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Abstract—Network services have been significantly increased
in today’s enterprise networks. The time and cost of deploying
these services are recently considered as critical challenges for
enterprise networks. Network Functions Virtualization (NFV) is
a promising solution to offer cost-efficient, scalable and more
rapid deployment of such services. It allows the implementation
of fine-grained services as a chain of Virtual Network Functions
(VNFs). These chains need to be placed in the network. The
chain placement is critical since it effects on both quality of
service (QoS) and the provider cost. This paper formulates the
problem of VNF placement and chaining as an Integer Linear
Program (ILP) and proposes a Cost-efficient Centrality-based
VNF Placement and chaining algorithm (CCVP). The objective
is to find the optimal number of VNFs along with their locations
in such a manner that the provider cost is minimized. Apart from
cost minimization, the support for large-scale environments with
a large number of servers and end-users is an important feature
of the proposed algorithm. Finally, the algorithm behavior is
analyzed through simulations.

I. INTRODUCTION

Computer network services are nowadays considered as a
key component in keeping the network running at all times.

To provide various network services, telecommunication
service providers network includes a number of middleboxes.
They can support various types of functions (e.g., Firewalls,
Network Address Translators (NATs), load balancers and
Intrusion Detection Systems (IDSs)) and for this reason mid-
dleboxes are important for network operators.

By increasing network requirements in both scale and
variety, service providers have to add new middleboxes and
upgrade already existing middleboxes continuously. A recent
research shows that the number of different middleboxes in
enterprise network is comparable to the number of physical
routers [1]. However, adding and updating middleboxes comes
out with high Capital Expenditures (CAPEX) and Operational
Expenditures (OPEX).

To address these issues, Network Functions Virtualization
(NFV) [2] [3] has been proposed to transform middleboxes
from specialized hardware appliances to software running on

inexpensive, commodity hardware (e.g., x86 servers with 10Gb
NICs) [4].

NFV-based (i.e., software-based) middleboxe is a good
solution to reduce CAPEX, as network operators do not
longer need to buy specialized hardware. In addition, software-
based middleboxes can be deployed and managed dynamically
without necessary network administrators to reduce OPEX [3].
In addition to improving OPEX and CAPEX costs, NFV gives
an opportunity to network operators to manage their network
functions easily. The software-based middleboxe is referred to
Virtual Network Functions (VNFs) in NFV terminology that
can run on the top of a virtualized infrastructure.

In order to use VNFs, they can be placed on computational
nodes (e.g., servers, switches, data centers) that meets their
resource demands. The computational nodes must provide
NFV Infrastructure (NFVI) functions to support the execution
environment. The placed VNFs can be also chained together
to provide a required service.

Placement and chaining of the VNFs can affect both quality
of service (QoS) and cost. For this reason, placement and
chaining of the VNFs has recently attracted both network
providers and researchers.

In this paper, the cost includes the license, computing
and communication cost. Where the license cost includes
instances and sites license and it is computed based on the
number of utilized VNF instances and sites (i.e., the servers).
The computing cost includes the cost of running VNFs on
servers and communication cost is defined as the sum of the
bandwidth used by the chains in the network. Although, some
studies (e.g., [1]) consider the cost of transferring, booting and
attaching a VM image to devices before deploying a VNF, we
do not need to consider this cost in our work as we assume
that the network provider is owner of NFVI.

The VNF placement and chaining problem in this paper is
defined as follow: consider a chain of VNFs which should
be placed on a given NFVI for the requested traffic (flows)
from different sources and destinations. In order to minimize
the overall cost four metrics should be considered: (i) how to
find the optimal number of VNFs instances (ii) how to find978-1-5090-6008-5/17/$31.00 c© 2017 IEEE



appropriate locations for the VNF instances (iii) how to chain
the placed VNFs instances in appropriate manner and (IV)
how to assign the requested traffic to the chains of VNFs.
Therefore, this paper defines a four-dimensional problem and
the research question is how to consider these four, sometimes
conflicting, metrics together.

