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In intelligent sensing systems with wireless sensor nodes, energy efficiency is one of the
most important research issues. In this paper, we focus on energy efficiency for monitoring
a large-scale object such as gas and chemical material diffusion and spread of radioactive
contamination and wild fire. For monitoring of a large-scale object, a great number of sen-
sor nodes might be participated in object detection and tracking. Thus, general functions of
such huge quantities of sensor nodes like sensing and message exchanging could be
sources of energy exhaustion and shorten network lifetime. Therefore, we firstly adopt
the sleep/wakeup state switching to restrict active sensor nodes for object tracking. That
is, since an object dynamically alter its own shape by wind or geographical condition,
we support that only the sensor nodes around the current boundary of the changeable
object actively function while the others are on the sleep mode. In addition, we also pro-
pose that active nodes are steadily held as a small set of sensor nodes collaborated for
detecting and tracking of the current boundary. A variety of computational simulations
proves that our proposal is able to provide high energy efficiency as well as to trace
accurate boundary shapes.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

Advances in wireless communication and micro-sensor
technologies enable to deploy large-scale intelligent sens-
ing systems. Intelligent sensing systems have supported a
wide variety of monitoring applications from industrial
complexes to smart cities. Event detection and tracking
to trace the roaming path of a target object are one of
the most typical monitoring applications. Since sensor
nodes usually rely on their limited and unattended battery,
it is highly important to achieve energy efficiency and thus
prolong system lifetime [1–3]. For energy efficiency,
sleep/wakeup state switching of sensor nodes is widely
used in object tracking studies. It makes only a small set
of sensor nodes participate in tracking procedures while
the other sensor nodes remain in the sleep mode for
energy saving until an object approaches to them. In fact,
up to date there are numerous energy-efficient object
tracking researches [2–20] using their unique sleep state
switching algorithms, and almost researches mainly aim
to track small individual objects such as human beings,
animals, vehicles, and so on.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2015.02.002&domain=pdf
http://dx.doi.org/10.1016/j.comnet.2015.02.002
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Recently, the research on monitoring for large-scale
objects, denoted by continuous objects, such as gas, wild-
fire, mud flows, bio-chemical material, oil spill, radioactive
contamination, etc., is of increasing concern due to dire
calamities happening lately like Japan’s nuclear disaster
and Greek forest fires. Previous studies on continuous
object tracking [21–27] focus on monitoring the current
boundary of a large-scale object rather than detecting the
entire diffused area of it. Even though they merely track
the current boundary, a large number of sensor nodes
may join in sensing and communicating to determine the
current boundary essentially. Accordingly, the studies have
proposed their own cost reduction mechanisms to control
communicating based on static/dynamic clustering or rep-
resentative selection. In other words, they do not adopt the
state switching paradigm for high energy efficiency in the
case of individual object monitoring.

In order to achieve high energy efficiency and prolong
the lifetime of energy-constrained sensor systems, sleep/
wakeup state switching by which only small sets of sensor
nodes on boundaries are activated should be taken into
account. Since a continuous object diffuses widely and
changes its shape dynamically, previous state switching
methods proposed for an individual object considered as
a movable point cannot be applied. Accordingly, a novel
stat switching method should be designed for continuous
object. In addition, although the novel state switching
method is adopted to sensor systems, it should be able to
provide adequate boundary tracking accuracy as well as
be based on light control signaling. This means that we also
Fig. 1. The operation and architecture of the proposed e
try to beat previous sensing and communicating mechan-
isms to detect boundaries.

Therefore, we propose a energy-efficient and accurate
monitoring scheme for a continuous object in this paper.
Fig. 1 shows the operation and architecture of the pro-
posed scheme. We first introduce a well-balanced bound-
ary node selection algorithm for low control overhead
and high accuracy. This is because detection of a boundary
of a continuous object, i.e., the current boundary at this
moment, would be the basis to determine the next bound-
ary, i.e., the current boundary at the next time. Then, we
are able to start explaining our sleep/wakeup state
switching algorithm, named a boundary zone based state
switching that offer successive activation of a small set of
sensor nodes only around boundaries of a continuous
object along its diffusion.

For providing high boundary detection accuracy and
light control signaling, our boundary detection algorithm
focuses on selection of boundary nodes only closest to an
actual boundary of a continuous object. Since previous
boundary detection schemes merely rely on communica-
tion range to select boundary nodes, they select all the sen-
sor nodes within communication range from a boundary as
boundary nodes. It means that a boundary shape drawn
from too many boundary nodes selected irregularly might
not be correct and node density could influence the bound-
ary shape. On the other hand, our scheme evenly chooses
the closest sensor nodes to the current boundary by
location-aware boundary node selection and explicit repre-
sentative arrangement among boundary nodes. Due to this
nergy-efficient and accurate monitoring scheme.
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sophisticated selection of boundary nodes, boundary detec-
tion accuracy is higher than previous works even though a
smaller set of sensor nodes is used for boundary detection.

We address a boundary zone based state switching
scheme. The switching scheme predicts a future boundary
line of a continuous object by measuring diffusing speed
and direction of the current boundary line of it. The mea-
surement is performed in boundary zones for representa-
tive boundary nodes. Using the predicted boundary line,
the switching scheme activates new set of sleeping sensor
nodes that will participate in tracking the predicted
boundary line at future time. Thus, in this scheme bound-
ary zone allocation and control are the most important
part since a continuous object dynamically spread out.

The rest of this paper is organized as follows. Section 2
offers comparative literature reviews regarding energy
consumption of divers sensor devices and object tracking
applications. Section 3 and Section 4 explain our boundary
node detection algorithm and predictive tracking scheme
with state switching including problem analysis of previ-
ous works, respectively. In Section 5 and 6, we examine
performances of our proposals by computational simula-
tions. Section 7 conclude the paper.

2. Reviews of the relevant literature

In this section, we review characteristics of object track-
ing applications with comparing between individual
objects and continuous objects. In addition, we provide
energy consumption values along state switching regard-
ing sensor devices that have been developed and used for
intelligent sensing systems.

2.1. Object tracking applications

Object tracking is to follow a moving course or variation
of a mobile object, and it is one of principal applications for
intelligent sensing systems in which a network of wireless
sensors is assigned the task of tracking a particular object.
The network employs object tracking techniques to con-
tinuously report the current position of the object, i.e.,
coordinates data, to a sink node or to a central base station.

Target objects, which user is interested in, can be divid-
ed into two classes: individual objects and continuous
objects. Individual objects have usually small sizes compar-
ing with the large area of sensor nodes deployed, e.g., tanks,
animals, soldiers and so on. Continuous objects originate at
one source spot but consecutively and widely spread out on
sensor fields, e.g., radioactive contamination, wildfire, oil
spill, poison gas, etc. They have irregular boundary and
grow dynamically. Although continuous objects might be
Table 1
Individual objects versus continuous objects.

