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• Introduce smart objects and related communication technologies to enable an IP-based Internet of Things (IoT) and the vision of IoT applications on
Web.

• Propose service provisioning architecture for smart objects to integrate IoT applications into the Web.
• Propose new algorithms and mechanisms for realizing service provisioning for smart objects.
• In-network implementation of the proposed architecture.
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a b s t r a c t

Internet of Things (IoT) applications residing on the Web are the next logical development of the
recent effort from academia and industry to design and standardize new communication protocols for
smart objects. This paper proposes the service provisioning architecture for smart objects with semantic
annotation to enables the integration of IoT applications into the Web. We aim to bring smart object
services to the Web and make them accessible by plenty of existing Web APIs in consideration of its
constraints such as limited resources (ROM, RAM, and CPU), low-powermicrocontrollers, and low-bitrate
communication links.

© 2017 Elsevier B.V. All rights reserved.
1. Introduction

The Internet of Things (IoT) is stimulating innovations in
virtually all sectors of the economy attracting not only researchers
and professionals, but also entrepreneurs, end-users, and even
lawmakers. The IoT with its capacity to connect objects to the
Internet, blending physical and digital worlds, is going to mark
a revolution in how we communicate with other people and
everything surrounding us.

Thanks to the advent of IoT technologies, several commercial
smart devices improving our everyday life already existed in the
market such as Koubachi plant sensor,1 Alba light bulb,2 and
Luna mattress cover3 to name just a few. Koubachi plant sensor
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can measure soil moisture, sunlight, infrared light, and ambient
temperature to determine the exact needs of the plants and
provide userswith highly-specific care advice. Lunamattress cover
is able to warm up the bed, track one’s sleep, and even wake
you up, if necessary. The sensors on the Alba light bulb make
it the world’s first responsive bulb: its internal sensors allow
it to automatically maintain the proper light level, adjust the
color of the light according to the time of day, and adapt to the
people in the room. What is more, everything surrounding us
such as chairs, windows curtains, light bulbs, office equipment,
home appliances, and even baby dummies can be turned into
Internet-connected smart objects to enhance many application
domains (e.g., building automation, healthcare services, smart
grids, transportation, and environmental monitoring). A smart
object is defined as an item equipped with a form of sensor
or actuator, a tiny microprocessor, memory, a communication
module, and a power source [1]. They are electronic embedded
devices characterized by sensing, processing, and networking
capabilities. This can be done by extending the design of
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electronic appliances, which fundamentally requires a new set of
microelectronic technologies and communication protocols.

To facilitate the smart object connectivity while considering
its limited resources (e.g., computing capacity, power, and
memory), research and industry have come up over the past
decade with a number of advances in low-power microelectronic,
radio communication, and corresponding Internet Protocol (IP)
networking. IP for decades has effectively supported Internet
applications such as email, the Web, Internet telephony, and
video streaming. Internet Protocol version 6 (IPv6) is expected
to accommodate a huge number of entities, enough for a
inconceivably-large number of objects going to be connected
to the Internet. These technologies are being engineered by
standardization bodies led by Internet Engineering Task Force
(IETF) tomake themopen and accessible to everyone. The objective
is for smart objects to consume very low energy, become IP-
enabled, and to be an integral part of the services on the Internet.
The configuration of smart objects create a new type of networks
collectively referred to as IPv6 low-power wireless personal area
networks of smart objects (6LoWPANs), which can provide the IP
networking infrastructure for the future IoT applications.

6LoWPAN plays an important role in IoT for its benefits of
the energy consumption, ubiquitous availability, and the Internet
integration of smart objects. First, energy consumption has become
an critical issue for modern sustainable development, especially
in the time when a huge number of smart objects staying
connected to the Internet. The energy used for only maintaining
the connectivity of predictably 50 billion objects [2] by current
wireless technologies such as Wi-Fi and Bluetooth would account
for a considerable large amount the current world energy capacity.
Therefore, low-power radio hardware and software protocols
are crucial for facilitating a practical IoT ecosystem. Second,
more and more wireless devices become available in today’s
consumer electronics market creating an ubiquitous environment
surrounding us which is gradually changing our life style.
Advantages to the wireless connectivity are manifold such as the
convenience to users, easy deployment, and even for aesthetic
aspects that no wires are required. Third, IPv6 with its huge
address space is the future for smart objects to seamlessly join
the Internet. 6LoWPAN is known under several name such as Low-
powerWireless Personal Area Network (LoWPAN) [3], Low-power
and Lossy Network (LLN) [4], Constrained Environment [5]. In
this paper, 6LoWPAN is used to refer to a network of IPv6, low-
power, and wireless smart objects using several IETF standards
fromworking groups including RoutingOver Low-power and Lossy
Networks (roll), Constrained RESTful Environments (core), and
DTLS In Constrained Environments (dice), IPv6 over Networks
of Resource-constrained Nodes (6lo), and IPv6 over Low-Power
Wireless Personal Area Networks (6lowpan).

On the other hand, the popularity of applications on the Web,
alongwith its open standards and accessibility across a broad range
of devices such as desktop computers, laptops, mobile phones,
and gaming consoles make the Web an ideal universal platform
for future IoT applications. In this future environment, smart
objects will be able to offer their functionality via RESTful APIs,
enabling other components to interact with them dynamically.
The functionality offered by these devices (e.g., temperature sensor
data) is referred to as smart object service provided by embedded
systems that are related directly to the physical world. Unlike
traditionalWeb services and applications, which aremainly virtual
entities, smart object services provide realtime data about the
physical world. IoT applications can therefore support a more
efficient decision taking process. Hence, smart objects providing
their functionality as Web services can be used by other entities
such as other Web services, enterprise applications, or even other
smart objects. The process of preparing and providing smart object
services to theWeb is called service provisioning aiming to deliver
smart object services to theWeb, similar to today’smillions ofWeb
services are functioning.

Then comes a new opportunity for truly-intelligent and
ubiquitous applications that can incorporate smart object services
and conventional Web services using open Web standards. We
call these applications IoT applications on Web. The arrival of
IoT applications on Web also exposes a new opportunity for
conventional Internet applications to shift their business model
to catch up with this new ecosystem. The concept does not
only refer to IoT applications running on Web browser but also
to any application residing on the Internet communicating to
smart objects and user agents using open Web standards via Web
Application Programming Interfaces (Web APIs).

Once smart object services reach the Web through communi-
cation networks, applications over connected smart objects will go
beyond homes, offices, and public spaces to reach the truly global
ubiquitous status. TheWeb then will also undergo the similar evo-
lution to extend their tentacles to the new kids in the block, smart
objects, integrating the physical world for more useful and intel-
ligent applications. These applications should be developed in a
relatively easy and intuitive way in which developers can use dif-
ferent platforms, frameworks, tools, and programming languages.
It is therefore essential to provision services of smart objects in
6LoWPAN to the Web and make them accessible and workable
with plenty of existing Web services or APIs. These services also
need to catch up with the new trends in the Web world wherein
Semantic Web technology (envisioned by Tim Berners-Lee) is pre-
dicted to bring more intelligence to the Web. Tim Berners-Lee de-
scribed Semantic Web as a Web of linked data that can be pro-
cessed directly bymachines allowing applications to automatically
infer new meaning from all the information out there [6].

This paper proposes a complete solution to provision smart
object services in 6LoWPAN with semantic annotation in order
to empower the development and integration of IoT applications
into the Web. The solution complies with the constraints of smart
objects: limited ROM, RAM, CPU, low-power microcontrollers, and
low-bitrate radio.

2. 6LoWPAN protocol stack

The IoT aiming to integrate smart objects into the Internet
introduces several challenges since many of the existing Internet
technologies and protocols were not designed for constrained
resources in smart objects. IoT, therefore, has fostered the
development of many extensions and adaptations of Internet
technologies for the new class of networked objects. This results
in a new IP protocol stack for IoT to enable the communication
between Internet-connected smart objects and other machines
on the Internet. The IoT protocol stack is contributed not only
by research results from academia but also from standardization
bodies such as Internet Engineering Task Force (IETF), Institute
of Electrical and Electronics Engineers (IEEE), and European
Telecommunications Standards Institute (ETSI).

Fig. 1 shows the IoT protocol stack along with some common
protocols for each layer. It extends four layers of the TCP/IP model
(RFC 1122: Link, Internet, Transport, andApplication)with the new
Adaptation layer, which is required for smart objects to adapt the
small frame size of the low-power link layer to the much larger
size of IPv6 packets. Adaptation layer defines mechanisms and
protocols for header compression/decompression to enable the use
of IPv6 on low-power links of smart objects.
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Fig. 1. Regular IP and IoT protocol stacks in reference to the TCP/IP networking
model.

3. IoT applications on web

The Internet is a scalable global network of computers that
interoperate across heterogeneous hardware and software. On top
of the Internet, the Web is an outstanding example of how a set
of relatively simple and open standards can be used to build very
complex systems while preserving efficiency and scalability. The
Web and its underlying open protocols have become a part of
our everyday life—something we access at home or on the move,
through our laptop computers, phones, tablet, TV, or wearable
devices. It has changed the way we communicate and has been
a key factor in the way the Internet has transformed the global
economy and societies around the world.

Meanwhile, the IoT will allow physical objects to transmit
data about themselves and their surroundings, bringing more
information about the real world online and help users to better
interact with their surroundings. Flowers, for example, can send
you an email or a SnapChat4 photo of your flower when they
need watering. Doctors can implant sensors in your body that give
you real-time updates about your health updating frequently to a
secure online database of your personal data. Even more, IoT data
will go beyond the scope of each own service provider to go online
and share with other applications and users. We coin the term
IoT Application on Web to refer to any Web application interacting
with smart objects via communication networks using open Web
standards. They are IoT applications and they areWeb applications
identified by:

• Reside on the Web (on Web server/cloud)
• Use open Web standards
• Interact with smart objects
• Be accessed via Web agents.

