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a b s t r a c t 

Predicting disease dynamics during an epidemic is an important aspect of e-Health ap- 

plications. In such prediction, Realistic Contact Networks (RCNs) have been widely used 

to characterize disease dynamics. The structure of such networks is dynamically changed 

during an epidemic. Capturing such kind of dynamic structure is the basis of prediction. 

With the popularity of mobile devices, it is possible to capture the dynamic change of 

the network structure. On this basis, in this study, we evaluate the impact of the network 

structure on disease dynamics, by analyzing massive spatiotemporal data collected by mo- 

bile devices. These devices are carried by the volunteers of Ebola outbreak areas. Based on 

the results of this evaluation, a model is designed to recognize the dynamic structure of 

RCNs. On the basis of this model, we propose a prediction algorithm for disease dynam- 

ics. By extensive experiments, we show that our algorithm improves the accuracy of the 

disease prediction. 

© 2016 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

1. Introduction 

As an important aspect of e-Health [19–21] , quantifying and even predicting disease dynamics during an epi-

demic [17,35,36,38] is very important to effectively allocate resources and to quickly make a response in a public health

event. For the public health, underestimating the impact of a disease may lead to an inadequate response, while overesti-

mating it, can lead to the misallocation on the limited resources. 

The reproductive number R 1 can be used to quantify the disease dynamics during an epidemic, and a wide range of

methods have been proposed to estimate or predict R by mining surveillance data [4,16,24,31,34] . However, these existing

methods, almost all of them, are based on the networks which are assumed to have special network structure, for example,

the networks with exponential degree distributions. During an epidemic, the network structure of the relevant Realistic

Contact Network (RCN) is dynamically changed along with the spread of a disease. The definition of the RCN is described in
Definition 1 . 
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Fig. 1. A mobile device with the contact tracing application installed. This application is used to track the Ebola outbreak of West Africa [1] . It can track 

everyone who directly contacts with a sick Ebola patient. Such devices are carried by the volunteers of Ebola outbreak areas. The data collected by this 

application is shared with the WHO (World Health Organization), who is using information from hundreds of aid organizations to make big strategic 

decisions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Definition 1. In the real physical world, a Realistic Contact Network consists of a group of people who can get in touch with

each other. In this network, nodes represent people, and edges represent direct contact between two nodes. If there is an

edge between two nodes, it means that there is physical contact between two individuals corresponding to the two nodes. 

During an epidemic, capturing the dynamic change of the relevant RCN is helpful to improve the prediction accuracy of

disease dynamics. With the popularity of mobile devices in public health [15] , it is possible to acquire the dynamic change

of network structure. An example is illustrated in Fig. 1 . 

In this study, we design a recognition model to dynamically acquire the structure knowledge of the relevant RCN during

an epidemic. On the basis of this model, we propose a prediction algorithm to predict the parameter R . 

The scientific contributions of this article are shown as follows: 

• We evaluate the impact of network structure on disease dynamics, by analyzing the massive data collected by the mobile

devices carried by volunteers. 

• We design a recognition model to acquire the structure knowledge of an RCN. Three structure properties are used to

design the model. The model design is based on the observations from the above evaluation. 

• We propose a prediction algorithm. This algorithm uses the acquired structure knowledge by the recognition model. 

There is a strong correlation among these three contributions: the model design is based on the evaluation, and the

prediction algorithm uses the recognized structure knowledge by the recognition model as an important aspect to improve

the prediction accuracy. These three contributions are linked together, and achieved one by one: evaluation → model design

→ prediction algorithm. Such a network-structure-based prediction algorithm improves the prediction accuracy, even when

the network structure is dynamically changed. 

The remainder of this article is organized as follows. Section 2 provides related work to elicit the research issue of this

study. Section 3 introduces the RCN that is used to carry out our study. On the basis of the RCN, we evaluate the impact of

the network structure on disease dynamics. Considering the results of this evaluation, we design a recognition model and

show it in Section 4 . Based on the recognition model, we propose a prediction algorithm in Section 5 . Section 6 compares

by extensive experiments our algorithm with the prediction algorithm not using a recognition model. Moreover, this section

discusses the experimental results in detail. This article is concluded in Section 7 . 

2. Related work 

This section provides a brief overview about disease dynamics, from the perspective of widely used models and predic-

tion methods. 