Item Individual object Continuous object

Display Dots Irregular Polygons
Object Size Very Small Very Large
Territory Narrow Area Wide Area
Sensing Some Sensors Large # of Sensors
Effects Very Restrictive Very Sensitive
Movement Relatively Uniform Dynamic
specific mobile phenomena in object tracking area, their
tracking are very important as well as common because
most of them are occurred at emergency situations in major
facilities. Table 1 shows difference between an individual
object and a continuous object.

2.1.1. Schemes for individual object tracking
Individual object tracking might be one of very common

applications in wireless sensor networks. However, sig-
nificant feature of the network is the low-power consump-
tion requirement. Therefore, many methods have been
proposed to solve the problem. Object tracking have two
critical operations, monitoring and reporting. Hence, we
can divide the methods into communication cost control
schemes for reducing the number of reporting and
sleep-wakeup mode switching schemes for reducing the
energy consumption in monitoring operation. Thus, we
explains the communication cost control schemes and
the sleep-wakeup mode switching schemes.

2.1.1.1. Communication cost control schemes. In tree-based
target tracking, nodes in a network may be organized in
a hierarchical tree or represented as a graph in which ver-
tices represent sensor nodes and edges are links between
nodes that can directly communicate with each other.
Examples of tree-based methods include Scalable
Tracking Using Networked Sensors (STUN) [7],
Deviation-Avoidance Tree (DAT) [8,9] and Dynamic
Convoy-Tree-based Collaboration (DCTC) [10,11]. In this
case a tree structure is maintained across the network.
The tree is rooted at the node that is closest to the target.
Thus as the target moves some nodes get added to the tree
and some get deleted. This scheme reduces the overhead in
terms of energy and information flow, as the information
flows from the root to the end or periphery of the network
through a particular route, as the information flows is con-
trolled so energy consumption automatically gets con-
trolled [12].

Prediction-based methods are based on the fact that the
movement of a tracked object is sometimes predictable.
Using the predicted direction and velocity of moving tar-
get, tracking algorithm can estimate a next location of
the object. According to the prediction, a sensor node
transmits only subset of location information or may not
send any data. Examples of prediction-based mechanisms
are PREdiction-based MONitoring (PREMON) [17–19] and
Dual Prediction-based Reporting mechanism (DPR) [17].

2.1.1.2. Sleep/wakeup mode switching schemes. While com-
munication cost schemes contribute in term of reporting
for energy-efficient tracking, sleep/wakeup mode switch-
ing schemes are conducive to effective monitoring. Most
sensor nodes can sleep and wake up for energy saving, if
they are necessary. Through this mechanism, only subset
of all sensor nodes activates to maximize
energy-utilization. However, if all of sensor nodes are in
sleep mode, target object can not detected at right time.
Therefore, only minimal number of sensor nodes should
activate, or sensor nodes, where the object will arrive,
should be awaken. We define the former method as reac-
tive scheme, and the latter method as proactive scheme.
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Most of schemes using the sleep/wakeup mode switch-
ing strategy employ cluster-based methods for awakening
per cluster group. In such cluster based architecture, there
are several sensor nodes and for a certain group of nodes,
they are assigned a cluster leader or cluster head [12].
Examples of cluster-based methods include [13–16]. The
network is formed with powerful cluster head nodes and
low-end sensor nodes. The cluster head node which has
the strongest sensed signal of target becomes the cluster
head, and organizes nearby sensor nodes to form a cluster.
The sensor nodes in the cluster transmit the sensed data to
the cluster head, and then the cluster head sends the
digested data to the base station after data aggregation.
In order to prevent missing the target object, all cluster
head nodes need to monitor continuously. Since only the
cluster head nodes can be the cluster head, object tracking
becomes very difficult in some areas where the cluster
head nodes are sparsely distributed. And after a cluster is
formed, there is no rotation of the cluster head, so the
higher speed the target object travels at, the higher energy
the cluster head would consume. So in this scheme, the
energy consumption among the cluster head nodes is
unbalanced, and thus reduces the network lifetime [15].

2.1.2. Schemes for continuous object tracking
Strategy for tracking a continuous object might be differ-

ent with tracking an individual object, because they have
each other dissimilar features. A continuous object has
large scale and change irregularly its shape, and so users
are interested in its current shape as well as location.
Boundary information is enough to know its shape and
location. Therefore, continuous object tracking focus on
tracking the boundary. In order to detect the continuously
moving boundary of continuous objects, it usually required
a large number of detection message exchanges between
sensor nodes. Therefore, most of studies concentrate on
reducing the communication cost through the report mes-
sage aggregation based on cluster structure and boundary
approximation with reducing the number of boundary
nodes. On the other hand, recently, schemes applying a
sleep/wakeup mode switching to continuous object track-
ing are proposed. Thus, we introduce the communication
cost control schemes, and then sleep/wakeup mode switch-
ing schemes for energy-efficient continuous object
tracking.

2.1.2.1. Communication cost control schemes. Communication
cost control schemes focus on reducing the number of
reports to transmit to sinks. We divide schemes to reduce
the communication cost into cluster based schemes and rep-
resentative selection schemes. Cluster based schemes rely
on the clustering the boundary nodes. Representative based
schemes try to reduce the number of reported boundary
nodes without clustering.

DCS (Dynamic Cluster Structure) [21] proposes a
dynamic cluster based algorithm that tracks the movement
of continuous objects by monitoring the boundary of those
objects. In the DCS, when a sensor detects the emergence
of any phenomena at current time, it immediately broad-
casts a query message to its neighbors to ask for the neigh-
bors’ readings and the neighbors reply by sending their
current readings to the sensor. If the sensor receives at
least one different detection status from any neighbors,
the sensor becomes a Boundary Node (BN). After the
boundary node selection, cluster formation process takes
place among the BNs. To reduce the report message, cluster
head aggregates the report message in its vicinity. In each
cluster, boundary information are aggregated. Although
the DCS approach provides substantial energy savings, it
still requires a significant volume of communications since
the boundary sensors are identified by requiring each sen-
sor which detects the emergence of the object to commu-
nicate with all of its one-hop neighbors to determine
whether or not they too detect the same object [22].

The static clustering approach for continuous objects
detection and tracking is proposed in a Continuous
Object Detection and tracking Algorithm (CODA) [22].
CODA proactively establishes static clusters of all sensor
nodes on a whole sensor field and then a sensor node in
a static cluster is selected as the head node of the cluster.
When a continuous object appears, the cluster head gath-
ers data about the boundary information from the bound-
ary nodes in the area of its own cluster and reports the data
to a sink. So, the sink is able to detect the entire boundary
of the continuous object by using all data from all clusters.