IoT application on Web is the natural evolution of Web
application when Internet is transforming to the Internet of
everything to include smart objects in the loop. There can be an
application to get access to your Google calendar with the note of
cleaning your living room to have your mother visit in few hours.
The application then asks your robot cleaner to automaticallywake
up and do cleaning. Robot cleaner notifies you (by sending an
email or a SnapChat message) when it starts working or finishes
the work. Another application can let you talk to your devices
in the way you talk to your friend with the support of natural

4 https://www.snapchat.com/.
language processing engines; this is the new experience of making
friendshipwith your devices. Yet another application can serve you
in the airport to update the status of the flight, providing practical
information in the airport, connecting to the boarding machine
to update you for any delay of boarding time that you can spend
more time doing shopping in duty free. Yet another application can
synchronize your TV programs and football schedule and also your
social network profile to remind you an upcoming match. These
applications all require the interactions of existing Web services
and new services from smart objects to create newuser experience
while assuring the seamless transition from developing traditional
Web applications to this new type of IoT applications onWeb. This
is where our work comes in to solve the fundamental problem of
such ecosystem, service provisioning.

4. Literature review of service provisioning in IoT

There have been several studies on service provisioning ranging
from early-stage models over Radio-Frequency Identification
(RFID) andwireless sensor networks, mostly following the concept
of Service-Oriented Architecture (SOA) [7], to recent solutions over
IP protocol stacks. This section reviews these works on general and
SOA-based models of service provisioning in IoT.

4.1. General models

Miorandi et al. [8] in their survey paper discussed that the
shift from an Internet used for interconnecting end-user devices
to an Internet used for interconnecting physical objects that
communicate with each other and/or with humans in order to
offer a given service encompasses the need to rethink anew some
of the conventional approaches customarily used in networking,
computing, and service provisioning/management. The arising of
IoT provides a shift in service provisioning, moving from the
current vision of always-on services, typically of the Web era,
to always-responsive situated services, built and composed at
runtime to response to a specific need and able to account for the
users’ context. When a user has specific needs, she will make a
request and an ad hoc application, automatically composed and
deployed at run-time and tailored to the specific context the user
is in, will satisfy them.

The work in [9] aimed to define an IoT ecosystem from the
business perspective then identified service provisioning as one
of the key fields to realize the vision of the IoT. The defined
IoT business ecosystem is a community of interacting companies
and individuals along their socio-economic environment. It is
where the companies are competing and cooperating by utilizing
a common share of core assets, which can be in a form of hardware
and software products, platforms or standards that focus on the
connected devices, on their connectivity, on application services
over this connectivity, or on supporting services. The connectivity
is based on common IoT protocol stack as described in the previous
section. In order to realize the ecosystem, service provisioning
cooperates with other modules such as Developing, Distribution,
and Assurances. For example, the end user could acquire various
IoT services through a home gateway that supports several
technologies. Automated control of lightning, heating and security
but also entertainment services could be provisioned through this
gateway. With the interoperability issues diminishing, the end
user could separately create contracts with network operators and
the application service providers, such as a utility company or a
content provider. The model here resembles the contemporary
Internet service provisioning.

Prasad et al. [10] presented another model called opportunistic
service provisioning to deal with the variety of situations that users
encounter in everyday life. Themodel came from the fact that in the

https://www.snapchat.com/
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realworld, a perfectlymatching service for a requirement (or tuned
to a situation) may not always be available. In these situations,
humans try to locate an approximate and an alternative service
for the required one that is available and can solve the immediate
necessity. For example, a user wants a cup of coffee from a vending
machine (with a stack of paper cups), he can locate the coffee
machine using his cell phone. Meantime, these coffee cups can be
easily used for drinking water, tea, soup or any kind of liquid. The
user may use a coffee cup as a pen stand or even as an ashtray.
Thus, the service should be able to locate the coffee cup when a
pen stand is required. The services now would be based on the
non-availability of the exact solution that is not possible to serve a
requirement and availability of a close alternative. This work deals
with an opportunistic yet an approximate service paradigm in the
Internet of the future, especially, in the light of exponential growth
of Internet of Things. The authors discussed the characteristics of
such a service and also provided the related structure to realize this
framework by representing objects in virtual objects and virtual
sensing techniques.

Mandler et al. [11] introduced a perspective of Internet of
Services within COMPOSE project.5 The objective is to benefit
from the IoT technologies by seamlessly integrating the real
and virtual worlds. The ecosystem can be achieved through the
provisioning of an open and scalable infrastructure, in which
smart objects are associated with services that can be combined,
managed, and integrated in a standardized way to easily build
innovative applications. Specifically, this study was conducted on
specifying and providing a virtual service execution.Moreover, this
defined interfaces needed for appropriate services management
throughout services lifecycle, creation, upgrade, reconfiguration,
resolving security conflicts, rerouting, etc. An accompanying
monitoring component oversees security and privacy criteria and
Quality of Service guarantees are met. COMPOSE aimed to manage
the lifecycle of services in themarketplace and to providemethods
for on-the-fly provisioning of service components with better
characteristics.

Lee and Chong [12] approached the problem of service
provisioning in a user-centricmannerwherein services are created
efficiently according to the users’ competency in their living
environments. The approach involves IoT service together with
semantic ontology that can support the composition of services
suitable to the situation of users, and by the log records it can
modify the corresponding happenings. The proposed architecture
aims to handle the limitation of user-centric IoT service provision.
It is designed to utilize the web based service platform structure
that contains versatility and scalability which multiple users or
basic environment can easily apply to be a part of the system.
The environment requires interoperability, versatility, efficient
communication, mobility, intelligence and active functionality to
the user-centric IoT service. It is also to give advance management
to the system service integration, service management, location
management, context management, traffic management, security
and privacy management that are all applied to control the faulty
operation caused by deficient requirements. The user-centric IoT
service and the gathering of information from the scattered object
are done by service composition. The web service platform and
distributed structure act as the core of the system to handle
service provision fromWeb of Object6 environment. And the smart
gatewaymanages the devices which are located in the local area of
decentralized domain.

5 http://www.compose-project.eu/.
6 http://www.web-of-objects.com/.
4.2. SOA-based models

Gagnon and Cakici [13] proposed a framework for provisioning
and integrating early-stage IoT services (using RFID) to IT
infrastructure and business processes. The framework exploits the
SOA in two converging technologies, Business Services Network
(BSN) and the IoT. RFID tags can embed high value features
essential to various industries such as detecting, classifying,
and tracking mobile (sensor-less) objects in a surveillance field,
monitoring the performance of electro-mechanical components,
and controlling manufacturing equipment. They discussed that
the integration of SOA and RFID standards was becoming a
strategic research priority to leverage mobile business model such
as provisioning Web services with pay-per-use, metered, or on
demand business. The framework addresses various issues along a
typical transaction in businessmodels including: Supplier, Market,
Adopter, and Delivery Issues.

The paper [14] presented the architecture of SOA-based
IoT including the on-demand service provisioning (along with
dynamic network discovery, query, and selection ofWeb services).
They defined real-world device services as functionalities offered
by these devices (e.g., the provisioning of online sensor data)
because these services are provided by embedded systems that are
related directly to the physical world. Unlike traditional enterprise
services and applications, which are mainly virtual entities, real-
world services provide real-time data about the physical world.
Devices providing their functionality as a Web service can be used
by other entities such as enterprise applications or even other
devices. Authors discussed that services on embedded devices
offer rather atomic operations such as obtaining data from a
temperature sensor. Thus, the services that the sensor nodes can
offer share significant similarities and could be deployed on-
demand per developer request. The core mechanism is that on-
demand service provisioning first tries to discover service instance
on the network that matches the developer’s requirements. If this
fails, installation of services on suitable devices are carried out.

Li et al. [15] proposed a three-layer service provisioning
framework for service-oriented IoT deployments, which is able to
represent, discover, detect, and compose services at edge nodes.
The purpose is to develop an effective architecture for service
operations in the IoT by extending existing architectures over
smart things that are connected to the Internet via heterogeneous
access networks and technologies (such as sensor networks,
mobile networks, and RFID). The framework has three layers:
application layer is connected with a business process modeling
component for IoT business process; network layer contains
several components to provide the functionalities required by
services for processing information and for notifying application
software and services about events related to the resources
and corresponding virtual entities; sensing layer involves the
sensing devices such as RID tags and smart sensors which can
record, monitor, and process observations andmeasurements. The
network layer can communicate to the sensing layer with device-
level APIs.

4.3. RESTful service provisioning

Web resources identified by Universal Resource Identifiers
(URIs) are considered as the core of modern Web architecture.
They are accessed by clients in a synchronous request/response
fashion using Hypertext Transfer Protocol (HTTP) methods such
as GET, PUT, POST, and DELETE. Resource state is kept only by
the server, which allows caching, proxying, and redirection of
requests and responses. Web resources may contain links to other
resources creating a distributed Web between Internet endpoints,
resulting in a highly scalable and flexible architecture. These are

http://www.compose-project.eu/
http://www.web-of-objects.com/
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the fundamental concepts of the Web, i.e., Representational State
Transfer (REST) [16]. REST has emerged as a predominant Web
design model with more than ten thousand RESTful APIs (services)
at the time of this article [17].

The RESTful service abstraction advocated bymany researchers
and professionals is an essential step to provision services in
IoT systems. Guinard et al. in several studies [18–23] present a
continuous effort to integrate smart objects of different forms
ranging from RFID, to WSNs, to embedded systems, to the Web by
representing their data and events using RESTful APIs via device
gateways. Based on that, authors develop two approaches for
mashup: Physical–Virtual and Physical–Physical in a number of
applications. Many other studies [24–26] also find their ways to
explore this trend over sensor nodes and embedded devices.