Epidemic models describe the spread of a communicable disease in a population. In these models, the individuals of

a population are taken and placed into one of these three states: Susceptible, Infectious or Recovered (SIR). Modelling

the transitions among these states generates the SIR model. This simple SIR model has been extended in a multitude of

ways, e.g., by adding/deleting states, or by considering a special pattern of a transition. For example: (i) The SIS model [18] .

For a disease with no immunity, infected susceptible individuals return to the susceptible state after recovering. (ii) Non-

equilibrium transitions [22] . Replacing the homogeneous mixing hypothesis that any individual can contact with any other,

non-equilibrium transitions assume that each individual has a certain number of contacts, which is reflected as the node’s

degree k in a contact network. The degrees of nodes in a network can be denoted as the degree distribution of the network.

Degree distribution is the important structural property of a network. Different degree distributions bring different impacts

on the transitions among different states of disease dynamics. The relevant studies on such impacts enable disease dynamics

to be associated with a network, and to explore the impact of spatial contact patterns [9,11,32,33,37] . 

For example, in a dynamic contact network with an arbitrary degree distribution, the real transition threshold of three

states during an epidemic is: λth = 

k 
k 2 

, where k is the average degree of the network, and k 2 is the average degree at the

next moment of the dynamic network. 
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Table 1 

A qualitative overview of the prediction methods on disease dynamics. 

Prediction method Addressed problem Main idea Open issues 

Prediction based on 

online social 

networks [8,10] 

Predicting the health of 

real-world populations in 

real time, to understand 

actual threats and ongoing 

disease outbreaks 

Such a method used 

the geo-tagged status 

updates of traveling 

Twitter users to infer 

the properties of 

individual flow 

between cities. 

(i) Use of Twitter data. First, Tweets are typed by users 

who are not experts: the correctness of their judgment 

for their suffered diseases cannot be guaranteed. 

Moreover, for example, influenza can be described by 

different words (even such description does not contain 

the keywords “flu” or “influenza”). Second, the observed 

data comes from a small fraction of travellers, and it is 

only partial data of these travellers. 

(ii) Based on our experience in Twitter data acquisition by 

the Twitter Search API, Tweets sent from mobile devices 

do not always have accurate GPS coordinates. And even 

if two Tweets can be located in the same location (with 

a certain locating error), we cannot make assure that the 

relevant physical individuals contact with each other and 

are within the communicable distance of a disease. 

Prediction based on 

RCNs [4,14,26,29] 

Such studies have proposed 

that the structure of contact 

networks impacts disease 

dynamics. And such impacts 

are different for different 

network structures. For the 

RCNs, there are three typical 

network structures that are 

widely used in studies. They 

are exponential, 

power-law [23] and 

random [7,30] . 

Constructing RCNs is by 

analyzing the actual 

surveillance data 

from disease 

outbreaks. 

The exponential and power-law degree distributions have 

been found in many real-world complex 

networks [12,29] . However, the structure of a contact 

network is dynamically changed during an epidemic, and 

structure knowledge is very important to characterize 

the dynamics of the spread process on this contact 

network, so further work is necessary to improve the 

prediction accuracy of disease dynamics: mining the 

realistic structure knowledge acquired from the dynamic 

contact network in real time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As another important aspect of the overview for disease dynamics, the previous studies on prediction methods are briefly

classified and summarized in Table 1 . 

Through the brief overview, and the acquired open issues, our study therefore focuses on acquiring the realistic structure

knowledge of the dynamic contact network during an epidemic, and then, considering the acquired structure knowledge, a

prediction algorithm is proposed to predict the disease dynamics during the epidemic. About the structure knowledge, three

structure properties are used in this study: clustering coefficient, degree distribution and degree correlation. 

3. Impact evaluation 

3.1. Realistic contact network 

By processing surveillance data collected by the mobile devices which are carried by the volunteers of Ebola outbreak

areas, we construct the RCN that is used in our study. 

As a recent outbreak of disease, from 27th March, 2016, Ebola Virus Disease (it is commonly known as “Ebola”) has

killed 11,323 individuals, and the total number of cases has reached 28,646 [2] . Researchers generally believe that from a

2-year-old boy of Guinea to his mother, sister and grandmother (this is a contact network) Ebola rapidly spreads in West

Africa since March 2014. A series of time-aware Ebola cases is collected by the WHO as well as the Ministries of Health of

epidemic countries. 