The rest of the paper is organized as follows: Section II
presents a business model, introduces the key requirements and
reviews related works. Section III defines and fomulates the
problem. Section IV describes the proposed method (CCVP).
Section V portrays the simulation results and, finally, Section
VI concludes the paper.

II. BACKGROUND

A. Business Model

We assume a business model with the following entities:
(i) telecommunication service provider (TSP), (ii) network
operator, (iii) VNF provider and, (v) network consumer(s).
TSP is the entity to provide the network services. Network
operator owns servers and operates NFVI on the servers. VNF
provider is the entity that provides VNFs. Network consumer
(i.e., end user or end point) is the entity that consumes the
network service. Similar to any business model, the same actor
may play several roles at the same time.

Consider a scenario where a network operator needs to
deploy a new service in its network. To this end, it asks TSP to
provide that service. After receiving the new service request,
TSP searches and uses the corresponding VNFs in its local
VNF repository to provide the requested service.

However, if the required VNFs are not available, the TSP
needs to ask new VNFs from the VNF provider. Finally,
the network consumer uses this new service in a way that
its received/sent traffic (flows) should pass through the new
established service.

B. Requirements

In order to design a VNF placement and chaining algorithm,
following issues should be considered.

First, the QoS (i.e., service delay) is important. For provi-
sioning a service, an inefficient VNF placement and chaining
can lead to high service latency.

Second, for provisioning a service, its VNF placement and
chaining method should provide an acceptable run time for
both small and large scale networks.

Third, for a service, both deployment cost of its VNFs
and its delivering cost to the network consumers must be
minimized.

As a result, this paper considers above mentioned issues to
design the VNF placement and chaining algorithm.

C. Related Work

Most VNF placement algorithms deal with cost as an
optimization objective. A VNF cost is generally made up of
a set of individual costs (e.g., instance license, site license,
deployment and communication cost). Some of the existing
works focus on specific individual costs while others focus

on a set of individual costs. They are successively discussed
below. The shortcomings are pinpointed last.

1) Algorithms with single costs as objective: Luizelli et al.
[5] propose an ILP model to minimize the number of instances
for minimizing the license cost. They propose a binary search-
based algorithm to improve the ILP run-time. Fang et al. [6]
also attempt to minimize the number of deployed instances
by proposing an ILP and the longest common sub-sequence
(LCS)-based heuristic in inter-datacenter elastic optical net-
works (inter-DC EONs). They also consider the spectrum
utilization cost for fiber links, which is the specialized cost
for optical network.

Moens et al. [7] present an ILP to minimize the number of
used servers (or compute resources) for the resource allocation
of VNFs in NFVI and also for hybrid infrastructures where
some NFs are virtualized and others use specific hardware
appliances.

Some other studies have mainly focused on the commu-
nication cost. Qu et al. [8] propose an ILP and a greedy
shortest-path-based heuristic to constructing chains through
highly reliable VNFs in the NFV-enabled enterprise datacenter
networks with the goal of minimizing the communication
bandwidth usage across the network. Xia et al. [9] formulate
the problem in binary integer programming (BIP) and propose
a heuristic algorithm with the goal of minimizing the overall
optical-electrical-optical (O/E/O) conversions (inter-DC traf-
fic) in packet/optical DCs.

2) Algorithms for multiple costs: Unlike the above men-
tioned works with the simple objective, the following studies
consider more complex cost models.

Ghaznavi et al. [10] present a solution called Simple Lazy
Facility Location (SLFL) to optimize the placement of the
same-type VNF instances in response to the on-demand work-
load. In this study, the elasticity overhead and the trade-
off between bandwidth and host resource consumption are
considered together.

In another study, Ghaznavi et al. [11] propose a Mixed
Integer Programming (MIP) model and a heuristic called
Kariz for multiple VNF instances placement to provide the
functionality of a middlebox. Mechtri et al. [12] provide
decomposition-based approach for the placement of virtual and
physical network functions chains to maximize the provider’s
revenue based on the number of accepted CPU and bandwidth
resources.

Riggio et al. [13] propose a VNF placement scheme to min-
imize the links and nodes utilization to increase the accepted
service chain requests in enterprise WLANs. The authors then
have extended their work in [14] where a VNF Placement
heuristic called WiNE (Wireless Network Embedding) is pro-
posed.

