheses, we conduct an experiment in which we sample 10000 731

tweets from each AAE-aligned and White-aligned groups and feed them as a test set to 732

our pre-trained BERT-based classifiers trained on Davidson and Waseem datasets, 733

separately, with and without the re-weighting mechanism to predict the membership 734

probability of each tweet in each class. For each classifier, trained on Waseem and 735

Davidson datasets, we create a vector containing the membership probability pi of each 736

class i in size of the number of samples in each group (10000). Indeed, we obtain one 737

vector per each class i for tweets in two AAE-aligned and White-aligned groups and 738

calculate the portion of tweets assigned to each class i for each group as follows: 739

p̂iblack
= 1

n

∑n
j=1 pij where j denotes the samples from AAE-aligned and 740

p̂iwhite
= 1

n

∑n
j=1 pij where j denotes the samples from White-aligned and n = 10000. 741

To examine the racial bias tendency of each classifier on each class i, we also calculate 742

p̂iblack

̂piwhite

as an indicator. If this portion is greater than 1 then it indicates that our 743

classifier has a higher propensity to assign AAE-aligned tweets to a specific class i rater 744

than White-aligned tweets. 745

To see how significant the difference between p̂iblack
and p̂iwhite

are, we apply an 746

independent samples t-test between two groups which results in t and p values, where t 747

indicates the difference between two groups and the difference within the groups and p 748

indicates the probability that the results from the tweets samples occurred by chance. A 749

low value of p shows that our membership probabilities assigned with the classifiers did 750

not occur by chance (Here, the p values for all the classes are less than 0.001 which 751

indicated as *** in Table 4). 752

All the results are shown in Table4, where we computed the aforementioned 753

statistics with and without including the bias alleviation mechanism in our pre-trained 754

BERT-based models trained on different datasets. Statistics signed with ∗ indicate the 755

values after debiasing the training sets. For fine-tuning the pre-trained BERT model, we 756

have tried all fine-tuning strategies, but report the results from the best performing 757

strategy in bias mitigation task which is BERTBASE fine-tuning strategy. The first row 758

shows the performance of classifier trained on Waseem dataset on two-race groups 759

before and after reweighting. The second row indicates the same results for Davidson 760

dataset. In all cases, the tweets belonging to AAE-aligned group are more frequently 761

predicted as a member of negative classes than White-aligned which indicates existing 762

of systematic bias in two datasets.

Table 4. Racial bias analysis before and after reweighting the training data. To quantify the impact of the
re-weighting mechanism in alleviating the racial bias propagated through trained classifiers, we examine our BERT-based
classifiers trained on Davidson and Waseem datasets with and without re-weighting mechanism on AAE-aligned and
SAE-aligned samples.

Before reweighting After reweighting

Dataset Class p̂iblack
p̂iwhite

t p
p̂iblack

̂piwhite

p̂iblack

∗
p̂iblack

∗
t∗ p∗

p̂iblack

̂piwhite

∗

Waseem-dataset
Racism 0.049 0.005 10.450 *** 10.593 0.028 0.007 6.852 *** 3.726
Sexism 0.162 0.055 31.715 *** 2.923 0.235 0.092 15.949 *** 2.561

Davidson-dataset
Hate 0.058 0.026 84.986 *** 2.230 0.043 0.031 1.815 *** 1.384
Offensive 0.360 0.143 17.913 *** 2.515 0.193 0.106 120.607 *** 1.823

We just consider negative classes and “Neither” class in both datasets is excluded.

763

Surprisingly, there is a significant difference across AAE-aligned and White-aligned 764

groups in Racism class’ s estimated rates. Our classifier on Waseem-dataset classifies 765

tweets in AAE-aligned group as Racism 10.5 times more probably than White-aligned 766

August 5, 2020 21/29



without reweighting, which indicates potential bias carried with our trained model and 767

not dataset itself. However, after applying bias alleviation mechanism by reweighting 768

the samples and decreasing the correlation between high frequently 2-grams and each 769

negative class, we can observe that our model decreases
p̂iblack

̂piwhite

∗
by 6.8 times for Racism 770

class. This kind of racial bias reduction is true for Sexism class as well. 771

For Davidson-dataset, we observe that tweets in AAE-aligned are classified as Hate 772

and Offensive more frequently than White-aligned. The classifier trained on 773

Davidson-dataset before applying the re-weighting mechanism gives Hate label to 774