Two-tier Grid based Continuous Object Detection and
tracking (TG-COD) [23] takes into account a two-tier grid
structure in order to achieve flexible and reliable detection
and tracking. Firstly, for flexibility, the scheme proactively
constructs a coarse-grained grid structure and then, once a
continuous object appears, fine-grained grid structures are
reactively established within coarse-grained grid cells only
around the continuous object. To quickly deal with diffu-
sion of the continuous object the scheme prepares the
fine-grained grid structures into next coarse-grained grid
cells toward diffusion direction of the continuous object.
Additionally, in order to achieve reducing cluster organiz-
ing cost, TG-COD relies on a grid structure that is simply
established by location information of a reference point
and a grid cell size value on the assumption that sensor
nodes are aware of their own locations. Thus, by the grid
structure TG-COD could offer rapid structure termination
and re-establishment according to movement or alteration
of continuous objects [23]. Nevertheless, measurement of
diffusing direction and speed is not defined.

Regarding the representative selection approach, there
have been a series of continuous object tracking studies
which are initiated from [24,25]. Their claim is that
cluster-based scheme is not suitable for tracking the
boundary of a continuous object because of its inefficient
cluster formation overhead. We simply call such a series
of studies as BN-array based algorithm as they use
BN-array to detect the boundary of a continuous object.

In [24,25], COBOM, an energy-efficient algorithm for
boundary detection and monitoring is proposed.
Although more BNs are selected than DCS [21], the number
of nodes that actually report to the sink are Representative
Nodes (RNs), and RNs is much less than DCS. When a sen-
sor’s current reading is different from the one previously
observed, the sensor broadcasts its reading and ID. A node
that receives the reading and ID stores the received reading
into its array (called BN-array) and if the node finds that
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any different reading exists in the BN-array, then the sen-
sor becomes a BN. Among those boudary nodes (BNs), a
few Representative Node (RNs) will be selected. The more
number of different detection status a BN has in its array,
the more likely it becomes a RN that eventually reports
all the gathered detection result to the sink. This algorithm
is energy-efficient in a way such that first, only a few rep-
resentative nodes will be chosen and second, by using the
BN-array, the report message size would not increase con-
siderably since each message contains all of its neighbors’
detection status as bits only rather than keeping the neigh-
bors’ IDs also, which requires only few bits while the pre-
cision of boundary estimation might be guaranteed.

DEMOCO [26] focuses on reducing the number of BNs
that eventually results in lowering the number of RNs to
reduce traffic as well as communication between sensor
nodes. DEMOCO has improved [24,25] by just considering
nodes in ‘‘IN’’ range, ignoring those in ‘‘OUT’’ range which
theoretically reduce half of selecting BNs and RNs so as to
achieve energy saving as well as prolong network lifetime.
EUCOW [27] is only focusing on monitoring unsmoothed a
continuous object and introduce the ‘‘genEvent algorithm’’
to theoretically generate the expected event.
2.2. Energy consumption of sensor devices

A wireless sensor node, being a microelectronic device,
might be typically tiny and low-cost. This may need to fit
into a matchbox-sized module [31–33]. In some extreme
cases, an entire sensor node could have lighter weight than
100 g, cheaper than US$ 1, and dissipate less than 100 lW
[34]. However, despite of constraint of such size and cost,
sensor nodes must consume extremely low power.

The sensor node can only be equipped with a limited
power source (<0.5 Ah, 1.2 V). In some application scenar-
ios, replacement of power resource might be impossible.
Therefore, sensor node lifetime shows a strong dependence
on battery lifetime. Additionally, in a multihop ad hoc sen-
sor network, each node plays the dual role of data origina-
tor and data router. The malfunctioning of a few nodes can
cause significant topological changes and might require
rerouting of packets and reorganization of the network.
Hence, power conservation and power management take
on additional importance. Namely, energy efficiency is
the most critical factor to prolong the lifetime of intelligent
sensing systems.

To save energy, most sensor nodes support a
sleep-wakeup mode switching function. In other words, they
can power down (put to sleep) or power up (wake up) if
necessary. Table 2 shows examples of sensor nodes that
Table 2
Power consumption of sensor devices.

States Sensor devices

WINS MEDUSA-II (m

Tr. 771.1–1080.5 19.24–27.46
Rc. 751.6 22.20
Active 727.5 22.06
Sleep 64.0 0.02
support a sleep-wakeup mode switching. Rockwell’s
WINS node [35], which represents a high-end sensor node
and is equipped with a powerful StrongARM SA-1100 pro-
cessor from the Intel, a radio module from the Conexant
Systems, and several sensors including acoustic and seismic
ones. Transmission (Tr.) power of a WINS node is from
771.1 mW to 1080.5 mW according to several radio mode.
Receive (Rc.) power of a WINS node is 751.6 mW. When a
Micro Control Unit (MCU) of the WINS node is slept, power
consumption is 64.0 mW. MEDUSA-II [36] is an experimen-
tal sensor node developed at the Networked and Embedded
Systems Lab, UCLA. The MEDUSA node, designed to be
ultra-low power, is a low-end sensor node similar to the
COTS Motes developed as part of the SmartDust project
[37]. It is equipped with an AVR microcontroller from
ATMEL, a low-end RFM radio module, and a few sensors.
A MEDUSA-II node’s Transmission (Tr.) power is from
19.24 mW to 27.46 mW according to radio modes, mode
schemes and data rates. Receive (Rc.) power of it is
22.20 mW. When a MCU of the MEDUSA-II is sleep, and
sensor as well as radio are off state, power consumption
is 0.02 mW. Telos [38] is an ultra low power wireless
sensor module developed by UC Berkeley, using a Texas
Instruments MSP430 microcontroller, Chipcon IEEE
802.15.4-compliant radio, and USB. When a Telos node
use O-QPSK as modulation type, Transmission (Tr.) power
and Receive (Rc.) power of it is each 35 mW and 38 mW.
When a MCU of a Telos node is in sleep state, its power
consumption is 0.015 mW. IRIS [39] is the product from
Crossbow Technology, which operates TinyOS. The IRIS
node uses AT86RF230 radio, which is 2.4 GHz radio trans-
ceiver compatible with IEEE 802.15.4–2003 standard. An
IRIS node has 75mW and 63mW as its Transmission (Tr.)
power and Receive (Rc.) power, respectively. When a
MCU of an IRIS node is in sleep state, its power consump-
tion is 0.036mW.
3. Well-balanced boundary node selection

This section addresses problems of previous works in
terms of continuous object tracking, and then explains
our algorithm for high boundary detection accuracy and
low control overhead, named well-balanced boundary
node selection.

3.1. Historical perspectives: continuous object tracking

As a continuous object diffuses in the wide region
unlike a single object, it is not suitable to collect sensing
data from every sensor nodes in the entire diffused area,
W) Telos (mW) IRIS (mW)

35 75
38 63
3 31
0.015 0.036
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and in many case of application scenarios, just monitoring
the boundary of continuous objects is often sufficient [21–
27]. For example, in the forest fire monitoring, we may be
interested in the location and expanding direction of major
boundaries of fires. In order to detect a boundary of a con-
tinuous object, every sensor node sets some threshold for
event detection. If the sensing value of a node is larger than
the threshold, the node checks status of its neighbor nodes.
If some nodes sense lower values yet, it becomes a
Boundary Node (BN). If all neighbor nodes were over
already, it means the node is located inside a continuous
object. All the BNs would report sensing data with their
locations as boundary information to a sink. The straight-
forward approach to data collection is to let all BNs peri-
odically report their sensing to a sink, and the sink can
construct the view of whole boundary line based on
reported data. Herein is still such a problem that if the
boundary is long or the node density is high, too many
BNs would detect it and then send a large quantity of data.
Such quantities of data will consume large amounts of net-
work energy and may also cause unnecessary traffic and
packet loss.