Sun et al. [15] consider cost as the one IT resources use for
deploying the VNFs and Bandwidths cost. They propose an
ILP as well as two versions of a heuristic to solve the VNF
placement in online and an offline manner. The goal in the
online heuristic is to maximize the revenue and the goal in
the offline version is to minimize the cost.



Finally, a few studies attempt to consider more comprehen-
sive cost models. Lin et al. [16] present a MILP and Game
Theory based VNF placement with the goal of minimizing
the cost to deploy NF instances as well as the computing and
network cost in optical networks.

Zeng et al. [17] consider the cost of IT resource and
spectrum utilization of fiber links as their objective in addition
to the cost of VNF deployment (instantiating) in the VNF
placement in optical datacenters. They propose a MILP and
some heuristic to solve the problem.

Bouet et al. [18] propose an ILP and a centrality-based
greedy algorithm to minimize the cost in virtual DPI (vDPI)
placement where the cost includes the network cost, the license
cost per site and the one per vCPU for VNF instances. Bari
et al. [1] propose an ILP and a heuristic to solve the optimal
VNF placement by running the Viterbi algorithm. The authors
have also considered a penalty cost to be paid to the customer
for th service level objective (SLO) violations.

3) Why is the previous work not adequate for the problem
at hand?: The ILPs proposed by [5] and [7] for instance
are not suitable for large scale environments. References [9]-
[12] do not consider QoS (i.e., service delay threshold) and
sharing VNFs among the chains. References [5]- [18] do not
take a complete cost model into account. In addition, the
work done by Bouet at el. [18] and Ghaznavi et al. [10] do
not support VNF chain placement. They place instances of a
VNF type individually (i.e., without considering the relation
between VNFs of a chain). Unlike previous work, our work
is appropriate for a large scale environment while trying to
consider all the above-mentioned points.

III. PROBLEM DEFINITION

The VNF placement and chaining problem in this paper is
defined as follows.

Consider a chain of VNFs which should be placed on a
given NFVI for the requested traffic (flows) from different
sources and destinations. In order to minimize the overall
cost four metrics should be considered, (i) how to find the
optimal number of VNFs instances (ii) how to find appropriate
locations for the VNF instances (iii) how to chain the placed
VNFs instances in appropriate manner and (IV) how to assign
the requested traffic to the chains of VNFs.

Therefore, this paper defines a four-dimensional problem
and the research question is how to consider these four,
sometimes conflicting, metrics together.

A. Problem Formulation

The physical topology of the network is represented by a
directed graph G=(V, E).

Let us consider N as a set of servers and U as a set of
flows f with source Sf and destination Df where N , Sf and
Df ⊆ V . V is the set of nodes composed of the servers and
end-points of flows connected by directional edges E.

Let us also consider K as a set of VNFs, such as firewall,
NAT and DPI. Each VNF of type k ∈ K has a predetermined
resource requirement and processing capacity, Rk and Pk,

respectively. The network provider also delineates a set of
instances for each VNF type k ∈ K, Ik. Such specification
may be the result of the license model adopted while acquiring
the VNFs from the VNF provider or as a result of management
restrictions.

A service request hf ∈ H , requested by flow f ∈ U , is
represented by a directed graph hf = G(V f

NF, E
f
NF), where

V f
NF is the set of VNFs that will be installed on nodes in N

and Ef
NF is the set of virtual edges that dictate the head and tail

of the VNF chain. Table I delineates the inputs and variables
used in our formulation. Our objective is to minimize the cost
of VNF placement and chaining for network services in the
network, including the cost of deploying VNF instances, the
cost of using servers and the cost of communication as shown
in (1).