In this study, we select three groups of data from three typical outbreak countries, Guinea, Nigeria and Liberia, and seven

regions of these three countries. Guinea is the source of this outbreak and has relatively high quantity of confirmed cases,

Nigeria is far away from the source of the outbreak and has relatively low quantity of confirmed cases, and Liberia is close

to the source of the outbreak and has high quantity of confirmed cases. And the seven regions are: Gueckedou of Guinea,

Macenta of Guinea, Kissidougou of Guinea, Conakry of Guinea, Lagos of Nigeria, Port Harcourt of Nigeria and Monrovia of

Liberia. 

By using the above outbreak data, we construct a contact network. There are 941 nodes corresponding to different cases

in this network ( Fig. 2 illustrates a slice of the network). During an epidemic, with the spread of a disease, the contact

network is gradually constructed, and by the order of time stamps of cases, we can clearly know the spread process of the

disease. Such a contact network can be modelled as a dynamic graph G t . In this network, there are four parameters: (i) Case

ID. A unique number to indicate a case; (ii) Source ID. It indicates the ID of the infection source for a case; (iii) Date. The

reported date of a case; (iv) Location. The coordinates (longitude and latitude) of a case. 

The dynamic graph G t can be described in detail as follows. An undirected weighted graph G t = (V t , E t , W t ) , where V t is

a set of n t vertices to indicate cases, E t is the set of edges, and W t is the set of weights. If there is an edge between vertex
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Fig. 2. A slice of a dynamic contact network. This slice displays 50 cases and their relationships (contact) from three typical countries and seven regions 

of the Ebola outbreak since 2014. The three countries considered are: Guinea, Nigeria and Liberia. The seven regions considered are: Gueckedou, Macenta, 

Kissidougou, Conakry, Monrovia, Lagos and Port Harcourt. The black dots are cases (suspected and confirmed), and if there is an edge between two dots, 

it means that there is contact between two corresponding individuals of two cases. We only display a slice of a contact network in this example, so there 

are isolated nodes. It means that there are black dots without connections. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i and vertex j , e ij , it indicates that there is contact between the corresponding individuals of i and j . The weight w i j is the

transmission probability ( p ij ) of a disease from vertex i to vertex j (on the corresponding edge e ij ). 

The graph G t is dynamic, so it is with a sequence of online updates: (i) Delete( e ij ): it deletes the edge e ij from E t , and

the corresponding vertices i and j from V t ; (ii) Insert( e ij ): it inserts the edge e ij into E t , and the corresponding vertices i and

j into V t ; (iii) Update( w i j ): it updates the weight w i j that is related to the edge e ij . On the basis of above (i), (ii) and (iii),

the graph G t is updated from G t = (V t , E t , W t ) to G t+1 = (V t+1 , E t+1 , W t+1 ) . It means that at different time points, with the

spread of a disease, the active subnetworks are different. Such a contact network is time-varying. 

3.2. Evaluation results 

The Spatial Risk Model (SRM) [13] is used in this study to evaluate the impact of network structure on disease dynamics.

It is a statistical model used in communicable diseases to estimate or predict the presence or incidence of infected cases

within a particular geographical area. In this evaluation, we calculate the number of infected cases (reproductive number R ).

The parameter R is measured to quantify the disease dynamics during an epidemic. In this evaluation, we randomly sample

100 time periods from the real surveillance data to construct 100 different subnetworks (the details of the surveillance data

have been introduced in Section 3.1 , and a time period covers one day). 

For evaluating the impact of network structure on disease dynamics, we use these three structure properties: clustering

coefficient, degree distribution and degree correlation. These three structure properties strongly correlate with the degrees

of nodes. In a network, the degrees of nodes are the most important and basic structure knowledge. The degree of a node in-

dicates the number of adjacent edges on this node. For a real-world network, the relationships between nodes are complex.

The degrees of nodes are helpful to characterize and model the real-world network. 