To solve this problem, there could be two solutions. The
first one is to use clustering and message aggregation for
reducing the report messages [21–23]. If we divide the
entire boundary detection area into some small portions
of regions, called clusters, one of BNs, called a cluster head,
in each cluster can aggregate the boundary readings in its
vicinity. Then only the cluster header reports aggregated
data to a sink. As a result of message aggregation, the num-
ber of reports could be reduced in proportion to the provi-
sioned cluster size. This approach takes effect on energy
saving by reducing long transmission communication cost.
However, we cannot disregard the overhead of cluster for-
mation. For instance, if a cluster is formed dynamically at
the time of each boundary detection period like [21], addi-
tional local messages should be sent to decide a cluster
zone and a cluster header in the predefined size of the
region. This signaling could be another reason of energy
exhaustion. If static cluster formation [22,23] can be used
rather than dynamic clustering, it could reduce the cluster-
ing overhead by pre-formatting clusters at the initial
deployment time. But static clustering has the scalability
drawback when network topology changes caused by sup-
plement or elimination of sensor nodes. Namely, hidden
signaling overhead for maintaining proactive clusters
could be higher due to network dynamics.

The second solution is to reduce the number of BNs. For
tracking a large-scale continuous object, Boundary Nodes
(BNs) that refer to sensor nodes locating on the current
boundary of an object periodically report their own location
to a sink, and the sink can construct a view of whole bound-
ary line by combining reported locations. That is, a large
quantity of data may be generated; thus, it causes high ener-
gy consumption. Hence, studies [24–27] mainly focus on
reducing the number of reporting nodes toward a sink
through selecting Representative Nodes (RNs) among BNs.

However, since the previous studies elect BNs by mere-
ly the communication range, the density of deployed sen-
sor nodes and the number of BNs directly influence the
number of RNs as well as RNs could be irregularly
allocated, as shown in Fig. 2(a). In other words, node den-
sity and BN selection methods is deeply related to perfor-
mances of a continuous object tracking application
requested by energy-efficiency and boundary accuracy.

In this section, we propose a novel BN selection algo-
rithm that makes a small set of BNs independent of node
density and provides well-balanced RN selection from the
small set. Unlike previous studies, the proposed algorithm
chooses only the closest sensor nodes to the current
boundary of an object as BNs. For this, we newly design a
Neighbor Descriptor Table (NDP) that includes neighbor
location information and event detection status. From the
sophisticatedly selected BNs, the algorithm tries to choose
only one RN per each radio range regardless of node densi-
ty as shown in Fig. 2 (b).
3.2. Network model and definitions

In this subsection, we will describe the proposed
boundary detection algorithm in detail. First of all, we give
a general assumption of sensing systems that each sensor
node knows its own location by possibly using the global
positioning system (GPS) [28] or other techniques such
as triangulation [29] or location services [30].

To clarify the algorithm descriptions, we have defined
the required components that are used by boundary and
master node selection process.

� Nu: Let u be a node. Nu represents neighbor nodes of u.
the neighbor nodes Nu are located within communica-
tion range r. If a node u and one of Nu are in different
detection status, there exists a boundary between them.
� NuD[Nu-ID, l, b, t]: It represents the descriptor of a Nu

which is a neighbor node of node u, Nu-ID is unique
ID of Nu, s is current detection status, l is location of
Nu, b means boundary node flag, and t is timestamp of
event detection.
� NDT[ordered-set(NuD, d)]: It is a neighbor descriptor

table. Each node u should maintain the NDT, which is
the basis for boundary node selection. d is the distance
between node u and Nu.
� evt-msg(ID, s): Any node u who detects the emergence

or disappearance of a object should report the event
message. The message includes the ID of v, which is
one of Nu and current detection status s.
� bn-cond(R1, R2): It denotes the condition for a boundary

node, which has two rules R1 and R2. A node u becomes
a boundary node if it is satisfied with these two rule as
blow;
– R1: Status s of node u – status s of received

evt-msg(ID, s)
– R2: The distance vu is shorter than any other dis-

tances vNu
� BN: a Boundary Node (BN) denotes a sensor node which

detects a continuous object and is selected through
bn-cond(R1, R2). Only BNs could participate in the process
for being selected as Master Boundary Nodes (MBNs).
� MBN: a Master Boundary Node (MBN) denotes a BN

which is selected from BNs by signaling among them.
A MBN sends reporting data about the detected
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Fig. 2. RN selections: (a) irregular selection of RNs and (b) well-balanced and distributed selection of RNs.
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continuous object to a sink node and thus is same as a
Representative Node (RN) of previous studies.
� SBN: a Slave Boundary Node (SBN) denotes a BN which

is also selected among BNs and assists the MBN selec-
tion process for selecting another MBN by signaling
with MBNs.

In this algorithm, there are four main process functions;
initial processing, boundary election processing, master
boundary node biding processing and slave boundary node
election processing. Major functionality of the initial pro-
cessing is to create the NDT[ordered-set(NuD, d)] by querying
to all neighbors from each other. When a sensor node
receives the evt-msg(ID, s) from detected neighbors, it imme-
diately begins the boundary election processing, in which
each sensor node independently decides whether it could
become boundary node or not. If any node becomes the
boundary node, it starts to bid in order to become the
MBN, and the winner will become MBN. The MBN begins
to select consecutive SBNs and neighbor MBNs in sequence.
Consequently, all MBNs reports sensing data to sink node.
More details will be described in subsection.

3.3. Boundary node selection process

The boundary node selection process mainly depends
on the NDT[set(NuD, d)]. When a sensor node is deployed
initially, the sensor node does not have any information
about its neighbors. Then, we start from the initial con-
struction process for NDT[set(NuD, d)]. The sequence of
boundary node selection will be described step by step.

1. busy-sensing() step: As a sensor node u is deployed in
sensor field, it first checks a initialized flag, If the flag
is clear, then it broadcasts a inform-neighbor-msg(ID, l,
b, t), which includes its ID, location coordinates l,
boundary node flag b, and timestamp t.
2. tde-update() step: If a sensor node u receives the
inform-neighbor-msg(ID, l, b, t) from any Nu, it calculates
l, which is the distance between itself and Nu, and it
updates its NDT[set(NuD, d)]. The distance can easily
be calculated by Euclidean distance.