Min.
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The cost of deploying VNFs has a software license cost per
instance denoted by αk. The cost of using server n ∈ N is
the sum of a fixed license cost γ and the operational costs for
all VNF type instances. The license cost is the same for every
server. The operational cost for a VNF instance of type k is
Rk · δn. The cost of communication in VNF placement for
network services is the sum of the bandwidth costs amongst
each pair of servers u, v ∈ N hosting VNFs of the VNF chain
in each flow service request hf ∈ H , f ∈ U , βf

(u,v). Fur-
thermore, it includes the bandwidth costs between the servers
u ∈ N hosting the tail and head VNFs of the VNF chain in
each flow service request hf ∈ H , and flow end-points f ∈ U ,
βf
(Sf ,u)

, βf
(u,Df )

. Where, βf
(u,v) = Lf ·σ(u,v) ·B(u,v) is the cost

of using bandwidth between u, v ∈ V , with hop count σ(u,v),
for load Lf for flow f ∈ U .

VNF Placement:∑
n∈N

∑
j∈Ik

λfk,n,j = 1, ∀f ∈ U, k ∈ K (2)

∑
f∈U

Lf · λfk,n,j � Pk · xk,n,j ∀k ∈ K,n ∈ N, j ∈ Ik (3)



TABLE I
INPUT PARAMETERS AND VARIABLES

Network Input
N Set of servers in the network, N ⊆ V
E The set of edges (i.e., logical communication links) in the network
BW(u,v) The bandwidth capacity of edge (u, v) ∈ E
D(u,v) Delay of unit load (1 Gbps) for edge (u, v) ∈ E
σ(u, v) Hop count of the edge (u, v) ∈ E
B(u,v) Bandwidth cost of unit load per hop between u and v where u, v ∈ V
βf
(u,v) Bandwidth cost incurred by sending load of flow f along edge (u, v) ∈ E
Cn Capacity of server n ∈ N in terms of resource units i.e., number of vCPU
γ Site license cost
δn Operational cost for unit resource (vCPU) for server n

Service Inputs
U Set of demand flows f
Lf Load of flow f ∈ U
Sf Source of flow f ∈ U , Sf ⊆ V
Df Destination of flow f ∈ U , Df ⊆ V
H Set of services hf requested by flow f ∈ U
K Set of VNF types that constitute all services hf ∈ H
V f

NF Vf ⊆ K is a set of VNFs that constitute service hf ∈ H, f ∈ U
Ef

NF Set of VNF edges of the VNF chain for service hf ∈ H , f ∈ U ,
Ik Set of VNF instances of type k ∈ K
αk Software license cost of a VNF instance of type k ∈ K
Tk,n Processing delay of VNF instance of type k ∈ K on server n ∈ N for unit load (1 Gbps)
Rk Resource requirement (number of vCPU) for VNF type k ∈ K
Pk Processing capacity (Gbps) of VNF type k ∈ K
Dhf

QoS (i.e., Service Delay),threshold of service hf ∈ H
Variables

xk,n,j 1, if instance j of VNF type k is assigned to server n ∈ N and 0, otherwise
λfk,n,j 1, if VNF type k belonging to VNF chain of flow f is mapped to its instance j on server n and 0, otherwise
yf,p,qu,v 1, if edge (u, v) hosts VNF edge (p, q) of VNF chain of flow f and 0, otherwise
zn 1, if server n is used and 0, otherwise

∑
k∈K

∑
j∈Ik

Rk · xk,n,j � Cn · zn ∀n ∈ N (4)

Variables xk,n,j ∀k ∈ K,n ∈ N, j ∈ Ik are used to identify
unique instance j ∈ Ik of VNF type k ∈ K installed on
server n ∈ N . Variables zn ∀n ∈ N are used to record servers
hosting VNFs.

VNFs chain mapping:∑
j∈Ip

λfk,u,j ·
∑
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We ensure in (2) that, for each flow service request hf ∈ H ,
f ∈ U , all its requested VNF type must be assigned to only
one of the deployed instance of that VNF type. It is assumed
that an instance of a VNF type can cater to multiple flows.

Constraint (3) ensures that the capacity of an instance of a
VNF of type k ∈ K is not exceeded by the total load requested
by all the flows assigned to it. Constraint (4) ensures that the
total resource required by instances of all VNF types on a
server does not exceed the capacity of the host server.