Clustering coefficient. In graph theory, a clustering coefficient is a measurement of the degree to which vertices in a

graph tend to cluster together. In this study, we use the definition proposed by Barrat [6] for the clustering coefficient of a

network, which is a local node-level definition, and it is formulated as: 

C w 

i = 

1 

s i (k i − 1) 

∑ 

j,h 

w i j + w ih 

2 

a i j a ih a jh , (1)

where k i is the degree of node i , s i is the strength (summing up the edge weights of the adjacent edges of node i ), a ij , a ih
and a jh are elements of the adjacent matrix of the network, and w i j and w ih are the weights of corresponding edges. 

Degree distribution. Degree distribution is the probability distribution of nodes’ degrees over a network. It provides

the overall structure knowledge of the network. For displaying the relationship between degree distribution and disease

dynamics (parameter R ), we calculate the expectation of degree distribution, and this expectation can be denoted as: 

E[ X ] = x 1 p 1 + x 2 p 2 + . . . + x p , (2)
k k 
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Fig. 3. Impact of the clustering coefficient on disease dynamics (parameter R ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where X = { x 1 , x 2 , . . . , x i , . . . , x k } is the set of degrees of nodes, and P = { p 1 , p 2 , . . . , p i , . . . , p k ′ } (p 1 + p 2 + . . . + p k ′ =
1 and k ′ ≤ k ) represents the probabilities of the degree values { x 1 , x 2 , . . . , x i , . . . , x k } , for example, if the set of degrees of

nodes is X = { 1 , 1 , 1 , 2 } , then the set of probabilities for this X is P = { 3 4 , 
1 
4 } , and E[ X] = 1 ∗ 1 

4 + 1 ∗ 1 
4 + 1 ∗ 1 

4 + 2 ∗ 1 
4 = 

5 
4 . 

Degree correlation. The degree correlation measures the level of the homophyly of a network. If a network has a high

correlation, it means that the connected nodes of the network tend to have the same degree. In this study, we adopt the

definition of M.E.J. Newman [27,28] to define degree correlation, and it can be denoted as: 

r = 

1 

σ 2 
q 

∑ 

j,k 

jk (E jk − q j q k ) , (3) 

where (i) σ 2 
q = 

∑ 

k k 
2 q k − [ 

∑ 

k kq k ] 
2 , (ii) E jk is the joint probability distribution of the degrees of the two nodes ( j and k ) at

either end of a randomly chosen edge e jk . This quantity is symmetric in an undirected network, E jk = E k j , and obeys these

rules: 
∑ 

j,k E jk = 1 and 

∑ 

j E jk = q k , (iii) q k = 

p k +1 ∑ 

j≥1 p j 
, where p k +1 is the degree of node k + 1 , and (iv) the value of “k ” in

Eq. (3) is set as the degree of the node k . 

The evaluation results are described and discussed as follows. 

Evaluation results for the clustering coefficient. Fig. 3 illustrates the relationship between the structure property “clus-

tering coefficient” and the parameter R . 

From the results shown in Fig. 3 , we observe that different values of clustering coefficients are corresponding to different

R values. It means that there is a relationship between the network’s clustering coefficient and disease dynamics, and this

relationship cannot be ignored. Thus, when we design a prediction algorithm for disease dynamics, the clustering coefficient

needs to be considered in order to improve the prediction accuracy. 

Evaluation results for the degree distribution. Fig. 4 illustrates the relationship between the structure property “degree

distribution” and the parameter R . Eq. (2) is used to calculate the expectation of network’s degree distribution. 

Comparing Figs. 3 and 4 , there is a like-mirrored relationship about the changing trends of the two lines. It means that

the two structure properties, the clustering coefficient and degree distribution of a network, bring different impacts to the

parameter R . And the difference about the impacts is with a like-mirrored relationship. 

Evaluation results for the degree correlation. Fig. 5 illustrates the relationship between the structure property “degree

correlation” and the parameter R . 

If the value of the degree correlation is positive in a network, it means that similar nodes (having the same degree) tend

to connect together, and negative otherwise. 

From the results illustrated in Fig. 5 , we observe that the overall changing trend of R is non-monotonic decline, with the

increase of the degree correlation. It means that with the spread of a disease, the homophyly of a contact network is getting

higher, so there is a reductive trend about the new cases that are generated in an infectious period. The infectiousness of

the disease is getting weaker as time goes by. 

However, as a special and important point that is worth explaining in detail: with the increase of the degree correla-

tion (the homophyly of a contact network is getting higher), the reproductive number R is decreasing over time, and this

decreasing process is non-monotonic. At some points, the R values increase again to some extent. Based on SRM, there is a
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Fig. 4. Impact of the degree distribution on disease dynamics (parameter R ). 