3. evt-msg(ID, s) broadcast and listening step: A sensor node
u should report the evt-msg(ID, s) with its ID and detec-
tion stats s, when the detection status of previous time
t-1 and the present time t is different.

4. BNs election with bn-cond(R1, R2) step: If a sensor node u
received the evt-msg(ID, s) from neighor node v, it first
updates NuD of v and checks the bn-cond(R1, R2) weath-
er it can become BN. If the condition is not satisfied, it
ignores the event message. Otherwise the sensor node
u becomes BN and it counts the number of receiving
evt-msg during the given time, which will be usefully
used during the master node election bid time.

Currently, only sensor nodes located in the nearest to
continuous objects boundaries become the BNs. Fig. 3
shows the sequence charts of proposed boundary node
election process.
3.4. Master boundary node selection process

Fig. 4 shows the sequence charts of the proposed MBN
and SBN selection nodes process.

In order to elect a MBN, when the boundary node elec-
tion process is done, every elected boundary node begins
the MBN election bid to become a MBN. A MBN is firstly
elected based on the received event messages, and the
explicit MBN and SBN election process is propagated to left
and right boundary nodes. Initial selection for MBNs
depends on the number of evt-msg(ID, s), and the process
sequence for master boundary node selection is presents
as blow:



Fig. 3. BN election process.

Fig. 4. MBN and SBN selection process.
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1. start-timer(r) and increase-dec-rate(C) step: Elected BNs
start timer, and starts master bid process. Let current
time as Tc , initial timer as Tb, report threshold as Tr ,
then Tb < Tr � Tc , and let decrement rate as Rd, the
number of evt-msg(ID, s) as C, then Tb ¼ Tb � R� C.

2. master-clear-msg(ID) step: If the Tb of the node u is
expired, u becomes a MBN, and it broadcasts the
master-clear-msg(ID) with its own ID.

3. elect-slave() step: The MBN u starts the recursive MBNs
selection process by selecting the left SBN l and right
SBN r. Let the location of u as ðxu; yuÞ, and the location
of u’s neighbor BNi as ðxi; yiÞ, then u firstly finds any
node s among BNi, which has the maximum euclidian
distance to the MBN u as blow:
Fig. 5. BZ(t + Dt) estimation: (a) diffusing zone of AB and BC and (b)
diffusing zone of AB and BC.
ui ¼ maxð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxs � xuÞ2 þ ðys � yuÞ

2
q

Þ: ð1Þ

If the angle hus between u and s is in �p=2 < hus < p=2,
then s becomes the right SBN and the right SBN r vice
versa. l can be found in remaining BNi that is located
in p=2 < hul < �p=2. The angle hui between u and BNi

can get by:

hui ¼ cos�1 xu � xiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxu � xiÞ2 þ ðyu � yiÞ

2
q : ð2Þ

4. Boundary zone based state switching

Basic motivation of our state switching algorithm is to
only activates the sensor nodes near the current boundary
of a continuous object while the other sensor nodes are far
away from the boundary in the sleep mode for energy sav-
ing. For this selective wakeup approach, a set of sensor
nodes should be activated to detect and report the current
boundary at a time T1. At the next time T2, the previous set
of sensor nodes would go back to the sleep mode, and
another set of sensor nodes which located around the next
boundary, i.e., the current boundary diffused until the next
time, needs to be activated. Of course, before the previous
set of sensor nodes go to the sleep mode, they should esti-
mate the next boundary line and send a wakeup signal to
sensor nodes around the estimated line. Therefore, there
is always one set of activated sensor nodes located in vici-
nity of the boundary line at each certain time and the set of
sensor nodes fulfills boundary monitoring. We define this
region as boundary zone, denoted by BZ(t).

4.1. Conceptual perspectives: selective state switching

The key problem of our state switching algorithm is
how BZ(t) estimates BZ(t + Dt); Dt means a certain period
for object tracing procedures, e.g., Boundary Node (BN)
decision and Master Boundary Node (MBN) selection. A
boundary line is recognized by linked MBNs, namely, the
current boundary line bl(t) is the concatenated line of all
MBNs {mbn1(t), mbn2(t), mbn3(t), . . ., mbnn(t)}, where n is
the number of total MBNs in BZ(t). If mbni(t) can possibly
estimate a location of a virtual MBN at the next time
t + Dt, denoted by vbni(t + Dt), the virtual boundary line
vbl(t + Dt) can be estimated using all the vbni(t + Dt), and
then we can define a set of sensor nodes located around
the vbl(t + Dt) as BZ(t + Dt).

In order to realize this concept, each mbni(t) measures
diffusing direction and speed of the boundary line at time
t and estimates a location of its corresponding vbni(t + Dt).
Then, mbni(t) and mbni+1(t) collaboratively decide a certain
zone between vbni(t + Dt) and vbni+1(t + Dt).

Fig. 5(a) presents an example of diffusing zones, in
which the current MBNs, A and B, estimate two vbn(t + 1)
of A and vbn(t + 1) of B using their own local diffusing
direction and velocity respectively, where t is the current
time and periodic time is 1. After that, A and B estimate a
certain range of the diffusing zone based on estimated
two vbn(t + 1) of A and vbn(t + 1) of B. Since B has another
adjacent MBN C, it should also cooperates with C to esti-
mates the diffusing zone by using each of estimated virtual
MBNs. If the diffusing zones are estimated by all current
mbni(t) in BZ(t), all of those nested diffusing zone eventual-
ly become the BZ(t + 1).

In case of Fig. 5(a), we present the ideal case of diffusing
boundary line between MBNs A, B and C, which expand
same direction and same speed at all of MBNs. But in most
cases of real world, diffusing boundary line generally takes
the shape of irregular line rather than flat line as shown in
Fig. 5(b). Because characteristics of continuous objects
expand to all direction and diffuse with different diffusing
speed to each direction, every MBN surely has different dif-
fusing direction and speeds in its boundary location. The
local diffusing measurement and estimation method for
diffusing zone will be described in the next subsections.
4.2. Network model and definitions

We consider the network model with following assump-
tions in order to support our state switching algorithm.
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– All sensor nodes could have wakeup capability in radio
communication ranges using the ultra-low power MAC
[40] or specialized hardware to serve as a wakeup pag-
ing receiver such as PicoRadio [41].

– All sensor nodes might use synchronized time, and the
clock-drift among the sensors is small enough to be
negligible. Several well-known reference broadcast
synchronization [42] and delay measurement time syn-
chronization [43] can meet this requirement.