In our model, we map the nodes (i.e., the VNFs) and their
edges (i.e., the chain), in each flow service request to the
physical network in G. Therefore, the edge (p, q) between
two consecutive VNFs in each flow service request must be
assigned to a physical edge (u, v) between two servers u
and v, in (5). It should be noted that (5) is a non-linear
constraint and can be trivially linearized. As is ensured in (6),
the VNFs and their respective ordered edges are mapped to
only one pair of physical servers and their edge. With respect
to the underlying physical network, we guarantee that the total
load on an edge in the physical network does not exceed the
bandwidth capacity, in (7).

Constraint (8) is the QoS constraint that guarantees that the
flow service request is delivered within the predefined delay
threshold. The delay in delivering the service consists of two
components, the network communication delay and the VNF
processing delay on the servers. The network communication
delay is the sum of delay between each pair of servers hosting
the VNFs of the VNF chain in the flow service requests. It
also entails the delay for communicating between the server
which hosts the tail and head VNFs of the VNF chain and the
end-points of the flows. The processing delay of VNFs hosted
on the servers is proportional to the flow load assigned to the
VNFs.
The VNF placement and chaining for network services is an
NP-Hard problem, calling for an efficient heuristic.

IV. COST-EFFICIENT CENTRALITY-BASED VNF
PLACEMENT AND CHAINING ALGORITHM (CCVP)

This section presents our Cost-efficient Centrality-based
VNF Placement and chaining algorithm (CCVP). First, a
general mechanism of CCVP is described and, then, we
present logical architecture and modules of CCVP.

A. CCVP General Mechanism

The main objective of CCVP is to find the optimal places
for VNFs of a requested chain in order to get the minimum
cost. The proposed algorithm can be used from small to large
scale networks.

To present the CCVP mechanism, let consider a scenario
where a chain h including various VNF types should be
allocated on the given network and a set F of flows (F ⊆ U )
passing through the chain h. To this end, CCVP mechanism
includes two main steps. It first creates a graph G of the
network topology (details described in the section IV-B1). In
the second step, based on the graph G characteristics and other
received information (e.g., available instances and requested

flows), CCPV selects appropriate servers, deploy instances on
them and indicates each flow f passes through which selected
server for all VNF types of the chain h.

It is worth to highlight that CCVP is based on the Betwee-
ness centrality algorithm [19]. The high centrality indicates
that a vertex of a graph G can reach other vertices on relatively
short paths, or that vertex lies on a considerable fraction of
shortest paths connecting pairs of other vertices.

In CCVP, the server with the highest centrality is the
potential node to host the VNF instances. As a result, CCVP
try to assign the flows to the VNFs without deviating from
their shortest path and, therefore, without using additional
network resources which directly impact the overall cost.

B. CCVP Logical Architecture

CCVP consists of three main modules:
• Graph Creator (GC)
• Chain Placement (CP)
• VNF Placement (VNFP)

where the VNFP module itself includes following sub-
modules:
• Server Selector (SS)
• Centrality Computer (CC)
• Traffic Mapper (TM)
• Fitness value Computer (FVC)

In this section, the modules are described one by one.

Algorithm 1: CP Algorithm
Input: G(V,E), I, h, F (Sf , Df , Lf )
// F ⊆ U indicates the flows requesting
the chain h, h ⊆ H

Output: Stotsel , Idep, A[ ]
/* Initialization */

1 Sksel = ∅ // set of selected servers of
VNF type k ⊆ hf

2 Stotsel = ∅ // set of all selected servers
3 AS[ ][ ] = ∅ // for each flow indicates

the server hosting an instance of VNF
K ∈ K where the flow passes through it

4 Ikdep = ∅ // set of deployed instance of
VNF type k ⊆ hf

5 Idep = ∅ // set of all deployed
instances

6 for all k ∈ h do
7 (A[k][ ] ,Ikdep,Sksel)=VNFP(G,F (Sf , Df , Lf ),k)
8 for all f ∈ F do
9 Sf=AS[k][f ]

// AS[k][f] indicates the vertex
which host an instance of VNF K
and flow f passes through it