Fig. 5. Impact of the degree correlation on disease dynamics (parameter R ). 

 

 

 

 

 

 

 

 

recovery probability for each infected individual, and for the recovered individuals, even if they have recovered, they have

contacted with other individuals of this network, so they still connect with these other individuals. When we calculate the

new R value, the recovered individuals (but they are still connected to the network) are counted as new infectious cases.

These recovered individuals make the values of R increase again at some value points of the degree correlation. 

By these three formulae, Eqs. (4) , (2) and (5) , we can characterize and quantify the different impacts of three structure

properties on the parameter R . 

E[ k i ] = E 

⎡ 

⎣ 

∑ 

j,h 

a i j a ih a jh 

C w 

i 
s i 

+ 1 

⎤ 

⎦ . (4)

We use the undirected weighted network in this study, without loss of generality, we assume w i j = 1 and w ih = 1 , when

there is an edge between i and j , and between i and h . Considering Eq. (1) , we can deduce: k i = 

∑ 

j,h a i j a ih a jh 
C w 

i 
s i 

+ 1 , and as

the limit cases, when C w 

i 
= 0 , k i = ∞ and when C w 

i 
= ∞ , k i = 1 . It means that there is a like-mirrored relationship between
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“clustering coefficient” and “degree distribution”, and this result can be observed in Figs. 3 and 4 as well. 

E[ E jk ] = 

∑ 

j,k 

jk E jk = rσ 2 
q + 

∑ 

j,k 

jkq j q k , (5) 

where E[ E jk ] is deduced from Eq. (3) . 

Observing the above evaluation results and three formulae, Eqs. (4) , (2) and (5) , we are clear on this: these three

formulae indeed can characterize and quantify the different impacts of three structure properties on the parameter R . We

can learn the following points: 

• From Eq. (4) , C w 

i 
is inversely proportional to the degree of node i ( k i ), and comparing Figs. 3 and 4 , their changing trends

have a like-mirrored relationship, so we can make this conclusion: Eqs. (1) and (2) can model and reflect the different

impacts of the clustering coefficient and degree distribution on the parameter R . 

• From Eq. (5) , we know: for a network, r is proportional to the joint degree distribution of the network ( 
∑ 

j,k jk E jk ), rather

than the degree of a single node. So comparing Figs. 4 and 5 , their changing trends are different, and they do not have

an obvious relationship. 

4. Recognition model 

The structure of a dynamic network is time-varying. It means that in a dynamic network the network structure is differ-

ent at different time points. The RCN is a kind of typical dynamic network. In such a network, if we want to study how the

network structure impacts disease dynamics, and even predict the disease dynamics, the dynamic recognition of network

structure is necessary. In this section, we design a recognition model to recognize the dynamic structure of an RCN. 

There are two components in this recognition model: (i) measure. This component calculates the values of three structure

properties, and (ii) knowledge acquisition. The measured values from the first component need to be combined together to

reflect and quantify the structure knowledge of a network, and then the structure knowledge can be used into the prediction

of disease dynamics (measuring and predicting the value of R ). 

This model can be formulated and described as follows: 

• Measure. As the important structure properties to reflect the structure of a network, in this study, three structure proper-

ties are used, and they are: clustering coefficient ( C w 

i 
), degree distribution ( E [ X ]) and degree correlation ( r ). The formulae

to measure the values of these structure properties are shown in Eqs. (1) , (2) and (3) , respectively. Using these three

formulae, three values can be calculated, and these values reflect and quantify the structure knowledge of the network,

and by this quantification, the structure knowledge can be used into the design of the prediction algorithm for disease

dynamics. 

• Knowledge acquisition. Based on the measured values of structure properties, the combination formula can be denoted

as: 

M(C w 

i , E[ X ] , r) = E[ k i ] + E[ X ] + E[ E jk ] , (6)

where these three parts, E [ k i ], E [ X ] and E[ E jk ] have been introduced in Eqs. (4) , (2) and (5) , and Eqs. (4) and (5) are

deduced from Eqs. (1) and (3) by converting and unifying the different measurement parameters ( C w 

i 
and r ) to degree-

relevant parameters ( k i and E jk ). 