AAE-aligned tweets with 5.8% and to White-aligned tweets with 2.6%, as opposed to 775

4.3% and 3.1% in re-weighted classifier. Consequently,
p̂iblack

̂piwhite

∗
gets down by 0.85 times 776

in comparison with
p̂iblack

̂piwhite

in Hate class. For Offensive class, the bias mitigation rate is 777

0.70 where the probability of assigning AAE-aligned samples to Offensive class reduces 778

from 36% to 19%. Comparing results for Hate and Offensive classes shows that the 779

classifiers trained on Davidson-dataset classify AAE-aligned tweets more frequently as 780

Offensive rather than Hate; which is the result of the unbalanced dataset we used to 781

train the classifiers. 782

From Table 4 it is inferred that substantial racial bias perseveres even after using our 783

bias alleviation mechanism, however, it is generally reduced for cases in which classifiers 784

are trained with re-weighted samples. It means that still, our re-weighted classifiers 785

favor assigning tweets from AAE-aligned more probably to negative classes rather than 786

White-aligned after bias mitigation. Given our cross-domain approach for evaluating the 787

bias mitigation mechanism, we hypothesize that differences between Davidson and 788

Waseem datasets’ keywords and language and AAE-aligned and White-aligned 789

languages, which are not included in our bias mitigation mechanism, lead classifiers to 790

classify tweets written by African-Americans (AAE-aligned group) as negative classes 791

excessively. 792

We investigate the performance of the pre-trained BERT-based model (with 793

BERTBASE strategy for fine-tuning) after applying the proposed re-weighting 794

mechanism on the in-domain dataset as well; where test data come from Waseem-dataset 795

and Davidson-dataset. Performance evaluation of the classifier before and after 796

reweighting is showed in Table5 in terms of macro precision, recall, and F1-measure. 797

Table 5. Performance evaluation after applying the re-weighting
mechanism. To quantify the impact of the re-weighting mechanism in the
performance of our pre-trained BERT-based model (with BERTBASE strategy for
fine-tuning), we examine the classifier trained on Waseem and Davidson datasets with
and without re-weighting mechanism on the training set in terms of macro precision,
recall, and F1-measure.

Before reweighting After reweighting

Dataset Precision Recall F1-measure Precision Recall F1-measure

Wassem-dataset 81 81 81 76 79 78

Davidson-dataset 91 90 91 85 88 86

According to Table5, reweighting the training data has a negative effect on the 798

performance of our classifier in detecting Racism, Sexism, Hate, and Offensive classes. 799

In Waseem-dataset, F1-measure drops 3.7% after reweighting highly correlated 2-grams 800

to the Racism and Sexism classes whereas this reduction is more for Davidson-dataset. 801

After re-weighting highly correlated 2-grams to the Hate and Offensive classes in 802

Davidson-dataset, F1-measure drops 5.5%. The main intuition behind this phenomenon 803
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is that both training and test sets have the same phrase distribution per class as shown 804

in Figs 4 and 5. Due to the high correlation between specific 2-grams and a class label, 805

reweighting the training samples results in reducing this correlation and increasing 806

misclassification cases for the test set. Results indicate that this kind of correlation 807

between specific words and labels in Davidson-dataset is higher than Waseem-dataset 808

because the performance reduction is more by applying the re-weighting mechanism. 809

Discussion and challenges 810

Although our pre-trained BERT-based model [15] has achieved promising results in 811

terms of F1-measure on Waseem and Davidson test sets (Table 2), the existing biases in 812

data cannot be captured and measured by a test set at which there is the same biased 813

distribution as training and validation sets. Therefore, we use a cross-domain approach 814

to evaluate our de-biased model. Using the cross-domain approach and demonstrating 815

the results reveals that our classifiers trained on these datasets have systematic and 816

substantial biases where tweets written in AAE are particularly predicted as negative 817

classes (racism, sexism, hate or offensive contents) compared with SAE (White-aligned) 818