10 Stotsel = Stotsel ∪ Sksel
11 Idep = Idep ∪ Ikdep
12 return ( Stotsel , Idep, A[ ][ ])



Algorithm 2: VNFP Algorithm
Input: G(V,E), I‖,F (Sf , Df , Lf ),k
Output: Ak

sel, Ikdep,Sksel
/* Initialization */

1 Sksel ← ∅ // set of selected servers for
VNF k

2 Ikdep ← ∅ // set of deployed instances of
VNF type k

3 AS[ ][ ] = ∅ // for each flow indicates
the server hosting an instance of VNF
K ∈ K where the flow passes through it

4 fitnessmin ←∞ , j=0
5 Map F on G and Compute the centrality of all v ∈ V
6 vm ← a node with maximum centrality and enough

capacity
7 while centrality vm > 0 and F 6= ∅ and Ikdep 6= Ik do
8 Ikj ← jth instance from Ik
9 Sk

j ← vm
10 Sksel = Sksel ∪ Sk

j

11 fitness(G,F,Sksel) ← fitness value for (G,F,Sksel);
12 if fitnessmin 6=∞ then
13 if F 6= ∅ or fitness(G,F,Sksel) < fitnessmin

then
14 fitnessmin = fitness(G,F,Sksel)
15 else
16 break;

17 Fr = the flows whose shortest path is passing
through vm

18 i=0;
19 while capacity(Ikj ) > 0 and Fr 6= ∅ do
20 Remove a flow f from Fr

21 Remove required resources of f from G
22 capacity(Ikj )= capacity(Ikj ) - Lf ;
23 AS[k][f ]← vm

// AS[k][f] indicates the vertex
which host an instance of VNF K
and flow f passes through it

24 Ak = Ak ∪ A[f ][k]
25 Ikdep = Ikdep ∪ Ikj
26 Map updated F on updated G
27 Compute the centrality of all v ∈ V
28 vm=a node with maximum centrality and enough

capacity
29 j++

30 return ( Sksel, Ikdep, A[k][])

1) Graph Creator (GC) module : In a real environment,
there is a collection of servers and network elements (i.e.,
routers) which are directly or indirectly connected together.
The GC module creates a high abstracted graph G based on the
real environment where a server and its one-hope neighboring
routers are considered as a vertex. An edge between two

vertices x and y is considered as the shortest path between
them.

2) Chain Placement (CP) module: CP module (see
Algorithm 1) receives a network graph G, a chain (h), a set of
available instances (I), a set of requested flows (F , F ⊆ U ) as
inputs. It then (getting help from VNFP module) returns the
selected servers (i.e, Stot

sel ), instances on them (i.e, Idep ) and,
finally, indicates each flow f passes through which selected
server (i.e., AS) for all VNF types of the chain h.

Looking at line 6 of Algorithm 1, CCVP starts from the
first VNF type (e.g., type k) to select appropriate servers for
allocating its VNF instances. As line 7 of Algorithm 1 shows,
for a VNF type k, it returns the selected servers (i.e, Sk

sel ),
instances on them (i.e, Ikdep ) and, finally, indicates each flow
f passes through which selected server (i.e., AS).

CP then modifies each source of flows (using a loop For
in line 8) by replacing a server which hosts already allocated
VNF instance with previous source of the flow. The reason of
flow source modification is described in the section IV-B2.

Flow Source Modification technique (FSM)– Consider a
simple scenario where there is a chain with two VNF types
(i.e., k and k’) and also four shortest paths have been found
for flows 1-4 (Fig. 1). The goal is to allocate a VNF instance
of types k on one of the available servers A-E. After that,
the second instance (type k’) should be allocated. Looking
at Fig. 1(a), the first instance (VNF type k) is allocated on
server B. This is because server B has the highest centrality
value (i.e., the shortest paths of all flows have been passed
from B and traffic passing from it is the highest among other
servers). For selecting the second server (assume server B is
full now), a common way is to again consider an available
server with highest centrality value. As Fig. 1(b) shows, server
A is selected to allocate instance of type K’. However, in this
case, all flows have to return from server B to A to pass from
the instance of VNF k’.