4.4. Semantic annotation and provisioning

Literature in applying Semantic Web technologies to IoT is fo-
cusing on semantically annotating data from smart objects sim-
ilar to what Semantic Web envisions about the Web of Linked
Data. The predominant technique for representing semantics is us-
ing Resource Description Framework (RDF) [27], which represents
knowledge as triples (subject, predicate, object) (e.g., [TempSen-
sor803, hasValue, 18] and [TempSensor803, locatedIn, Room803]). A
set of triples forms a graph where subjects and objects are vertices
and predicates are edges. The advantage of RDF and graph data
model is that one can infer new knowledge from existing graph.
For example, a system can use domain knowledge to understand
that the temperature in Room 803 is 18°, which is transitive prop-
erty. The domain knowledge is often expressed using Web Ontol-
ogy Language (OWL) [28], one of the main languages (with RDF
schema) to define ontologies on the Web.

To carry out the annotation on smart objects, World Wide
Web Consortium has pioneered to establish a working group
to gather contributions in this field and to define the first
universal ontology for semantic sensor networks (SSNs) [29]. They
developed SSN ontology7 that is an OWL 2 ontology being able to
describe sensors in terms of capabilities, measurement processes,
observations and deployments. The SSN ontology follows a central
Ontology Design Pattern (ODP) [30] depicting the relationships
between sensors, stimulus, and observations. The ontology can
be seen from four main perspectives: a sensor perspective, with
a focus on what senses, how it senses, and what is sensed; an
observation perspective, with a focus on observation data and
relatedmetadata; a system perspective, with a focus on systems of
sensors and deployments; and, a feature and property perspective,
focusing onwhat senses a particular property or observations have
been made about a property.

Several studies focused on publishing semantic sensor data.
Sense2Web [31], for example is a linked-data platform to publish
sensor data and link them to existing resource on the Semantic
Web. Sense2Web facilitates the publication of linked sensor
data and makes this data available to other Web applications
via SPARQL [32] endpoints. Pfisterer et al. [33] introduced
the vision of Semantic Web of Things for building semantic
applications involving Internet-connected sensors as easy as
building, searching, and reading a Web page today. This is
done by a crawler periodically scanning the Semantic Web of
Things for semantic entities and sensors, downloading metadata
and prediction models using their Web APIs, converting this
information into RDF triples, and storing them in the triplestore.

The work in [34] is another approach in provisioning semantic
annotation for IoT smart objects, similar to the Semantic Web

7 http://purl.oclc.org/NET/ssnx/ssn.
of Things vision. It is about a platform-independent Wiselib
RDF Provider to enable the Internet-connected smart objects to
act as semantic data providers. They can describe themselves,
including their services, sensors, and capabilities, by means of RDF
documents. A smart object can auto-configure itself, connect to the
Internet, and provide Linked Data without manual intervention.
The authors proposed to use a semantic storage for storing RDF
documents from smart object data and a data provider responsible
for dynamic parts of the RDF documents, such as measurements.
It converts sensing data to RDF and inserts it into the semantic
storage. Using the Wiselib’s callback sensor concept, the data
provider gets notified when the value of its associated sensor
changes. Another module RDF service broker provides an interface
for clients to access and modify the RDF in the storage and to
manage subscription from clients.

[35] Bimschas et al. investigated unified concepts,methods, and
software infrastructures that support the efficient development of
applications across the Internet and the embedded world based
on Semantic Web technologies. From an abstract point of view,
the main task of IoT application developers is obtaining the
data for a specific task. In distributed systems, this requires (1)
to identify entities holding the data and (2) to retrieve them.
In this paper, authors proposed a methodology to simplify IoT
application development. The approach combines technologies
from the Internet of Things and the Semantic Web to provide this
service efficiently. The central idea is to let entities provide self-
descriptions of their type, capabilities, services, etc. in a machine-
readable manner.

The paper [36] presented an IoT semantic service model for
different components in an IoT framework over physical entities.
It is also discussed how the model can be integrated into the
IoT framework by using automated association mechanisms with
physical entities and how the data can be discovered using
semantic search and reasoningmechanisms. The entity constitutes
things in the Internet of Things and could be a human, animal,
car, store or logistic chain item, electronic appliance, or a closed
or open environment. The relations between services and entities
are modeled as associations. These associations could be static,
e.g., in case the device is embedded into the entity or dynamic,
e.g., if a device from the environment is monitoring a mobile
entity. The semanticmodeling andOWL/RDFdescriptions solve the
interoperability issues within the stakeholders that have agreed
and/or provided data using the models.

Kleine argued in [37] that a key indicator for sustainable
application development is the reusability of components and data
provisioning. The provisioning of sensor readings as CoAP Web
services is a straightforward way to integrate the sensors (the
physical things) into the Internet and thus makes them part of
the IoT. He proposed to divide the data model into three separate
parts with Data Provider stay in between Data Origin and Data
Consumer. The central component of theData Provider is the Smart
Service Proxy (SSP) which acts as the intermediate device between
the client (Data Consumer) and the resource (Data Origin). SSP
contains a semantic database as the presentation of data collected
from sensor nodes, which is the core of the provisioning process.
Since the SSP focuses on semantic service provisioning, the cache
is well fitted to semantic content, i.e., triples. This allows Data
Consumers not only to retrieve cached resource states but also use
SPARQL to find resources with certain properties. The SSP provides
an endpoint to run queries on its cached resources via its Web URI.

4.5. Literature analysis

We observe several problems in literature about IoT service
provisioning as follows:

http://purl.oclc.org/NET/ssnx/ssn
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• Most of the studies focus on the high-level architecture and
models for service provisioning without sufficient details about
networking protocols at smart object level and about the in-
tegration with traditional services at application level. Ser-
vices from smart objects possess different characteristics then
traditional ones as they operate in constrained environments
(e.g., low capacity nodes, lossy and low-rate network). It is
therefore necessary for service provisioning architecture to
consider these properties.

• Current studies have not considered a full IP IoT in service
provisioning, which results in the use of protocol gateways to
translate non-IP to IP-based communication. Protocol gateways
are complex to design, manage, and deploy; their network
fragmentation leads to non-efficient networks because of the
inconsistent routing, QoS, transport, and network recovery.
End-to-end IP architecture is considered suitable and efficient
for scalable networks of large numbers of communicating
devices such as the IoT.

• Service provisioning in SOA-based IoT using W3C Web Service
architecture is facingmany difficulties such as the heavyweight
of Simple Object Access Protocol (SOAP) messages and the
complex parsing XML documents. Web APIs are providing
an efficient ways of interacting between Web applications
ensuring smooth and simple operation of the Web and coping
with the future participation of millions of smart objects.
This approach originally aim to IoT application in enterprise
solutions which base on business processes of Web services.

• Semantic annotation of smart objects is incorporated within
the annotation of sensor data. Whilst, the annotation of
functionality (i.e., not data) is also important for these services
are present in a great number of smart objects such as services
to switch on/off a light bulb and to activate a watering system.
The future of IoT is driven by many types of objects that
carry not only data but also functionalities. Currently, there
are two methods for annotating smart objects (either data
or functionality): direct annotation and third-party service.
The former incurs large data stored in smart objects and
large exchange messages due to the use of XML-based RDF
standard. The latter represents a single bottle neck bywhich the
communication stream can be broken or interfered.

In this article, we aim to overcome these problems by
proposing a new semantic service provisioning to empower the IoT
applications on Web.

5. Provisioning requirements

For the integration of IoT applications into theWeb in a practical
and scalable manner, there still exist several challenges that need
to be addressed. We first analyze these problems to establish
requirements for service provisioning.

5.1. Service discovery

An important issue for developing robust IoT applications is
that the applications should be resilient to changes that might
occur over time in smart objects (e.g., availability, mobility, and
service description) without or with limited need for any external
human intervention. Suitable mechanisms for service/resource
discovery have been defined. The Constrained Application Protocol
(CoAP) [38] defines a procedure used by a client to learn about the
endpoints exposed by a CoAP server. A service is discovered by
a client by learning the well-known Uniform Resource Identifier
(URI) /.well-known/core (RFC 5785) that contains URIs or links of
available services in CoRE Link Format (RFC 6690). CoAP, however,
does not specify how a node joining the network for the first
time, which can be extended by using multicast communications
(RFC 7390). The Devices Profile for Web Services [39] uses WS-
Discovery mechanism with multicasting that does not require any
central service registry such as Universal Description, Discovery
and Integration (UDDI) for Web services. In both cases (DPWS
and CoAP), multicast service/resource discovery is applicable
when a client needs to locate a service within a local network
scope supporting IPmulticast. Thismulticast discoverymechanism
operates only within an IP multicast domain and does not scale to
larger networks that do not support end-to-end multicast such as
the Internet. Centralized approaches could be a solution for service
discovery. However, for instance, the resource discovery of the
CoAP protocol, suffers from scalability and availability limitations
and is prone to attacks such as denial of service (DoS) [40].

5.2. Semantic annotation

The Web is becoming more meaningful thanks to the Semantic
Web technology that require new systems to be able to understand
its language and standards. Semantic annotation of smart objects
is incorporated within the annotation of sensor data. Whilst, the
annotation of functionality (i.e., not data) is also important for
these services are present in a great number of smart objects
such as services to switch on/off a light bulb and to activate a
watering system. The future of IoT is driven by many types of
objects that carry not only data but also functionalities. Currently,
there are two methods for annotating smart objects (either data
or functionality): direct annotation and third-party service. The
former incurs large data stored in smart objects and large exchange
messages due to the use of XML-based Resource Description
Framework standard [27]. The latter represents a single bottle neck
by which the communication stream can be broken or interfered.