Based on such assumptions, we define five features of
states for a sensor node as follows:

� Sleep-White: Sensor nodes stay in this state when they
are initially deployed in a sensor filed or they have
not been notified about coming target object. Sensors
keep the sleep mode, and various initial detection
schemes such as sentry-based mechanisms can be used
to initially detect a target object.
� Active-White: Sensor nodes switch into this state when

they are activated by the previous boundary zone at
the previous time (the current time – T). In general,
nodes in this state can sleep more T – X time, where X
is protocol processing time. But, it can be awake earlier
in order to recover error.
� Active-Test: Sensor nodes in the white or the black

active state get into this state when the process for rec-
ognizing the target object is expired. They perform nor-
mal signaling protocol, which consists of two steps;
First, boundary detection, and second, estimation of
the diffusing zone and wakeup nodes in the zone.
� Sleep-Black: After a sensor node in the active-test per-

forms signaling tasks, it can change to this state in case
of when the target is detected by all neighbors. The case
means that the sensor node is currently within the
tracked object, then, it keeps in the sleep state until
the boundary is close to sensing range.
� Active-Black: Sensor nodes in sleep-black switch into

this state when they are activated from previous acti-
vated sensors. The operation is similar to active-white.

To clarify these descriptions, we have defined the
required messages. Three types of wakeup messages are
defined to activate sleeping nodes as blow:

� wakeup-msg(v, p, l): This message has a vbn(t + Dt)’s
location v, wakeup parameters p, which are explained
in the next subsection, and a mbn(t)’s location l. When
a sleeping node received this message checks v, if it is
the closest node to v, it can be the vbn and activate
itself.
� wakeup-neighbors-msg(f): Parameter f represents a flag

that identifies ‘normal wakeup’ or ‘urgent wakeup’. A
activated vbn should selectively awake its neighbors
according to wakeup parameter p from wakeup-msg(v,
p, l). The vbn broadcasts ‘normal wakeup’ message to
all 1-hop neighbors or unicasts it to chosen neighbors.
On the other hand, when a continuous object initially
appears, and a sentry node for the initial time detects
it, the sentry node broadcasts ‘urgent wakeup’ message
to 1-hop neighbors. If sensing status of the awaken
node is true, it relays this message. If not, it stops flood-
ing since it means that activation is reached the current
boundary.

4.3. Local diffusing measurement

Basic model of our state switching algorithm is the
switching-over boundary detection mission between cur-
rent boundary zone BZ(t) and next boundary zone
BZ(t + Dt). This switching-over task is recursively performed
every time period during tracking of continuous objects.
As a result, only single BZ(t) exists in every sensing time.
BZ(t + Dt) consists of a set of diffusing zones which are esti-
mated by each pair of two adjacent MBNs in the BZ(t). To
estimate the diffusing zones, each pair of MBNs should mea-
sure the diffusing direction and velocity in their place.

Each of MBNs measures its location diffusing direction.
Since one sensor node is geographically considered as sin-
gle point when it is elected as a MBN in 1-hop ranges, it
cannot decide which direction the continuous objects are
coming from. In order to solve the problem, we can imag-
ine the shape of a boundary line which connects all of
MBNs. Though the real shape of continuous objects gener-
ally is irregular, the measured boundary line using sensor
nodes actually takes the shape of polygon. The MBNs are
represented as vertices and the connection line between
adjacent two of MBNs are regarded as edges. Then, we
can have a triangle that consists of three MBNs and its
two edges have the same length(radio range r � 2),
because our boundary election algorithm chooses only
one MBN in 1-hop radio range.

Fig. 6(a) shows the example of described triangle, B can
measures its diffusing direction by forming a triangle with
its two adjacent neighbors A and B. The distance between B
and A is same to the distance between B and C. If we can
estimates the middle point, denoted by P, of edge between
A and B, the angle of diffusing direction of B can be estimat-
ed through two points B and P. Fig. 6(b) shows more
detailed example to explain how to estimates diffusing
angle of A. Since D; A and B have its own coordinates, we
can estimates the coordinates of P using vector equation.

Let ~a be the vector between D and A, and let ~b be the
vector between D and B, then, we can get the vector ~p by

projecting the ~a to ~b with following equation:

Proj~b~a ¼
~a �~b
j~bj2

 !
: ð3Þ

The coordinates of P can be estimates as:

ðxp; ypÞ ¼
xiþ1 � xi þ yiþ1 � yi

ðxiþ1 � xi�1Þ2 þ ðyiþ1 � yi�1Þ
2

" #
ðxi; yiÞ; ð4Þ

then, the diffusing direction hi of A is got by:

hi ¼ cos�1 xi � xpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � xpÞ2 þ ðyi � ypÞ

2
q : ð5Þ

Suppose hn is the direction from a A’s neighbor N who
detects the continuous object in NDT[set(NuD, d)], A should
check the following condition:



Fig. 6. Diffusing direction estimation.
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if ðhi � hnÞ >
p
2
; ð6Þ

hi ¼ hi þ p; ð7Þ

if A’s triangle forms a reserve triangle, hi points out the
opposite side of diffusing direction, and every boundary
node should check the Eq. (6).

In our scheme, a BZ(t) activates a BZ(t + Dt) in time t,
and BZ(t) was activated from a set of MBNs in BZ(t � Dt).
When a MBN actives the next diffusing zone, it includes
its location and detection time in wakeup message.
Therefore, activated sensor nodes by wakeup messages
can calculates the diffusing velocity using previous loca-
tion, previous detection time, current location, and current
detection time.

Suppose that a mbn(t � Dt) is the previous MBN who
activates the diffusing zone DZ(t), and a mbn(t) is the cur-
rent MBN in DZ(t). Also, let ðxt�1; yt�1Þ be the location of
mbn(t � Dt), and let ðxt ; ytÞ be the location of mbn(t). Let t
be the current detection time and t � 1 be the previous
detection time. Then, the diffusing velocity of bn(t) can
be calculated as blow:

v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxt � xt�1Þ2 þ ðyt � yt�1Þ

2
q

tt � tt�1
: ð8Þ
Fig. 7. Diffusing zone estimation.
4.4. Predictive diffusing zone estimation

Based on given diffusing direction and velocity value,
every mbn(t) can estimate the predictive location of
vbn(t + Dt) for a next time t. Let ðxiþ1; yiþ1Þ be the estimated
location of vbn(t + Dt) and let ðxi; yiÞ be the location of
mbn(t). We can simply get ðxiþ1; yiþ1Þ as follows:

xiþ1 ¼ xi þ vxtcosðhxÞ; and ð9Þ

yiþ1 ¼ xi þ vxtsinðhxÞ: ð10Þ

After each of MBNs finishes estimation of the virtual
location vbn(t + Dt), it starts to estimate the diffusing zone.
Fig. 7 shows the diffusing zone estimation process. Current
MBN M1 and M2 constitute the current paired MBNs,
whose pair refers to a boundary line element M1M2. Each
of those MBNs measures the local diffusing direction and
velocity, and we can denote this local measured value as
vector ~xi, which has direction and velocity element value
as ðv i; hiÞ. M1 estimates virtual location of future MBN V1
using its own ~x1, and M2 calculates location of V2 in the
same way. Finally, two current paired MBNs can exchange
virtual location information by sending query message to
each other, and one of two MBNs (M1 in case of Fig. 7)
has the knowledge about predictive boundary line element
M1M2, then M1 can estimate the diffusing zone based on
M1M2.