In order to avoid above mentioned situation and offer a more
appropriate communication cost between already allocated
instances of type k and upcoming (next allocated) instances
of VNF type k’, we propose a Flow Source Modification
technique (FSM).

For allocating instances of the upcoming VNF type k’, FSM
first shifts sources of flows from their current locations to
the related servers which host allocated instances of type k
(from sources src1-scr4 to server B in Fig. 1(c)). Modifying
(updating) the flows sources can prevent increasing paths
length (prevent returning path in direction of the sources) and
also can improve communication cost (by selecting servers
which are located between already allocated instances and
destinations). In other words, FSM can help CCVP to assign
the flows to the VNFs without deviating from their shortest
path and, therefore, without using additional network resources
which directly impacts the overall cost.

3) VNF Placement (VNFP) module–: This module (see
Algorithm 2) is called by CP module in order to select
appropriate servers (i.e, Stot

sel ), instances on them (i.e, Idep )
and also to indicate each flow f passes through which selected
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Fig. 1. Flow Source Modification technique(FSM)

server (i.e., AS) for a VNF type k of the chain h. In brief,
VNFP follows 5 steps: (1) to select a vertex for a VNF instance
type k, it calls SS module and sends a list of unassigned flows
to it. (2) After receiving a vertex from SS module, it calls FVC
to compute the fitness value for estimating the overall cost of
the new placement (after adding the new instance). (3) if the
previous placement could assigned all requested flows, VNFP
compares fitness value of the new placement to the previous
placement (in line 13), (4) if fitness value of the new placement
is lower than previous placement, as long as the VNF instance
has capacity, it then assign the flows which passing through
this selected vertex (lines 19-25), (5) It updates the network
resources based on requirement of the placed instance and adds
the placed instance to the list of deployed instances. Finally,
the centrality of the vertices are updated based on the new set
of flows.

The procedure of placing new instances of VNF type k
(Steps 1-5) is continued until the fitness value becomes larger
than the former ones (and the former one could assigned all
requested flows successfully). In this case, NFVP returns and
chooses the previous placement. That means we are deploying
the new instance of VNF type k as long as the fitness value
of the current placement becomes less than previous one and
that condition may not lead to overloaded of the VNFs.

VNFP module includes following sub-modules:
Traffic Mapper (TM) module– It receives a graph G and

a set of flows. It first finds the shortest path for each flow and,
then, maps the computed shortest paths to the graph G.

Centrality Computer module (CC) module– This module
receives a graph G and a set of flows. It calculates and returns
a centrality value for each vertex of the graph G. The centrality
value for a vertex is computed based on the total load of
flows which their shortest paths passing through that vertex.
To this end, CC module first calls TM module in order to find
which flows are passing through what vertices. CC module
then computes total load passing from each vertex.

Server Selector (SS) module– This module selects an
appropriate vertex (server) for allocating a VNF instance of a

Fig. 2. Internet 2 Topology

requested chain. To select a vertex for a VNF instance type k,
it calls CC module in order to get centrality value of vertices. It
then sorts centrality values of the vertices and selects a vertex
with the highest centrality value and enough capacity to place
the instance. In the case of existing several vertices with the
highest centrality, SS module selects the vertex which causes
the lowest shortest path from the sources of remained flows to
that vertex (to select the vertex for the last VNF instances,
SS compares the lowest shortest path from the sources of
remained flows to the flows destinations passing from that
vertex). Even if the shortest paths deduced by the vertices
are also the same, this module selects the vertex with more
available resources.

Fitness value Computer (FVC) module– Briefly, there are
two parts to calculate the fitness value: first part is related to
the license cost of VNF, site license cost and server running
cost (operational cost) and second part is related to the cost of
additional network resources cost, named network footprint,
which is calculated based on the shortest path, bandwidth unit
cost and load of the flows.

If a flow has been already assigned to a vertex, the shortest
path is considered from the source of that flow to the vertex.
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If a flow has not been assigned yet, FVC temporary selects a
vertex from already selected vertices with minimum shortest
path from the source of that flow to that vertex (the vertex
should host at least a VNF with enough free capacity).