5.3. Simultaneous requests

The 6LoWPAN design enables smart objects to be accessed
directly from Internet using native IP protocols without any
protocol translation support. However, smart objects only support
a very small number of simultaneous requests due to their
resource-constrained nature (memory, processing power, and
communication bandwidth) and this issue is also related to the
implementation of the networking stack. Although the use of
constrained operating systems with a full IoT protocol stack
(e.g., Contiki OS) can manage these requests, it can cause the long
delay in service response. The delay increases significantly when
more requests come to smart objects as can be seen in Fig. 2. A
single service request delays at very short time of 50 ms; two or
more requests take the smart object several seconds to response;
5 requests create 5 s delay and the figure soars to 35 s in case of 20
simultaneous requests.

5.4. Service authorization

When making smart objects available for services on the
Internet, beside assuring an interoperable deployment model
(i.e., using IP protocols and Web APIs), security measures have
to be taken into account that smart objects cannot be hijacked
or hacked, making sure access to the smart object is still under
controlled by the physical owners. The challenge with service
provisioning of smart objects for IoT applications onWeb is that the
owner of smart objectsmust give out the access to the applications
meanwhile maintaining the secure control of smart objects. If a
service provisioning server provides a smart object API to the
public or just only to a set of registered third-party developers, it
might be possible for developers to misuse the smart objects.
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Fig. 2. Comparison of service delay when multiple simultaneous requests are sent
to one smart object. Results are from the experiment described in Fig. 8 where
multiple requests are sent to one Cooja node in a 6LoWPAN network.

5.5. Web API generation

Web APIs are specifications that define how to interact with
software components, particularly, allow access to remote Web
resources via a communicationnetwork. The benefit for developers
in adopting Web APIs is an easy way to enrich functionality,
simple and quick to integration, and leveraging brand strength
of established partners. Even in the new platform of smartphone
applications, we can already see that the use of Web APIs is
prevalent. Shazam,8 for example, the application that allows users
to recognize pieces of music in real-time, integrates Web APIs
from many providers such as the Spotify, YouTube, Amazon,
iTunes, and radio APIs. Additionally, it allows social sharing, which
presumably is realized by using the Web APIs of the various social
platforms. The ability to offer smart objects in the form ofWeb API,
therefore, is also an important requirement for the integration of
IoT applications into the Web.

6. System architecture

This section presents details on our proposed service provision-
ing architecture including Reference Infrastructure and Functional
Block Diagram.

6.1. Reference infrastructure

Fig. 3 illustrates the reference architecture in which smart
objects are items equipped with sensors or actuators, tiny
microprocessors, memory, low-power communication devices,
and power sources. Smart objects exist in several real-life
facilities such as buildings, houses, and public spaces. Most of
them are constrained devices with even few hundred kilobyte
memory and is battery-powered. They run low-power operating
system implemented with IP-based protocols. These smart objects
configure a 6LoWPANbased on low-power physical layer protocols
such as IEEE 802.15.4, Bluetooth Low Energy (BLE), and DECT Ultra
Low Energy. The 6LoWPAN connects to regular IP networks via a
6LoWPAN Edge Router (6EdR) and beyond to the Internet through
a series of other routers across the network. Smart objects are
first manufactured with primitive services inside, which can be
re-programmed. These services are then provisioned to the IoT
applications on Web by the method presented in our proposed
architecture. These applications are hosted on the Web servers
or cloud and can be accessed via user devices such as laptop
computers, smart phones, and tablets.

8 http://www.shazam.com/.
This reference architecture can be realized in home networks.
For example, a home hosts several smart objects including a
wireless camera, a wireless LED smart bulb, and an alarm. These
objects join the home network via Ethernet coaxial cables (alarm)
or wirelessly by BLE (camera, smart bulb). The network connecting
to a 6EdR acts as an access point for home Internet connection,
and also connects to other devices using full IP capacity such as
laptop and TV. A smart phone application can use the Web API
provisioned from these smart objects to provide a handy tool for
users to remotely control their home with tasks such as switch on
or off a light bulb. Another application is a Home SurveillanceWeb
application providing surveillance service for users to remotely
track their home environment such as notifying users that their
kids are at home.

6.2. Functional block diagram

Fig. 4 depicts the proposed service provisioning architecture
with functional blocks divided into three subsystems: service
communication, service provisioning, and service integration.
These functional blocks provide guidelines for implementing
relevant IP networking stack in smart objects. IP networking
for smart objects is the foundation for facilitating services using
application layer protocols doing semantic annotations to these
services. It relies on open and standardized protocols mainly
from IETF working groups. Service provisioning method for
secure, scalable, and reliable services of 6LoWPAN includes:
service discovery, scheduling, URI mapping, request handling,
authentication, and Web API representation. A method for using
provisioned services from smart objects includes steps: retrieving
Web API from service providers, requesting authentication tokens,
requesting a smart object service, receiving response from smart
object, querying and reasoning using an appropriate domain
ontology, and mashing up with other APIs.

7. Semantic service provisioning

Wepropose the service provisioning architecture tomeet afore-
mentioned five requirements presented in Section 5: service dis-
covery, semantic annotation, simultaneous requests, authoriza-
tion, andWeb API generation. As can be seen from Fig. 4, Resource
Management provides a user interface for managing smart objects
in the provisioning network as well as granting authorization for
IoT applications onWeb via Authorization block. Scheduling coop-
erates with Request Handling to coordinatemultiple simultaneous
requests to ensure the quality of service. Service Discovery handles
native discovery protocols in 6LoWPAN and feed them to Semantic
Annotation and to the Web API Generation, which in turn call URI
Mapping process to generate API endpoints. Triplestore provides
the semantic storage for provisioning services.

7.1. Service discovery

This function block resides at the lowest level of provisioning
functionality on local network side to directly interact with
devices. It is required to discover available services to carry out
the provisioning. Web services are usually discovered by querying
registries using interfaces such as Universal Description Discovery
and Integration (UDDI). While it can be a convenient way to
discover services, its centralized nature can lead to many issues
such as fault tolerance, performance, and scalability. In DPWS,
multicasting-based WS-Discovery does not require any central
service registry. When an application tries to locate a device in
a network, it sends a UDP multicast message (using the SOAP-
over-UDP binding) carrying a SOAP envelope containing a WS-
Discovery Probe message with the search criteria, e.g., the name

http://www.shazam.com/
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Fig. 3. The reference infrastructure.
Fig. 4. Functional block diagram.
of the device. All the devices in the network (local subnet) that
match the search criteriawill respondwith a unicastWS-Discovery
Probe Match message (also using the SOAP-over-UDP binding).
To achieve resource discovery, CoAP servers provide a resource
description available via awell-knownURI /.well-known/core (RFC
5785). This description is then accessed with a GET request on the
URI.

1 2.05 Content
2 </ . well−known/ core >; ct =40 ,
3 </ control / led >
4 t i t l e ="LED Red , PUT mode=on | o f f " ; r t =" control "
5 </ status / temp>
6 t i t l e ="Temperature " ; r t =" status "

Listing 1: CoRE Link Format.

1 <?xml version ="1.0" encoding="UTF−8"?>
2 <s12 : Envelope
3 xmlns : s12=" http : / /www.w3. org /2003/05/soap−envelope " xmlns :

wsa=" http : / /www.w3. org /2005/08/ addressing "
4 xmlns :wsd="http : / / docs . oasis−open . org /ws−dd/ ns / discovery

/2009/01">
5 <s12 :Header>
6 <wsa: Action >http : / / docs . oasis−open . org /ws−dd/ ns / discovery

/2009/01/Probe
7 </wsa: Action >
8 <wsa:MessageID>urn : uuid :3ac5f820−d47d−11e3−80c0−358

d7a9bbe90
9 </wsa:MessageID>

10 <wsa:To>urn : docs−oasis−open−org :ws−dd: ns : discovery
:2009:01</wsa:To>

11 </s12 :Header>
12 <s12 :Body>
13 <wsd: Probe / >
14 </s12 :Body>
15 </s12 : Envelope>

Listing 2: WS-Discovery Probe message.

The Service Discovery provides the same interface to query
services regardless of the protocol (e.g., CoAP, DPWS) used in the
6LoWPAN. It is in the form of plugin, when we need to incorporate
new protocol we can add in to. This function also plays a role
as handling several service discovery functionalities happening
at multicasting support provisioning network and making some
functionalities possible in global scenario such as dynamic service
discovery with DPWS. The approach is to apply URI mapping and
API representation directly on underlying discovery mechanism of
each protocol. In addition, we use a repository to maintain the list
of active devices by carrying out the discovery process periodically
or when the traffic is detected low in the 6LoWPAN. For example,
a smart object has a temperature sensor and an LED indicator to
display the status of room temperature. A client can discover these
services by sending a request GET /.well-known/core to the smart
object, which responses with the content shown in Listing 1. This
task can be done with the service provisioning service by using the
Web API presented in Table 1. Similarly, instead of using complex
WS-Discovery Probe message in Listing 2 for DPWS services, we
can discover services of the smart object by the same provisioning
APIs. From the content of the response message, two services are
discovered and provisioned in two Web APIs (see Table 2).

7.2. Scheduling

Limited resources in smart objects result in a problem of
supporting simultaneous requests from multiple IoT applications
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Table 1
Discovery API.

GET /[uri]/discovery
Search for a smart object with criteria

Arguments N/A
Example GET http://157.159.103.50/[aaaa::212:7400:13cc:3693 /discovery]

157.159.103.50 is the provisioning server IP address, 8080 is the port number.
aaaa::212:7400:13cc:3693 is smart object IP address.
Table 2
Discovered services: Web APIs.