5. Prediction algorithm 

On the basis of the above recognition model, we propose a prediction algorithm for disease dynamics. The algorithm

consists of two parts: (i) acquiring structure knowledge by using our recognition model, and (ii) estimating the parameter R

by using SRM. 

1: Begin Prediction Algorithm: 

2: First part: Acquiring structure knowledge 

3: Input: a contact network of a disease outbreak, G t 

4: C w 

i 
= t ransit i v it y (G t , t ype = c(local)) � The function t ransit i v it y (. ) is used to calculate the clustering coefficient of each

node i ∈ V t . 

5: S i = graph.strength (G t ) � The function graph.strength (. ) is used to calculate the strength of each node i ∈ V t .

6: ========================================== 

7: � This for-loop structure is used to calculate the degree of each node i ∈ V t , k i .

8: for ( i in 1 : | V t | ) do 

9: t mp = 

∑ 

j,h 

a i j a ih a jh 

C w 
i 

s i 
+ 1 � t mp is a temporary variable. 

10: K = combine (K, tmp) � K is the set of k i ( i ∈ V t ).

11: end for 

12: ========================================== 
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13: � This for-loop structure is used to calculate E[ k i ] that is the expectation of K.

14: for ( i in 1 : | K| ) do 

15: E[ k i ] = E[ k i ] + K[ i ] ∗ K[ i ] /sum (K) 

16: end for 

17: ========================================== 

18: � This for-loop structure is used to calculate E[ X] that is the expectation of degree distribution.

19: for ( i in 1 : | dg| ) do � dg = degree (G t ) is the degree distribution of network G t .

20: E[ X] = E[ X] + dg[ i ] ∗ dg[ i ] /sum (dg) � dg[ . ] is used to indicate the degree of a node.

21: end for 

22: ========================================== 

23: r = assortat i v it y.d egree (G t , d irected = F ALSE) � The function assortat i v it y.degree (. ) is used to calculate the degree

correlation of each node i ∈ V t . 

24: ========================================== 

25: E t = get.edges (G t ) � The function get.edges (. ) is used to get all edges of network G t .

26: ========================================== 

27: � This for-loop structure is used to calculate the two parts of E[ E jk ] : (i) E 1 : σ 2 
q , and (ii) E 2 : 

∑ 

j,k 

jkq j q k .

28: for ( i in 1 : | E t | ) do 

29: � The function which (. ) is used to get the numbers of the two nodes jointed by an edge.

30: j = which (V t == E t [ i, 1]) 

31: k = which (V t == E t [ i, 2]) 

32: q j = 

p j+1 ∑ 

k ≥1 

p k 
� Calculate q j .

33: q k = 

p k +1 ∑ 

j≥1 

p j 
� Calculate q k .

34: � Calculate the two parts of σ 2 
q : (i) σ1 : 

∑ 

k 

k 2 q k , and (ii) σ2 : 
∑ 

k 

kq k .

35: σ1 = σ1 + dg[ k ] ∗ dg[ k ] ∗ q k 
36: σ2 = σ2 + dg[ k ] ∗ q k 
37: E 2 = E 2 + d g[ j ] ∗ d g[ k ] ∗ q j ∗ q k � Calculate 

∑ 

j,k 

jkq j q k .

38: end for 

39: σ 2 
q = σ1 − [ σ2 ] 

2 

40: E[ E jk ] = r ∗ σ 2 
q + E 2 

41: ========================================== 

42: M = 

E [ k i ]+ E [ X]+ E [ E jk ] 
3 � Combine these three expectations: E[ k i ] , E[ X] and E[ E jk ] .

43: ========================================== 

44: Second part: Estimating the parameter R 

45: SRM( β = M, γ = M, no.iteration ) � “no.iteration ” is used to indicate the number of iterations. SRM: Spatial Risk Model

46: ========================================== 

47: Output: a predicted value of the parameter R , related to input network G t 

48: End 

As the important parameters of SRM, β and γ , (i) β is a non-negative scalar, the infection probability of an individual.

This individual is susceptible and has a single infected neighbor. The infection probability of a susceptible individual with

n infected neighbors is n ∗ β , and (ii) γ is a positive scalar, the recovery probability of an infected individual, and if this

individual recovers from a disease, this individual will be disconnected with other individuals, in a contact network. 