In order to provide flexible sizes of wakeup zones, we
define two parameters for wakeup zone; wakeup region
width and wakeup region depth. In general, we may have
an intuition that a big size of wakeup zones may be able
to decrease the error rate caused by wrong prediction.
However, it could awake unnecessary nodes additionally.
Thus, those parameters have trade-off between energy effi-
ciency and tracking accuracy by prediction error. Detailed
property of each parameter is described as follow:

� Wakeup region width: In the case that a continuous
object expands widely and the predictive boundary line
is much longer than the current boundary line, we need
to arrange additional predictive MBNs as shown in
Fig. 7. Therefore, we can adjust the width between pre-
dictive MBNs. Fig. 7 shows the example of addition
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estimation of vbn(t + Dt) when the wakeup region width
is communication range r.M1 calculates additional
numbers of vbn(t + Dt) by means of length-ratio
between M1M2 and V1V2. In order words, it can esti-
mate the additional vbn(t + Dt) with weighted sum vec-
tor of ~x1 and ~x2. The total number N of vbn(t + Dt) s in
V1V2 can be calculated as:
N ¼ Ceil
V1V2

r

 !
; ð11Þ

and the weighted measurement x1i
�!

can be got by:

x1i
�!
¼ i

N
� x1
!þ N � i

N
� x2
!
: ð12Þ

The start point coordinate of x1i
�!

, which is located in
the connected line M1M2 between M1 and M2, can be
estimated as:

ðx1i; y1iÞ ¼
i
N
ðx2 � x1Þ;

i
N
ðy2 � y1Þ

� �
: ð13Þ

Thus, we can estimate the virtual location of M1’s addi-
tional vbn(t + Dt) using the estimated vectors and Eqs.
(9) and (10).
� Wakeup region depth: We could control the thickness of

the wakeup zone. To achieve this, predictive MBNs con-
trols the strength of the wakeup signal. Thicker wakeup
zone may make bigger wakeup zone. Thick wakeup
zones may decrease error rates but could awake unnec-
essary nodes, i.e., trade-off between energy efficiency
and tracking accuracy.

4.5. Error recovery

Although our prediction algorithm is fulfilled correctly,
we may not make sure it provides actual results. It means
that our prediction algorithm is able to meet prediction
error. So, we need a recovery mechanism when activated
boundary zones miss actual boundary lines of the targeted
continuous object. We define the prediction error as the
situation that a predictive MBN for a time T1 cannot detect
the current boundary of the targeted continuous object at a
time T1.

In order recover the prediction error, we define the
wakeup-all message, denoted by directial-wakeup-msg(f, l,
d), which includes a flag f for forwarding or backwarding,
a location of initiator l, and an activation duration d.
When a time T1 passed, a predictive MBN checks its
NDT, and if itself and all neighbors detected the object, it
declares an over diffused error and broadcasts
directial-wakeup-msg(f, l, d) to forward diffusing direction
until activating nodes find the boundary. Note that
directial-wakeup-msg(f, l, d) is flooded to only one direction,
that is to say, if a sleeping node has received this message,
then it calculates a direction h between l and its location.
And if h is in the range of 0 < h < p, it becomes an active
node and rebroadcasts the message again. This forward
message propagation is fulfilled in the case of the over dif-
fused error that means the current boundary passed
though predictive zones already. In contrast, the less
diffuse error indicates the current boundary does not reach
the activated zones yet, i.e., when a time T1 passed, a pre-
dictive MBN as well as all its neighbors did not detect the
object. In this case, it sends directial-wakeup-msg(f, l, d) to
backward direction until activating nodes meet the current
boundary of the object.

Another considerable parameter is the activation dura-
tion d. Activating nodes by this emergency wakeup mes-
sage do not need to keep the active state. After the
recovery process is done, it can go back to sleep again.
The parameter means the duration of the activation time
for checking its object detection status to find the current
boundary of the object.
5. Performance evaluation of balanced boundary
detection

In this section, we evaluate the performance of our bal-
anced boundary detection scheme based on simulation
results. Computational simulations are implemented in
the Qualnet v4.0 simulator [44] to evaluate and compare
the performance of COBOM [24,25], the EUCOW [27] and
the proposed scheme. Since reliability of report aggrega-
tion is another research area, our simulations do not con-
cern possible data loss or contention between nodes and
how to route data to the sink. The simulations will experi-
entially assure that our scheme is usually more
energy-efficient and accurate than COBOM and EUCOW
due to less number of BNs and RNs generated. Though
we use the name of MBN (Master Boundary Node) in our
scheme, the concept of MBN and RN is similar. Then, in this
performance comparison, we just use the name of RN
(Representative Node).

5.1. Simulation environments

We simulate a wireless network with sensor nodes dis-
tributed on a 1000 ⁄ 1000 m field. The node communica-
tion radius is set to 50 m. Numbers of nodes are made to
vary from 500 to 1500 in order to change the average num-
ber of neighbors for each node (i.e. node density). Although
all the sensor nodes can be distributed randomly or dis-
tributed with statistical distribution, in order to make sure
the node density, we divide 1000 ⁄ 1000 m sensor field
into 100 ⁄ 100 m grid cell. In the each of 100 grid cells,
we can adjust density of a grid cell from 5 to 15 nodes.
As describe in Section 3.2, in EUCOW and COBOM, they
do not consider the node density while selecting RNs, then
it is likely to be more RNs selected in dense area, but our
scheme is not affected by the node density and selects
RNs with regular distance basis. So, in order to analyze
the impact of node density, we need to more concrete
and straight method to vary the distribution with different
node density. Therefore, we can measure the node density
with the number of node in one grid cell.

5.2. Boundary accuracy

we use a metric named boundary accuracy to evaluate
the accuracy of detecting continuous objects between the



Fig. 9. RNs snapshot of EUCOW.

Fig. 10. RNs snapshot of COBOM.
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proposed balanced boundary detection scheme and the
proposed schemes. To measure the boundary accuracy
metric, we set a simple ellipse shape of a continuous object
at centered at coordinates (500, 500). The length of
semi-major axis and semi-minor axis are 350 m and
200 m, respectively. We distrusted sensor nodes with the
density of 5 in upper half of sensor filed and the density
of 5 in lower half of sensor field. That means that we ran-
domly distributes 10 sensor nodes in grid cells that located
in both upper half of sensor field and vice versa. Then, the
boundary accuracy metric means how similar the ellipse
shape of the continuous object and the distribution of RNs
in each scheme are as shown in Figs. 8–10.

Figs. 8–10 show the snapshot of selected RNs in each of
the proposed scheme, EUCOW, and COBOM. It is quite
obvious even at a glance that the proposed scheme better
presents the shape of a continuous object. This result is
mainly attributable to difference BN and RN selection
rules. Since EUCOW and COBOM merely depend on
communication range to select boundary nodes, they
select all the sensor nodes within communication range
from a continuous object as boundary nodes. Thus, they
select a large number of boundary nodes, which result in
degrading the quality of boundary accuracy as well as
energy-efficiency.