PUT /[uri]/control/led
Switch on/off LED indicator in the smart object

Arguments mode = on/off
Example PUT http://157.159.103.50/[aaaa::212:7400:13cc:3693 /control/led?mode=on]

GET /[uri]/status/light
Get the current temperature

Arguments N/A
Example GET http://157.159.103.50/[aaaa::212:7400:13cc:3693 /temp]

157.159.103.50 is the provisioning server IP address, 8080 is the port number.
aaaa::212:7400:13cc:3693 is smart object IP address.
onWeb. Multiple requests can happen frequently for it is a typical
case in the interaction between applications and smart objects
when they get connected and become an integral part of the
Internet. Many smart objects such as sensor nodes only support
a very small number of simultaneous connections resulting in
an ineffective operation of several real-time applications. We
solve this problem by using a scheduling algorithm shown in
Listing 3. The algorithm consists of four processes: RequestHandler,
Scheduler, QuantumAssertion, and ResponseObserver. Two requests
are considered to be simultaneous if they come one after another
in very short time (less than a threshold denoted by quantum time).

1 PROCESS RequestHandler
2 BEGIN
3 I n i t i a t e requestQueue
4 Keep track of lastReqestTime
5 I f ( requestTime i s within lastRequestTime bound)
6 Begin
7 Add new request to requestQueue
8 Activate the Scheduling process i f i t i s not act ive
9 End

10 END
11
12 PROCESS Scheduler
13 BEGIN
14 Every quantumTime
15 Begin
16 I f requestQueue i s empty
17 Stop
18 Else
19 Remove request from requestQueue
20 Add request to sentQueue
21 Send request
22 End
23 END
24
25 PROCESS QuantumAssertion
26 BEGIN
27 I f sentQueue i s not empty and top of queue i s overtime
28 Adjust quantumTime
29 Else
30 Reset quantumTime
31 END
32
33 PROCESS ResponseObserver
34 BEGIN
35 I f there i s a response
36 Remove from sentQueue
37 Get c l i en t id
38 Forward to c l i en t
39 END

Listing 3: Scheduling algorithm.

The RequestHandling process receives coming HTTP requests
via the provisioned Web API and check if each request arrives
in a reasonable interval. If a request arrives too fast (less than
a quantum time after the nearest recorded request), it will be
added to a request queue (based on a queue data structure [41]).
The Scheduling process keeps track of the request queue and it is
activated when there are waiting requests in the queue. When
the Scheduling process starts, it checks the request queue again,
removes the head request (first in the queue), adds this request to
another queue called sent queue, and sends the request accordingly
to the target smart object. The QuantumAssertion keeps track of the
sent queue to see if a request has waited for too long to adjust the
quantum time. The ResponseObserver process forwards the received
response messages from smart objects to clients and updates the
sent queue.

7.3. Semantic annotation

1 <rdf :RDF
2 xmlns : rdf =" http : / /www.w3. org/1999/02/22− rdf−syntax−ns#"
3 xmlns=" http : / /www. i t−sudparis . eu / sensor#"
4 xmlns : ns0=" http : / /www.w3. org /2000/01/ rdf−schema#" >
5 xmlns : ns1=" http : / / pur1 . oc1c . org /NET/ ssnx / ssn#"
6 <rdf : Description rdf : about=" http : / /www. i t−sudparis . eu /

sensor#Temp5">
7 <ns0 : type rdf : resource =" http : / / pur1 . oc1c . org /NET/ ssnx /

ssn#Sensor "/ >
8 <ns1 : observedProperty >Temperature </ns1 : observedProperty >
9 <ns1 : hasValue >19.2 </ns1 : hasValue>

10 </ rdf : Description >
11 </ rdf :RDF>

Listing 4: Temperature sensor smart object RDF/XML format.

Tim Berners-Lee coined the term Semantic Web as an
extension of the current Web [6] in which data are consumable
and understandable to machines. It brings a new concept of
representing data in the meaningful graph database model to
improve the communication between human and machine. That
means Semantic Web can achieve a certain level of automation
on Web [42]. When the IoT paradigm arrives and it is now
changing theWeb, the Semantic Web concept even fits more to its
architecture since smart objects need intelligence and automation

http://157.159.103.50/%5Baaaa::212:7400:13cc:3693%5D/discovery
http://157.159.103.50/%5Baaaa::212:7400:13cc:3693%5D/control/led?mode=on
http://157.159.103.50/%5Baaaa::212:7400:13cc:3693%5D/temp
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in different level to fulfill their tasks. However, similar to other
extensions of Internet and Web protocols originally designed for
computers to smart objects such as CoAP toHTTP orDPWS to SOAP,
straightforward adoption of semantic annotation to smart objects
is impractical. It is because of the complexity of the Semantic
Web model with the involvement of ontology, triple, and data
presentation following specific requirements.
1 @prefix : <http : / /www. i t−sudparis . eu / sensor#> .
2 @prefix rdf : <http : / /www.w3. org/1999/02/22− rdf−syntax−ns#> .
3 @prefix ns0 : <http : / /www.w3. org /2000/01/ rdf−schema#> .
4 @prefix ns1 : <http : / / pur1 . oc1c . org /NET/ ssnx / ssn#> .
5 <http : / /www. i t−sudparis . eu / sensor#Temp5>
6 ns0 : type ns1 : Sensor ;
7 ns1 : hasValue "19.2" ;
8 ns1 : observedProperty "Temperature" .

Listing 5: Temperature sensor smart object N3 format.

Listing 4, for example, shows an example of RDF representation
of temperature data from a sensor of a smart object. It uses 506
bytes to semantically represent the data from the smart object
with temperature sensing value is 19.2°. Even with Notation3
(N3) format [43], a textual syntax alternative to RDF, the size of
data is still rather large (see Listing 5). The reason is that the
semantic annotation for smart object involves a great deal of
linking information such as namespace and RDF schema. The size
of the semantic data in more complex situation may increase and
surpass the maximum buffer size that is provided for resource
responses, which must be respected due to the limited IP buffer
such as the maximum buffer size for CoAP blocks is typically 1024
bytes.

Literature approaches use third-party semantic services/servers
to capture and republish these data. This can solve the problem
of limited size for semantic annotation but results in many trade-
offs that prevent the adoption of this method. For example, third-
party server means the communication stream is broken and can
be interfered or the communication is slowed down and semantic
server becomes a bottleneck in the communication between ap-
plications and smart objects. The ideal way is to have smart ob-
jects express semantically expressive based on IP protocols. Our
approach is very close to this ideal method in which we unburden
most of semantic annotation information from smart objects to the
provisioning layer, keeping only core data for transmitting while
provisioned services still can be fully annotated. We use following
scheme:
1. Service providers provide a domain ontology for each set

of smart objects. Ontology for each domain is developed
independently by a reliable and consensus decision making
process, e.g., Semantic Sensor Network Ontology.9

2. Each service in smart object is represented inN3 formatwithout
default namespaces, ontology, and application URIs.

3. Ontology and application URI are added accordingly in service
provisioning layer based on the information from the service
provider for ontology and provisioning server for application
URI.

The above temperature sensing data can then be provided by
smart object by the format provided in Listing 6 while the actual
semantic annotation data can be reached from applications are still
the same as shown in Listing 5. The Internet media type passing to
Web API calls is denoted as text/n3.
1 :Temp5
2 a ns : Sensor ;
3 ns : hasValue "19.2" ;
4 ns : observedProperty "Temperature " .

Listing 6: Temperature sensor smart object N3 format.

9 http://purl.oclc.org/NET/ssnx/ssn.
These semantic data queried from smart objects are store in
a Triplestore. A triplestore is the storage for semantic data, in
this case, referring to the annotation of smart object data and
functionalities. A triple is a data entity composed of [subject,
predicate, object], there are three triples in the above data and one
more triple about the time stamp is added as shown in following
Listing 7.

1 [ < http : / /www. i t−sudparis . eu / sensor \#Temp5>
2 <http : / / pur1 . oc1c . org /NET/ ssnx / ssn\#type>
3 <http : / / pur1 . oc1c . org /NET/ ssnx / ssn\#Sensor >]
4 [ < http : / /www. i t−sudparis . eu / sensor \#Temp5>
5 <http : / / pur1 . oc1c . org /NET/ ssnx / ssn\#hasValue> "19 .2" ]
6 [ < http : / /www. i t−sudparis . eu / sensor \#Temp5>
7 <http : / / pur1 . oc1c . org /NET/ ssnx / ssn\#observedProperty > "

Temperature " ]
8 [ < http : / /www. i t−sudparis . eu / sensor \#Temp5>
9 <http : / / pur1 . oc1c . org /NET/ ssnx / ssn\#startTime > "2014:04:24

14:20"]

Listing 7: Four triples from temperature sensor.

Triplestore can be realized by serialization (i.e., using file
system) or by third-party solutions such as OpenLink Virtuoso,10
3Store,11 and Apache Jena.12 All the data in triplestore are
associated with a domain ontology indicated by the service
provider of the smart objects. The ontology is either available on
theWeb or newly developed by the service provider depending on
the field of the applications.

7.4. Authorization with OAuth 2.0

OAuth 2.0 [44] is an authorization framework that enables
applications to obtain limited access to resources on the Web
on behalf of the resource owner. It has been widely used in
many services such as Google, Facebook, and GitHub. It works by
delegating user authentication to the service that hosts the user
account, and authorizing third-party applications to access the
user account. OAuth 2.0 provides authorization flows for Web and
desktop applications and mobile devices.

OAuth 2.0 fits the security model of the IoT applications on
Web where the resource (smart object) owner can authorize an
application to access their smart object functions without having
full access on handling the smart object such as terminating its
operation. The applications have limited accesses to the smart
objects according to the scope of the authorization granted
(e.g. read only or update) whilst they still can communicate to
the smart objects once having been authorized. We therefore
adopt OAuth 2.0 as the core of authentication and authorization
framework for our proposed provisioning architecture.