It should be noted that for the last VNF, the shortest path
is calculated from the source to the destination of the flows
passing from the vertex. If still some flows remain unassigned,
new VNF instances should be deployed (their shortest path
considered as infinite).

V. PERFORMANCE EVALUATION

The goal of this section is to compare the performance of
CCVP with Proposed ILP VNF placement algorithm using dif-
ferent network topologies and multiple service chain requests.
The ILP is considered as optimal cost to show how efficient
CCVP is in terms of overall cost. It should be noted that,
since processing delay and link bandwidths are not considered
in designing the current version of proposed algorithm, the
proposed algorithm is compared with the modified version of
ILP. In particular, the constraints 7 and 8 are relaxed.

CCVP have been implemented in MATLAB and AMPL-
Gurobi 6.5.1 is used to implement ILP. Two real-world net-
work topologies used in order to evaluate the algorithms.
The simulation setups and the metrics, which are used for
evaluating, are described in next section.

A. Simulation Setup

Network Topology: Both algorithms run on two different
network topologies: (i) Internet2 research network [20] which
is composed of 12 nodes and 15 links (see Fig. 2), (ii) A uni-
versity data center research network [21] which is composed
of 23 nodes and 42 links (see Fig. 3).

Traffic data set: the number of flows changes from 4
to 20 flows. The sources and destinations were generated
randomly by using MATLAB. It is worth highlighting that,
even though the flows configuration are set randomly, once
set, it remains fixed across the runs of all tested algorithms
ensure comparability of the results. We run simulations for five
different random set of sources and destinations and report the

TABLE II
SIMULATION PARAMETERS

Simulation Parameters
Bandwidth cost (Dollar/Mbps) 10
License cost per VNF instance(Dollar) 1000
Operational cost (Dollar/vCPU) 5
Required CPU cores per VNFs 4
Flow size per source and destination pair(Gbps) 1
VNF capacity (Gbps) 5
Number of flows 4,8,12

16,20

average of the five simulations in the figures. A chain with 2
VNFs have been applied in the simulations. The capacity of
the physical servers, physical links, VNF instances and server
running costs, which we have used in this section, have been
chosen the ones which have commonly applied in the most
research papers [1] [18]. Table II shows the server and VNF
data assumption which is used in evaluation. Note that, CCVP
is applicable for various kind of cost assumptions.

B. Cost Evaluation

Since one of the major benefits of NFV is the significant
reduction of OPEX, we verify this claim by showing the
quantifiable outcomes.

figures 4 (a) and (b) depict the results of the overall cost
of the data center and Internet 2 network topologies for the
multiple flow requests. In general, by increasing the number
of flow requests, the overall cost of service provider also
increased gradually since more number of VFNs have to be
deployed in all cases. We can also see that the overall cost, as
the objective of CCVP, is always close to ILP.

To better evaluation of the overall cost, let looking at figures
4 (c)-(f). The behavior of the overall cost graphs are based on
operational and communication cost graphs.

As figures 4 (c)-(f) show, when the number of flow requests
is increased, the communication, operational and overall cost
of service provider also increased since more number of VFNs
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Fig. 4. Simulation results: (a) Internet2 Overall Cost, (b) DC Overall
Cost, (c) Internet2 Operational Cost, (d) DC Operational Cost, (e) Internet2
Communication Cost, and (f) DC Communication Cost.

have to be deployed and communicate in all cases. However,
based on the value of the flows and unit of operational and
communication cost, the effect of communication is more that
than the effect of operational cost in the overall cost.

VI. CONCLUSION

This paper formulated the problem of VNF placement and
chaining as an Integer Linear Program (ILP) and proposed a
Cost-efficient Centrality-based VNF Placement and chaining
algorithm (CCVP) algorithm for network service provisioning.
The objective is finding the optimal number of VNFs along
with their locations in such a manner that the overall cost is
minimized. Through simulations, the algorithms behavior for
two real network topologies was analyzed and compared with
ILP. The simulation results showed that overall cost of the
proposed algorithm is close to ILP and hence could be used
successfully in various topologies.
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