(Table 4). To get more insight into the differences between dialects used in tweets 819

written in AAE and SAE, we extracted the most frequently occurred unigrams and 820

2-grams in both groups included in S1 Table. We found that there are particular words 821

and phrases, which are more frequently used by AAE rather than SAE, and they are 822

more related to negative classes in training datasets. 823

We inspected the samples in both AAE and SAE groups that are predicted as racism 824

by applying trained classifiers with and without re-weighting mechanism. The classifier 825

trained on Waseem-dataset without reweighting, surprisingly classifies AAE samples as 826

racism with a higher rate than SAE (Almost 10 times). However, for both AAE-aligned 827

and SAE-aligned groups, the number of samples assigned to racism class is very low, 828

which can be owing to two presumptions. The first is the characteristics associated with 829

racism samples in training data in Waseem-dataset where the majority of samples 830

comprise religion and anti-Muslim contents, which are totally different from anti-black 831

language used in AAE and SAE groups. The second one is mainly related to contextual 832

knowledge derived from the pre-trained BERT model. We investigated the AAE 833

samples assigned to racism class by trained classifier, without re-weighting mechanism, 834

and most of them contain some racial slurs such as “n*gga” and “‘b*tch” that are 835

contextually related to racial contents. However, after applying re-weighting mechanism 836

these numbers of samples are reduced and result in a trade-off between AAE and SAE 837

samples assigned to racism class and alleviating racial bias in our trained classifier with 838

re-weighting mechanism. Although we achieve a particular reduction in racial bias 839

included in trained classifier by applying the generalization mechanism, reweighting the 840

training data, we believe that still some biases exist in our trained classifiers after 841

reweighting the samples that are associated with the general knowledge of pre-trained 842

BERT model and it should be considered as future work. 843

Analyzing the samples in AAE group predicted as sexism reveals that our classifier 844

trained on training data without leveraging the re-weighting mechanism, has a high 845

tendency to classify AAE-aligned samples containing common words in AAE language 846

and related to feminism as sexism. However, after reducing the effect of most frequently 847

used n-grams (n = 2) in training data with applying the re-weighting mechanism, this 848

likelihood is reduced. As Park et al. [8] asserted the existence of gender biases in 849

Waseem-dataset, it can be inferred that our re-weighting mechanism needs to address 850

the gender bias in training data as long as most frequently used n-grams to alleviate the 851

bias in trained model more efficiently for sexism class. 852

Turning to the Davidson-dataset, we observed reducing the racial bias for both Hate 853
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and Offensive classes after applying the re-weighting mechanism (Table 4). Given the 854

words associated with AAE language and highly correlated to the Hate and Offensive 855

classes in Davidson-dataset such as “n*gga” and “b*tch” [17], a substantially higher 856

rate of AAE-aligned samples classified as hate and offensive than SAE-aligned can be 857

justified; where the number of tweets containing “n*gga” and “b*tch” in AAE-aligned 858

samples is thirty and five times more than SAE-aligned samples. As it is noted 859

in [14,17], these kinds of words are common in AAE dialects and used in daily 860

conversations, therefore, it more probably will be predicted as hate or offensive when 861

are written in SAE by associated group. 862

In summary, we should consider in future studies paying substantial attention to 863

sexual and gender identities as long as dialect and social identity of the speaker in 864

concert with highly correlated n-grams with the negative classes to make the bias 865

alleviation mechanism more precise and effective. On the other hand, using pre-trained 866

language modeling approaches such as BERT may include some general and external 867

knowledge to the classifier, which may be a source of bias itself and it is worth further 868

investigation. 869

Conclusion 870

This study reveals that the benchmark datasets for hate speech and abusive language 871

identification tasks are containing oddities that cause a high preference for classifiers to 872

classify some samples to the specific classes. These oddities are mainly associated with 873

a high correlation between some specific n-grams from a training set and a specific 874

negative class. Employing a cross-domain evaluation approach, using the classifiers 875

trained on these datasets, demonstrate some systematic biases in these classifiers. 876