Authorization functional block in our proposed service provi-
sioning architecture refers to an OAuth 2.0 authorization provider
functionality, which authenticates the identity of the user, in this
case locally within the provisioning network to strengthen the se-
curity. It issues access tokens to the interested applications follow-
ing the confirmation from the user. Any IoT application that wants
to access the smart object services must be authorized by the user,
and the authorization must be validated by the appropriate Web
API endpoints. There are three authorization endpoints in the our
proposed service provisioning architecture for this process: Autho-
rization URI (/authorize) is the URI onwhich users grant the autho-
rization to the interested application; Token URI (/token) is the URI
called by client applicationswhen theywant to exchange a code for
an access token, or a refresh token for a new access token. API URI

10 https://github.com/openlink/virtuoso-opensource.
11 http://threestore.sourceforge.net.
12 http://openjena.org.

http://purl.oclc.org/NET/ssnx/ssn
https://github.com/openlink/virtuoso-opensource
http://threestore.sourceforge.net
http://openjena.org
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Fig. 5. 3-step authorization process for IoT applications on Web.

(/api) is the base URI on which provisionedWeb API endpoints are
mounted. These Web API endpoints enable a secure communica-
tion between IoT applications onWeband6LoWPANsmart objects.
This is done in the three-step mechanism illustrated in the Fig. 5.

1. Step 1: User or the owner of the smart objects gets access to
the Resource Management and then goes to the Applications
section and looks for the appropriate application to authorize.
The user selects the application and click the authorize button
to grant the application with Client ID and Redirect URI
provided by the application. The Authorization then redirects
to the Redirect URI with the authorization code in the URI
fragment to transfer it to the application.

2. Step 2: The application requests an access token from the API,
by passing the authorization code along with authentication
details, including the client secret, to the API token endpoint.
If the authorization is valid, the API will send a response
containing the access token (and optionally, a refresh token) to
the application.

3. Step 3: Now the application is authorized! It may use the token
to carry out transactions with real services from provisioning
server via the serviceAPI, limited to the scope of the access, until
the token is expired or revoked.

7.5. URI Mapping

We propose two schemes for mapping service URIs to
provisioning URIs, which are integral parts of the Web API
endpoints. The first scheme is based on the resolved host-
names of smart objects in the network and the second scheme
uses IP addresses of smart objects. A thermostat, for ex-
ample, configured at IP address aaaa::212:7400:13cc:3693, has
a CoAP service to get the current room temperature bind-
ing to its IP address, service port, and service extension:
coap://[aaaa::212:7400:13cc:3693]:5683/status/temp. The service
provisioning service is at address 157.159.103.50. Then the service
URI is mapped to either one of the following provisioning URIs in
Table 3.

The firstmethod is straightforward since it does not require any
check for address duplication for the IP address is already unique
in the network so it is a good candidate for smart object identity.
The second method requires the provisioning server to check the
hostname duplication. It can be suitable for small homes or offices.

DPWS uses WS-Addressing to assign a unique identification for
each smart object (endpoint address), independent from trans-
port specific address. This unique identification is used with a
series of message exchanges Probe/ProbeMatch, Resolve/Resolve-
Match to get a transport address and then another series of mes-
sages are sent back and forth to invoke an operation. We define
a mapping between a pair of DPWS endpoint/transport addresses
and a single URI, and then we use the corresponding operation
name for each service as the extension of the URI. For example,
the aforementioned thermostat has a getTemp() operation im-
plemented in DPWS with the pair of endpoint and transport ad-
dresses of urn:uuid:46932240-d504-11e3-bf6a-6eabe38b6788 and
[aaaa::212:7400:13cc:3693]:4567/thermostat. Table 4 shows the
mapping of these two addresses along with the operation name
(temp) to a single URI. The mapping is unique for each smart ob-
ject service, and data are stored in the smart object repository of
the proxy. The repository is also updated when there is a change
in smart object status and/or periodically when the proxy runs its
routine to check all the active smart objects.

7.6. Web API generation

Web API Generator is in charge of generating a set of Web
API associated to each smart object service. The process is based
on above URI mapping scheme. The API consists of endpoints
for discovery, subscription, and service calls in Representational
State Transfer (REST) architectural style [16]. To generate these
RESTful Web APIs, we can extract directly from CoAP URI as
CoAP and HTTP basically use the same REST concept. With DPWS,
we propose a design constraint on the DPWS implementation
for smart objects. It is based on the fact that most smart object
services provide relatively simple operations compared to normal
Web services with complex input/output data structure. Our
proposed constraint follows a simplified CRUD model (‘‘create’’,
‘‘read’’, ‘‘update’’, ‘‘delete’’) to map between these services and
HTTP methods: DPWS Operation Prefix – CRUD Action – HTTP
Method. Specifically, four CRUD actions are applied to map DPWS
operations to HTTP methods as in Table 5.

Web APIs are the core of the development of applications on
the Web these days providing interfaces for developers to develop
applications on the Web. Web APIs are specifications that define
how to interact with software components, particularly, allow
access to remote Web resources via a communication network.
The benefits for developers in adopting Web APIs are: easy to
enrich functionality, simple and quick to integration, and leverage
brand strength of established partners. Even in the new platform
of smartphone applications, we can already see that the use of
Web APIs is prevalent. Our provisioning Web API consists of API
endpoints represented in the following format (see Table 6), which
is used consistently in this paper:

7.7. Resource Management

ResourceManagement functional block is in charge of monitor-
ing and managing the 6LoWPAN and its smart objects. It provides
information about the network status such as the number of nodes,
network topology, and routing information. It also provides an in-
terface for granting authorization to IoT applications onWeb to get
access to the provisionedWeb API. ResourceManagement authen-
ticates users by credentials (username/password) via a Web User
Interface (Web UI). Fig. 6 shows the Web UI of the Resource Man-
agement implemented within ThingsGate provisioning server [45]
for a Social IoT application, which is based proposed architecture.

8. In-network implementation with DPWS

This section introduces an in-network implementation of the
proposed architecture for DPWS protocol. The implementation is
in the form of a REST proxy to extend the DPWS standard to better
integrate it into the IoT applications on Web while maintaining its
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Table 3
URI mapping with CoAP.

Service URI coap://[aaaa::212:7400:13cc:3693]:5683/temp
Provisioning server 157.159.103.50

Scheme 1 URI http://157.159.103.50/thermostat/temp
Scheme 2 URI http://157.159.103.50/[aaaa::212:7400:13cc:3693 /temp]
Table 4
Base URI mapping with DPWS.

Endpoint address urn:uuid:46932240-d504-11e3-bf6a-6eabe38b6788
Transport address http://[aaaa::212:7400:13cc:3693:4567/thermostat]
Service getTemp()
Provisioning server 157.159.103.50

Scheme 1 URI http://157.159.103.50/thermostat/temp
Scheme 2 URI http://157.159.103.50/[aaaa::212:7400:13cc:3693 /temp]
Table 5
CRUD operation mapping scheme.

Prefix CRUD Action HTTP Verb

Get- Read GET
Set- Update PUT
Add- Create POST
Remove- Delete DELETE

Table 6
API endpoints format.

[HTTP-VERB] [URI EXTENSION] [DESCRIPTION]

Arguments [ARGUMENTS]
Example [EXAMPLE]

advantages of dynamic discovery and eventing mechanisms. Fig. 7
shows the network topology in two cases of our proposed design
and the the original direct DPWS communication.

8.1. Devices profile for web services

DPWS is based on Web Service Description Language (WSDL)
and SOAP to describe and communicate device services, but it does
not require any central service registry such as Universal Descrip-
tion, Discovery and Integration (UDDI) for service discovery. In-
stead, it relies on SOAP-over-UDP binding and UDP multicast to
dynamically discover device services. DPWS offers a publish/sub-
scribe eventing mechanism, WS-Eventing, for clients to subscribe
for device events, e.g., a device switch is on/off or sensing when
temperature reaches a predefined threshold. When an event oc-
curs, notifications are delivered to subscribers via separate TCP
connections.

These features, secure Web services, dynamic discovery, and
eventing, are the main advantages of DPWS for event-driven IoT
applications. Nevertheless, in fact, developers would face several
problems when applying DPWS for IoT applications on Web.
The main concern is about the dynamic discovery in which the
network range of UDP multicast messages is limited to the local
subnet. Therefore, it is impossible to carry out this mechanism
in a large network such as the Internet. With WS-Eventing, the
establishment of separate TCP connections in case of delivering
the same event notification to many different subscribers will
generate a global mesh-like connectivity between all devices and
subscribers (see Fig. 7). This requires high memory, processing
power, and network traffic and thus consumes a considerable
amount of energy in devices. Another issue is the overhead
due to the data representation in XML format and multiple
bidirectional message exchanges. It is not a problem when most
DPWS devices currently communicate locally, but in a mass
deployment of devices, these messages would generate heavy
Internet traffic and increase the latency in device/application
communication. Furthermore, W3C Web services use WSDL for
service description and SOAP for service communication; the
former, despite the fact that it is a W3C standard, requires much
effort from developers to process poorly-structured XML data;
the latter is mostly common in stateful enterprise applications,
whereas recentWeb applications aremoving toward the coreWeb
Fig. 6. Resource Management Web UI in ThingsGate. Manage Device function/menu shows a list of discovered devices in the 6LoWPAN of home network. User can query
detailed information or add social data to each device by Info or Socialize hyperlinks associated to each smart object. Applications function/menu help users to authorize IoT
applications on Web to use resources in the 6LoWPAN.

http://157.159.103.50/thermostat/temp
http://157.159.103.50/%5Baaaa::212:7400:13cc:3693%5D/temp
http://%5Baaaa::212:7400:13cc:3693%5D:4567/thermostat
http://157.159.103.50/thermostat/temp
http://157.159.103.50/%5Baaaa::212:7400:13cc:3693%5D/temp
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concepts expressed in REST architectural style by offering stateless
and unified interfaces of RESTful Web APIs.