Based on the above explanations for β and γ , we observe that these two parameters β and γ are all degree-related. So

β and γ can be used to reflect the structure knowledge of a contact network in the SRM model. 

6. Evaluation 

6.1. Experimental setting 

A series of time-aware Ebola cases 2 (941 nodes) and their relationships (938 edges) are collected and used to evaluate

the performance of our prediction algorithm. These cases and relationships come from the outbreak of Ebola in West Africa

from March 2014. The network structure of the corresponding RCN is dynamically changed during this outbreak, with the

spread of the Ebola virus disease. On this basis, we construct nine networks according to the time stamps of cases. These

networks are G t = { G 1 , G 2 , . . . , G 9 } , where t = 1 , 2 , . . . , 9 is corresponding to nine weeks of August (four weeks), September
2 Using the wireless devices carried by volunteers, the cases and relationships (contact) can be tracked and recorded. These devices are GPS-enabled, 

and the reported records have time stamps. 
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Table 2 

Detailed information of nine dynamic networks, G t ( t = 1 , 2 , . . . , 9 ). 

Number of nodes Number of edges λ (standard error) Time period 

333 330 0 .5045455 (0.02764892) from 1st August to 7th August 

340 337 0 .504451 (0.0273577) from 8th August to 14th August 

340 337 0 .504451 (0.0273577) from 15th August to 21st August 

531 528 0 .5028409 (0.02182144) from 22nd August to 31st August 

647 644 0 .5023292 (0.0197486) from 1st September to 7th September 

707 704 0 .5021307 (0.01888457) from 8th September to 14th September 

779 776 0 .501933 (0.01798362) from 15th September to 21st September 

916 913 0 .5016429 (0.01657475) from 22nd September to 30th September 

941 938 0 .5015991 (0.01635166) from 1st October to 7th October 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(four weeks) and October (one week) 2014. The detailed information of these nine networks is shown in Table 2 . And we

use Graphx of Spark [3] to process these networks. 

In Table 2 , we use this process to obtain the values of λ and corresponding standard errors, for each network: we conduct

a maximum-likelihood fitting to fit the degree distribution of each network into an exponential distribution, and then we

can obtain the corresponding values of λ and standard errors on the fitted exponential distribution, for each network. The

maximum-likelihood fitting uses a maximum-likelihood estimation [25] to estimate the values of distribution parameters.

Moreover, the sizes of the nine networks are increasing gradually: from 333 nodes (the first week of August) to 941 nodes

(the first week of October), with the spread of Ebola virus disease. 

For comparison, the SRM-based prediction algorithm that does not integrate a recognition model is used in our experi-

ments. It has recently been demonstrated that empirical human contact networks are best described as having exponential

degree distributions [4,5] . Thus, the prediction algorithm that does not integrate a recognition model is based on the net-

works which have exponential degree distributions. 

Moreover, we compare the predicted results of two algorithms with the real values of reproductive number R . These real

values are counted from the collected outbreak data. By this real comparison, we can clearly know the performance of the

prediction algorithms. 

6.2. Experimental results and discussion 

Fig. 6 illustrates experimental results. We compare the prediction accuracy of our algorithm and the prediction algorithm

that does not integrate a recognition model. And we compare the predicted results of two algorithms with the real values

of R as well. Extensive experiments are conducted: for the dynamic network of each time period, the parameter of SRM,

no.iteration = 100 . It means that the two algorithms are iterated 100 times to get the average of predicted values of R , in

each time period. 

By analyzing the comparative results illustrated in Fig. 6 , we get two observations, and specially we discuss how the

proposed algorithm improves prediction accuracy? 

• In terms of the predictive performance for the parameter R , our prediction algorithm performs better than the prediction

algorithm that does not integrate a recognition model. The relevant standard deviations 3 of R ’s real values and R ’s pre-

dicted values are 100.133, 8.271831 and 3.146532, so the variation of the predicted values calculated by our algorithm is

closer to the variation of real values. The values corresponding to Fig. 6 and relevant three standard deviations are listed

in Table 3 . 

The prediction performed by our algorithm is based on acquiring the structure knowledge of a contact network. By

the acquired structure knowledge, the more reasonable values of β and γ can be set in SRM. On the basis of such a

parameter setting, we can obtain better prediction results. 