Therefore, we propose a bias alleviation mechanism to decrease the impact of oddities in 877

training data using a pre-trained BERT-based classifier, which is fine-tuned with a new 878

reweighted training set. The experiments show the ability of the model in decreasing 879

racial bias. We believe our results have made an important step towards debiasing the 880

training classifiers for hate speech and abusive language detection tasks where the 881

systematic bias is an intrinsic factor in hate speech detection systems. An interesting 882

direction for future research would be to consider sexual and gender identities as long as 883

the dialect and social identity of speakers along with n-grams to make the re-weighting 884

mechanism more general and independent from training data. Furthermore, 885

investigating the effect of samples’ weights in the compatibility function of the BERT 886

model rather than in the classification loss function maybe improve the result. Most 887

work has so far focused on AAE/SAE language, but it remains to be seen how our 888

debiasing approach or any of the other prior approaches would fare in other 889

cross-domain datasets containing different language dialects. 890

Supporting information 891

S1 Fig. Sentence embeddings extracted from 12 layers of the pre-trained 892

BERT model before and after fine-tuning with training and validation sets 893

of Davidson-dataset. 894

S1 Table. Top 20 unigrams and 2-grams highly correlated with AAE and 895

SAE languages and the number of occurrences. 896
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(a) Before fine-tuning

(b) After fine-tuning

Fig 6. Davidson-samples’ embeddings alanysis before and after fine-tuning. To investigate the
impact of information included in different layers of BERT, sentence embeddings are extracted from all the
layers of the pre-trained BERT model before a and after b fine-tuning, using bert-as-service tool.
Embedding vectors of size 768 are visualized to a two-dimensional visualization of the space of all
Davidson-dataset samples using PCA method. For sake of clarity, we just include visualization of the first 4
layers (1-4), which are close to the training output, and the last 4 layers (9-12), which are close to the word
embedding, of the pre-trained BERT model before and after fine-tuning.
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Table 6. Top 20 unigrams and 2-grams highly correlated with AAE and SAE languages. Extracting unigrams
and 2-grams that occur most frequently in tweets written by AAE and SAE groups, shows that some particular phrases such
as “n*gga”, “b*tch”, “sh*t”, “f*ck w*t”, “**s n*gga”, etc., are common in AAE dialects and are highly correlated with
negative classes (Racism, Sexism, Hate and Offensive) in hate and offensive datasets.

unigrams 2-grams

AAE-aligned

(lol, 726); (sh*t, 653); (u, 574); (get, 528);
(like, 504); (got, 483); (n*gga, 450); (**s, 428);
(im, 366); (f*ck, 314); (go, 312); (know, 291);
(b*tch, 290); (n*ggas, 285); (bout, 272); (need, 264);
(good, 254); (back, 232); (love, 223);(w*t, 218)

(good morning, 50); (feel like, 38); (sh*t sh*t, 32);
(go sleep, 31); (f*ck wit, 30); (talking bout, 27);
(talkin bout, 26); (look like, 25); (wanna go, 23);
(last night, 22); (yo **s, 22); (u got, 21);
(gotta get, 19); (worried bout, 18); (go back, 17);
(**s n*gga, 17); (real n*gga, 16); (give f*ck, 15);
(lil n*gga, 14); (aint sh*t, 14); (sh*t like, 13)

SAE-aligned

(like, 574); (get, 475); (go, 407); (love, 372);
(good, 361); (one, 339); (day, 311); (time, 282);
(know, 271); (night, 260); (lol, 248); (today, 246);
(really, 236); (back, 231); (right, 231); (people, 228);
(see, 226); (got, 212); (life, 184); (come, 181)

(last night, 59); (feel like, 55); (let us, 34);
(wish could, 26); (go home, 25); (go back, 24);
(best friend, 24); (wanna go, 24); (need get, 24);
(wait see, 22); (thank god, 20); (looks like, 20);
(good day, 20); (first time, 20); (good night, 19);
(fall asleep, 18); (good luck, 17); (come back, 15);
(great day, 15);(high school, 15);(holy sh*t, 13)
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