To solve these problems, we design a service provisioning
mechanism for DPWS using a REST proxy by providing the fol-
lowing features: (1) global dynamic discovery usingWS-Discovery
in local networks; (2) proxy-based topology for publish/subscribe
eventing mechanism; (3) dynamic addressing for DPWS smart ob-
jects; (4) RESTful Web APIs; and (5) WSDL caching. The proxy un-
burdens Internet traffic by processing the main load in local net-
works. Also, the proxy can extend the dynamic discovery from lo-
cally to globally through RESTfulWeb APIs. Developers do not have
to parse complexWSDL documents to get access to service descrip-
tions; they can use RESTful Web APIs to control smart objects.

We will follow an IoT engineer Rosalie’s development process
to understand what challenges she could encounter when
developing, deploying, and interacting the smart object from
her IoT application and how the proxy helps her to solve these
problems. The following use case illustrates a common situation
in several IoT applications when a new smart object joins the
network.

8.2. Use case

Rosalie would like to make a module for controlling a
newly-purchased DPWS heater. The heater is equipped with
a temperature sensor, a switch, memory, a processor, and
networking media, and is implemented with a hosted Heater
service. Heater service consists of eight operations: (1) check the
heater status (GetStatus), (2) switch the heater on/off (SetStatus),
(3) get room temperature (GetTemperature), (4) adjust the heater
temperature (SetTemperature), (5) add (AddRule), (6) remove
(RemoveRule), and (7) get (GetRules) available policy rules for
defining automatic operation of the heater, and (8) over-heating
event eventOverHeat(). She connects the heater to the network and
tries to control it from her IoT application.

8.3. Global dynamic discovery

When an application tries to locate a smart object in a network,
it sends a UDP multicast message (using the SOAP-over-UDP
binding) carrying a SOAP envelope that contains a WS-Discovery
Probe message with search criteria, e.g., the name of the smart
object. All the smart objects in the network (local subnet) that
match the search criteriawill respondwith a unicastWS-Discovery
Probe Match message (also using the SOAP-over-UDP binding). In
our use case, the heater sends Probe Match message containing
network information. At this point, Rosalie realizes that it is
impossible for her IoT application to dynamically discover the
heater because of the network range limit to local subnet of
multicastmessages. If a proxy is applied, it allows the application to
suppress multicast discovery messages and instead send a unicast
request to the proxy. Then, the proxy can representatively send
Probe and receive Probe Match messages to and from the network
while the behavior of smart objects remains unmodified; they still
answer to Probe message arriving via multicast. In networks with
many Probe messages, the proxy can significantly unburden the
Internet traffic. The proxyprovides twoRESTfulWebAPIs to handle
the discovery as shown in Table 7.

We also propose a repository in the proxy to maintain the list
of active smart objects. The repository is updated when smart
objects join and leave the network. In addition, the proxy performs
a routine to periodically check the consistency of the repository,
says every 30 min. For a proxy with 100 smart objects, the size of
the repository is about 600 kb, so it is feasible for unconstrained
machines used to host a proxy.
Table 7
Discovery API.

GET /discovery
Search for a smart object with criteria

Arguments search: search criteria
Example PUT http://157.159.103.50/discovery?search=Heater

GET /discovery
Get the list of connected smart objects

Arguments N/A
Example GET http://157.159.103.50/discovery

157.159.103.50 is the proxy’s IP address, and 8080 is the port number.

8.4. Publish/subscribe eventing

To receive event notifications, Rosalie can subscribe her
application directly to the heater by sending a SOAP envelope
containing a WS-Eventing Subscribe message (using the SOAP-
over-HTTP binding). The heater responds by sending aWS-Eventing
SubscribeResponse message via the HTTP response channel. When
an event occurs, the heater establishes a new TCP connection
and sends an event notification to the subscriber. Therefore, in
scenarios with many subscribers, it generates high level of traffic,
requiring high resources, and causing smart objects to consume
more energy. However, this publish/subscribe mechanism can be
done through REST proxy to reduce the overhead of SOAPmessage
exchanges and resource consumption, replacing global mesh-like
connectivity byproxy-based topology (see Fig. 7). OneRESTfulWeb
API is dedicated for event subscription; instead of sending a WS-
Eventing Subscribe message, the application sends an HTTP POST
request to the subscription resource (see Table 8).

Fig. 7 shows the network topology in two cases of our proposed
design and the original directDPWScommunication. Table 9 shows
a list of RESTful Web APIs provided by the proxy for the heater
smart object mapping with DPWS operations.

8.5. WSDL caching

When an application knows a smart object hosted service (rep-
resenting smart object functionalities) endpoint address, it can ask
that service for its interface description by sending a GetMetadata
Servicemessage. The servicemay respondwith a GetMetadata Ser-
vice Response message including a WSDL document. The WSDL
document describes the supported operations and the data struc-
tures used in the smart object service. Some DPWS implementa-
tions (such as WS4D JMEDS) provide a cache repository to store
theWSDL document at runtime. After the application retrieves the
WSDL file for the first time, the file can be cached for local usage
in the subsequent occurrences within the life cycle of the DPWS
framework (start/stop). This kind of cachingmechanismwould sig-
nificantly reduce both the latency and the message overhead. Our
DPWS proxy can provide WSDL caching not only at runtime but
also permanently in a local database. The cache is updated along
with the routine to maintain the smart object repository in proxy
described in the dynamic discovery section.

9. Performance Evaluation

We carry out the experiments with 6LoWPAN set up on Cooja
simulator [46]. Experiment results from our previous work [47]
allow us to set up a 6LoWPAN network on network simulator
with respect to real-life performance. This approach does not
lose important properties of smart objects and especially effective
to focus on the service integration issues. Cooja can accurately
simulate all the constraints in smart objects and 6LoWPAN such as
ROM/RAM size, microprocessor instruction set, and IEEE 802.15.4

http://157.159.103.50/discovery?search=Heater
http://157.159.103.50/discovery
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Table 8
Event subscription API.

POST /[smart object ID]/[event]
Subscribe to a smart object event

Arguments agent: address to send notification messages
Example POST http://157.159.103.50/heater/overheat?agent=157.159.103.63/heating

157.159.103.50 is the proxy’s IP address, 8080 is the port number, 157.159.103.63/heating is the callback endpoint of the
application.
Table 9
RESTful Web API for the heater.

RESTful Web API DPWS operations Argument Description

GET /discovery Discovery List smart objects
PUT /discovery search Search for smart objects
POST /heater/overheat eventOverHeat() Subscribe to an event
GET /heater GetStatus() Get heater status
PUT /heater SetStatus(String) status Set heater status
GET /heater/temp GetTemp() Get room temperature
PUT /heater/temp SetTemp() temp Adjust heater temperature
POST /heater/rules AddRule rule Add new rule
GET /heater.rules GetRules() List of rules
DELETE /heater/rules/[ruleID] RemoveRule() ruleID Delete a rule
(a) REST proxy. (b) Direct.

Fig. 7. Network topology in two cases: (a) our proposed design configures a proxy-based topology with local HTTP/SOAP binding, (b) the original smart objects Profile
for Web Services (DPWS) communication configures global mesh-like connectivity for HTTP/SOAP binding. Consequently, the original DPWS introduces higher latency and
overhead.
radio environment. Fig. 8 shows the 6LoWPAN with 10 random
nodes. The longest distance to the 6EdR (node 1) is 3-hop (nodes
1-2-3-4). TX/RX success ratio is set at 98% as suggested in Packet
Delivery Ratio test in [47]. Each node is implemented with a CoAP
service enriched with the proposed semantic annotation. We aim
to test the performance of service provisioning server to see how
the proposed algorithms and mechanisms perform in term of
transparency and efficiency. The provisioning service is deployed
in the simulator host machine, which creates a local network with
6EdR in its Ethernet interface. A Web application is developed in
a Web service of the same local network with the provisioning
server (the deployment of the same application on a server on
Web does not change the nature of the IP communication with the
involvement of a number of routers).
9.1. Transparency

First of all, the consistent use of IP stack in smart objects as well
as in provisioning is aligned with common network infrastructure,
which ensures a transparency of communication in the network.
6EdR is an important node in the IP networkingmodel to assure the
smooth communication. This can first verified by ping6 command
from a regular IP node to a 6LoWPAN node (see Listing 8). We
further examine the transparency of the service provisioning
against the implementation of our proposed algorithms, especially
for the scheduling.We carry out a single request to a service of node
2 from our IoT application with and without scheduling module.
Fig. 9 shows that the service request delay remains stably equal
in both cases, meaning that our algorithm does not affect non-

http://157.159.103.50/heater/overheat?agent=157.159.103.63/heating
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Fig. 8. A 6LoWPAN in Coojawith 10 nodes and 3-hop distance from the edge router
(node 1). All nodes are implemented with Contiki and uIP stack. The screenshot
shows the network if self-configuring with traffic exchanged between nodes.

simultaneous requests while improving the performance when
multiple simultaneous requests come to a service.

1
2 64 bytes from aaaa ::212:7403:3:303: icmp_seq=24 t t l =62 time

=352 ms
3 64 bytes from aaaa ::212:7403:3:303: icmp_seq=25 t t l =62 time

=355 ms
4 64 bytes from aaaa ::212:7403:3:303: icmp_seq=26 t t l =62 time

=369 ms
5 64 bytes from aaaa ::212:7403:3:303: icmp_seq=27 t t l =62 time

=347 ms
6 64 bytes from aaaa ::212:7403:3:303: icmp_seq=28 t t l =62 time

=334 ms
7 64 bytes from aaaa ::212:7403:3:303: icmp_seq=29 t t l =62 time

=336 ms
8 64 bytes from aaaa ::212:7403:3:303: icmp_seq=30 t t l =62 time

=353 ms
9 64 bytes from aaaa ::212:7403:3:303: icmp_seq=31 t t l =62 time

=372 ms
10 64 bytes from aaaa ::212:7403:3:303: icmp_seq=32 t t l =62 time

=343 ms
11 64 bytes from aaaa ::212:7403:3:303: icmp_seq=33 t t l =62 time

=354 ms
12 ^C
13 −−− aaaa ::212:7403:3:303 ping s t a t i s t i c s −−−

14 33 packets transmitted , 26 received , 21% packet loss , time
32060ms

15 r t t min/ avg /max/mdev = 308.008/350.727/411.389/21.042 ms
16 user@instant−cont ik i :~$

Listing 8: Ping command from a regular IP node to 2-hop node 3 in
6LoWPAPN (aaaa::212:7403:3:303).