• In each time period, the deviation between R and I is different from the deviation between R and U . R denotes the

real value, I is the predicted value calculated by our algorithm, and U indicates the predicted value calculated by the

algorithm that is used to compare with our algorithm. The deviations between the real value and the predicted values

(from two algorithms), for each time period, are listed in Table 4 . 

As shown in Table 4 , our algorithm has a smaller predicted deviation to the real values. Our algorithm is based on the

structure recognition of the RCN during an epidemic, and the infectious disease spreads through this RCN. Thus, based on

recognizing the real disease transmission network, and using the calculated values by our recognition model, we can obtain

more authentic values of β and γ to SRM. On this basis, our prediction algorithm achieves a smaller predicted deviation to

the real value, for each time period. It also means that our algorithm improves prediction accuracy. 

Moreover, by analyzing the deviations between real values and predicted values ( Table 4 ), we observe that there are big

deviations between real values and predicted values, for example, 298.40895 and 305.5625. Why some deviation values are
3 In statistics, the Standard Deviation (SD) is a measure that is used to quantify the amount of variation or dispersion of a set of data values. 
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Fig. 6. Comparative experiment results. Nine time periods from August to October are selected, and then nine dynamic networks are constructed. In each 

time period, based on the corresponding dynamic network, the predicted results from two algorithms are illustrated in the second and third sub-figures, 

respectively. The first sub-figure provides the real values of R , which are counted from the collected outbreak data. 

Table 3 

Values corresponding to Fig. 6 and relevant three standard deviations. 

Real value Our prediction algorithm Prediction algorithm 

that does not integrate 

a recognition model 

309 10 .59105 3 .4375 

7 8 .299401 2 .842105 

0 6 .337838 7 .482759 

191 6 .009524 4 .315315 

116 25 .39712 6 .503185 

60 25 .79491 4 .186813 

72 20 .32645 10 .04628 

137 22 .13499 10 .3887 

25 10 .17526 1 .571429 

Standard deviation 100 .133 8 .271831 3 .146532 

Table 4 

Deviations between R and I / U . 

Deviation between R and I Deviation between R and U Time period 

298 .40895 305 .5625 from 1st August to 7th August 

1 .299401 4 .157895 from 8th August to 14th August 

6 .337838 7 .482759 from 15th August to 21st August 

184 .990476 186 .6 846 85 from 22nd August to 31st August 

90 .60288 109 .4 96 815 from 1st September to 7th September 

34 .20509 55 .813187 from 8th September to 14th September 

51 .67355 61 .95372 from 15th September to 21st September 

114 .86501 126 .6113 from 22nd September to 30th September 

14 .82474 23 .428571 from 1st October to 7th October 
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so big? During the outbreak of an epidemic, we can only obtain a subnetwork of the complete RCN to carry out prediction,

based on the collected outbreak data, because of the limited number of mobile devices carried by volunteers. It makes the

number of individuals in the subnetwork to be less than the total number of individuals (there are contact among these

individuals during an epidemic). On the basis of this reason, the predicted values calculated by two algorithms are much

less than the real values. If we can acquire a complete RCN during an epidemic, the prediction accuracy of our algorithm

can continue to be improved. However, in addition to the absolute value of R , the changing trend is very important to reflect

the prediction accuracy of an algorithm as well. From Fig. 6 , the prediction results of our algorithm can better follow the

real changing trend. 

7. Conclusion 

In this article, we have evaluated the impact of network structure on disease dynamics, and based on the structure

knowledge mined by our recognition model, a prediction algorithm has been proposed. The evaluation about “impact” is

based on the mobile data collected from the real physical world. As a key result of this evaluation, we have observed that

in a dynamic environment the network structure of an RCN varies in different time periods, and different structures have

different impacts on disease dynamics. On this basis, we have designed a model to recognize the structure of a network.

By using the model, we have proposed a prediction algorithm to predict the disease dynamics during an epidemic. By eval-

uating and comparing the accuracy of prediction for the time-varying reproductive number R , we have verified that our

prediction algorithm can improve the prediction accuracy by using realistic structure knowledge that is mined by our recog-

nition model. Moreover, in the comparison, the predicted results for R by two algorithms (our algorithm and the algorithm

used to compare with our algorithm) have been compared with the real values of R . Such real values are counted from the

collected surveillance data. 
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