9.2. Scheduling: simultaneous requests handling

We carry out an experiment to test the situation whenmultiple
requests come to the same smart object service. To recap, two
requests are considered simultaneous if they happen within a
small interval of time, for example as we observe with MTM-
CM5000-MSP TelosB motes,13 the value is about 100 ms. As seen
from Fig. 10, the scheduling algorithm significantly improves the
delay of service request in all cases with the number of requests

13 1 http://www.advanticsys.com/shop/mtmcm5000msp-p-14.html.
Fig. 9. Scheduling algorithm is transparent as it does not affect a single request.
Its purpose is to improve the delay when there are multiple simultaneous requests
coming to one smart object.

Fig. 10. Comparison of service delaywhenmultiple simultaneous requests are sent
to one smart object service.

ascending from 1 to 20. Especially when more simultaneous
requests sent to the same service, scheduling can be considered
to virtually eliminate the bottleneck in the network. Delay with
scheduling algorithm also shows the stability with respect to the
capacity of smart objects, that would not adversely affect user
experience on application side.

9.3. Scheduling: energy consumption

Weobserve the duty cycle and energy consumption of the smart
object hosting the requested service over the period of 100 s when
the smart object handling 20 simultaneous requests in the previous
experiment. We use the power profile Energest [48] in Contiki OS
to record the energy consumption in a target object. Energest uses
power state tracking to estimate system power consumption and a
structure called energy capsules to attribute energy consumption
to activities including CPU in active mode (CPU), CPU in standby
mode low-power mode (LPM), packet transmissions (TX), and
receptions (RX). The duty cycle and power for each activity is
calculated by following Formulas (1) and (2):

Energest_TX + Energest_RX
Energest_CPU + Energest_LPM

(1)

Energest_Value × Current × Voltage
RTIMER_SECOND × Runtime

(2)

where Energest_value is the value of Energest profile tracked in
each activity. Current is the current consumption,which, according
to the datasheets of TI CC2420 transceiver and TI MSP430F1611
microcontroller, is 330 µA, 1.1 µA, 18.8 mA, and 17.4 mA for CPU,
LPM, TX, and RX respectively. Voltage is the supply voltage, in this
case, 3 V for two AA batteries. RTIMER_SECOND is the number of
ticks per second for the RTIMER in Contiki OS, which is 32768.
Runtime is the runtime between two Energest track points. Note

http://www.advanticsys.com/shop/mtmcm5000msp-p-14.html
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(a) Using scheduling algorithm. (b) Direct request.

Fig. 11. Comparison of radio duty cycle when multiple simultaneous requests are sent to one smart object.
(a) Using scheduling algorithm. (b) Direct request.

Fig. 12. Comparison of energy consumption when multiple simultaneous requests are sent to one smart object.
that ContikiMAC [49] radio duty cycling mechanism is enabled in
smart objects. It aims to keep their radio transceivers off as much
as possible to reach a low power consumption, but wake up often
enough to be able to receive communication from their neighbors.
Duty cycles are estimated as the percentage of Energest ticks
in radio transmission (Energest_TX) and reception (Energest_RX)
over the total ticks of the microcontroller in CPU and LPM modes
(Energest_CPU, Energest_LPM) over a period of time (10 s).

Fig. 11 shows the duty cycling pattern in two cases. As we
notice, by applying scheduling, the smart sensor keeps radio on
during a shorter time about 20 s compare to 45 s when there is no
scheduling. Although, radio duty cycle peaks at nearly 6% in case
of using scheduling but overall energy consumption of the smart
object with support of scheduling is slightly lower than without
scheduling (see Fig. 12).

9.4. Semantic annotation

Our approach in annotating semantics to smart object service
is to break down the RDF data into two parts, the core data are
stored in smart object service and the additional linking data are
added in service provisioning phrase. The annotation in smart
object is represented in N3 format, delivered inmedia type request
of text/n3. With the richness of semantic annotation for smart
service data, our proposed mechanism significantly reduces the
size of the messages compared to straightforward annotation
and eliminate of using a third-party service for re-describing the
services. We consider a typical data representation from a smart
object service with the annotated information of type, source, and
value. Fig. 13 shows the data sizes in difference cases: no semantic
annotation, annotation in RDF format, annotation in N3 format,
and the proposed method. Our proposed method ensures that the
semantic annotation remains at reasonable bytes that can fit in
constrained IP stack such as uIP and CoAP.
Fig. 13. Scheduling algorithm is transparent as it does not delay a single request.
Its purpose is to improve the delay when there are multiple simultaneous requests
coming to one smart object.

9.5. REST proxy message overhead and latency

We set up an experiment to evaluate latency and overhead
in two different scenarios: the first one uses our proposed
proxy (Fig. 7(a)), and the second one uses the direct DPWS
communication (Fig. 7(b)). In both cases, an IoT application
communicates with a DPWS smart object (a heater) to invoke
its hosted service (heater functionalities). To replicate a realistic
deployment of the IoT application, we deployed it on a server
running Tomcat14 that used a public Internet connection and
was located about 30 km away from the smart objects. We
implemented the heater with a hosted service SmartHeater
providing eight operations, as in Table 9. We implemented a REST
proxy in Java using the Jersey library on Tomcat15 to generate

14 http://tomcat.apache.org.
15 http://jersey.java.net.

http://tomcat.apache.org
http://jersey.java.net
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Fig. 14. CoAP, DPWS, and HTTP message overhead and latency.

heater Web API. The IoT application either uses the API provided
by the REST proxy or directly communicates with the heater
(using the WS4D JMEDS library) to carry out the DPWS heater’s
four functionalities: checking heater status, setting heater status,
adding a new rule, and deleting a rule.
1 GET / proxy / heater HTTP/1 .1
2 User−Agent : Java /1 . 7 . 0
3 Host : 157.159.103.50
4 Accept : text / html
5 Connection : keep−a l i ve
6
7 HTTP/1 .1 200 OK
8 Server : Apache−Coyote /1 .1
9 Content−Type : text / html

10 Transfer−Encoding : chunked
11 Date : Fr i , 26 Ju l 2013 21:46:48 GMT
12
13 [1374820483967] ON

Listing 9: Request and response messages for obtaining the status
of the heater using the proxy Web API expose relatively simple in
HTTP format.

Fig. 14 shows the message sizes of the request and response
messages and the mean round-trip time (RTT) in the communi-
cation between the application and the SmartHeater. We use two
methods: the RESTful Web API from the proxy and the original
DPWS operations. The latency when using proxy is 25% lower than
when using DPWS. In many pervasive IoT scenarios requiring high
responsiveness, reasonable delay would improve system perfor-
mance and the user experience. Message overhead improves sig-
nificantly whenwe apply the proxy. For real deployments of appli-
cations and smart objects in original DPWS communication, nearly
full-mesh connectivity (Fig. 7(b)) is unavoidable compared to the
linear increments of HTTP traffic in the proxy scenario (Fig. 7(a)).
Listings 9 and 10 show the details of request and response mes-
sages for an operation using the proxy and DPWS.
1 <?xml version ="1.0" encoding="UTF−8"?>
2 <s12 : Envelope xmlns :dpws="http : / / docs . oasis−open . org /ws−dd/

ns /dpws/2009/01"
3 xmlns : s12=" http : / /www.w3. org /2003/05/soap−envelope " xmlns :

wsa=" http : / /www.w3. org /2005/08/ addressing ">
4 <s12 :Header>
5 <wsa: Action >http : / / telecom−sudparis . eu / operations /

getstatus </wsa: Action >
6 <wsa:MessageID>urn : uuid:46932240−d504−11e3−bf6a−6

eabe38b6788
7 </wsa:MessageID> <wsa:To>http : / / [ aaaa ::212:7400:13 cc

:3693]:4567/Heater </wsa:To>
8 </s12 :Header>
9 <s12 :Body/>

10 </s12 : Envelope>
11
12 <?xml version ="1.0" encoding="UTF−8"?>
13 <s12 : Envelope xmlns : s12=" http : / /www.w3. org /2003/05/soap−

envelope " xmlns :wsa=" http : / /www.w3. org /2005/08/
addressing ">
14 <s12 :Header>
15 <wsa: Action >http : / / telecom−sudparis . eu / operations /

getstatusResponse </wsa: Action >
16 <wsa: RelatesTo >urn : uuid:46932240−d504−11e3−bf6a−6

eabe38b6788</wsa: RelatesTo >
17 </s12 :Header>
18 <s12 :Body>
19 <i53 : reply xmlns : i53=" http : / / telecom−sudparis . eu">ON</

i53 : reply >
20 </s12 :Body>
21 </s12 : Envelope>

Listing 10: Request and response messages for obtaining the
status of the heater using DPWS expose the complex XML-based
messages in SOAP format.

10. Conclusion

This paper has proposed the semantic service provisioning
architecture for smart objects including its related algorithms
and mechanisms. The proposed architecture presents a secure,
scalable, and reliable method to power IoT applications on Web.
We have carried out empirical evaluation by means of several
prototypes and applications and on different environments: the
IoT testbed consisting of MTM-CM5000-MSP TelosB sensor nodes
and the Contiki Cooja simulator. Overall, the results demonstrate
that the proposed semantic service provisioning architecture for
smart objects can cope with several challenges and enhance the
experience for the development and integration of IoT applications
on Web.
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