In COBOM, the BN selection is based on BN-Array that
only have 1 bit detection status of all neighbor nodes. If a
sensor node receives an event detection message from a
certain neighbor node who detects coming continuous
objects, it first saves the detection status into BN-Array,
and then, it scans the BN-Array whether any different
detection status exists. If the node finds that any different
status exists in BN-Array, it becomes a boundary node. The
drawback of this selection rule is that thickness of estimat-
ed boundary is almost reached to 2� r (radio-range).
Fig. 10 shows the snapshot of simulation result of COBOM.

Fig. 9 show the simulation result of EUCOW, we can see
that the shape of aggregate RN is more accurate than the
result of COBOM. In EUCOW, it uses similar detection rule
with BN-Array, but in order to enhance the accuracy it
compares its own current status and the status of event
message. For example, if a sensor node’s current detection
status is false and it receives an event message from one of
Fig. 8. RNs snapshot of the proposed scheme.
its neighbors, and if the status of the event message is true,
then the sensor node becomes a BN since current status of
the sensor node is different from the status of the event
message. According to this BN selection rule, among the
sensors which are adjacently located to the boundary of
the objects, only the nodes that are out region or in the
region will become BNs. Thus, thickness of estimated
boundary is almost reached to 1� r (radio-range), which
is half number of BNs compared to COBOM.

In our boundary detection scheme, we extend the attri-
bute of BN-Array and define NDT which has distance infor-
mation of neighbor nodes, and we provide a method that
guarantees only closest nodes to event sensor to be select-
ed as boundary. Then, the thickness of estimated boundary
is very thin and close to real boundary line. Furthermore,
since we select RNs with regular distance basis among
selected BNs, the selected RNs are located uniformly near
the boundary line regardless of node density.
5.3. Impact of different node density

We compare the numbers of BNs and RNs selected in
the proposed scheme, EUCOW, and COBOM. The numbers
of BNs and RNs are critical performance metrics, because



Fig. 11. Comparison of the number of BNs.

Fig. 13. Comparison of the number of BNs.

Fig. 14. Comparison of the number of BNs.
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the numbers of those nodes directly is related to the num-
bers of report. For analyzing the effect on node density, we
randomly distributed different numbers of sensor nodes
ranging from 5 to 15 in each grid cell. The size of a con-
tinuous objects is same as previous experiment. As appar-
ently shown in Fig. 11, increasing the nodes density makes
more number of BNs in every detection schemes. In cases
of COBOM and EUCOW, BNs in COBOM should cover both
in and out regions whereas only the nodes that are either
in or out region can become BNs in EUCOW. Thus, the
number of BNs in EUCOW is much less compared to that
of COBOM. But the experiment show that our scheme
selects less number of BNs than EUCOW, since the number
of closet nodes to boundary node is limited, although the
density is higher.

Fig. 12 presents the number of RNs, similar to the case
of the number of BNs. The node density influences to the
number of RNs. Though a RN suppress its 1-hop neighbors
during RN selection period in both of COBOM and EUCOW,
the distance between RNs, denoted by d, is always in range
r < d < 2r. However, our scheme almost guarantees 2r by
cascading the selection rule regardless of the node density.

5.4. Impact of different object size

In this experiment, we evaluate an impact of diffusing of
continuous objects. To make diffusing scenarios of a
Fig. 12. Comparison of the number of RNs.
continuous object, we set simple its circle shape. The initial
radius of a circle object is 50 m and starts from coordinates
(500, 500) where is center of the simulated sensor field. The
radius of the circle object increase 10 m at every second.
Every sensor node starts the BN and RN selection at every
3 s sampling duration, the total simulation time is 30 s,
and then total sampling number is 10 times. We do not take
COBOM into consideration, since it almost makes double
size of BNs and RNs as already shown in Figs. 11 and 12.

As intuitively expected, the number of BNs becomes
larger as the object’s radius increases. As the monitoring
region that sensor nodes need to cover gets larger, it is nat-
ural that the number of BNs involved also increases in both
EUCOW and our scheme, as shown it Fig. 13. However, less
BNs in our scheme are selected and the gap of the number
of BNs between two schemes keeps widening as the time
goes on. This is because the boundary region is increasing
highly as the radius of a circle object is longer. In the case
of the number of RNs, both schemes also linearly increase,
but our scheme always has less number of RNs as shown in
Fig. 14.



Fig. 15. Energy saving effect analysis of state switching.
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6. Performance evaluation of boundary zone-based
state switching

In this section, we present simulation results to evalu-
ate the performance and effectiveness of our boundary
zone-based state switching scheme. We first describe per-
formance metrics used for evaluating simulation results
and analyze the energy saving effect of scheme using the
simulation results. And then, we will analyze the impact
of two wakeup zone parameters: wakeup region width
and wakeup region depth.

Two metrics are defined in order to evaluate the pro-
posed scheme.

� Total energy consumption: Total energy consumption in
both active and sleeping modes by the network during
the simulation time.
� Prediction accuracy: we use this metric to evaluate the

degradation of boundary detection caused by the error
of our predictive diffusing zone estimation. The degra-
dation of boundary detection means that our boundary
zone-based state switching scheme does not select
MBNs due to boundary detection fails caused by the
predictive diffusing zone estimation error. As compar-
ison basis of energy consumption, we use an all-active
scheme which keeps all sensor nodes in active mode
without state switching. We define the prediction accu-
racy metric as numerical equivalence between the total
number of reported MBNs due to boundary detection
successes denoted by Nsuccess and the total numbers of
unreported MBNs due to boundary detection fails
denoted by Nfail. Namely, the prediction accuracy is
defined as Nsuccess=ðNsuccess þ NfailÞ.

6.1. Simulation environments

The simulating network consists of 4000 sensor nodes
that are deployed uniformly in a 2000 ⁄ 2000 m square
area. Properties of sensor nodes are same as previous
experiment for evaluating boundary detection scheme.
Based on the characteristics of IRIS mote hardware [39],
active mode and sleep mode power consumption rates of
sensor node are 31 mW and 36 lW, and transmitting and
receiving power consumption rates are 75 mW and
63 mW, respectively. To make state switching scenario,
we set simply circle shape of continuous object. It is initi-
ated with a radius of 150 m and start from coordinates
(500, 500) where is center of simulation sensor field.

Every sensor nodes are well synchronized, and we
assume that application require the boundary information
report every 10 s. The radius of circle objects initially
increases with speed 5 m/s and for varying the diffusion
speed, acceleration is randomly increase or decrease
1 m/s, then, maximum variation of speed at every report
time is 10 m/s. For providing the wakeup parameters, we
define wakeup region width and depth as radio range r.
Since we ignore the initial detection of continuous objects
in this experiment, sensor node in current boundary zone
of circle shape of objects stay active and others keep in
sleep mode.
6.2. Impact of state switching

In our experimental environment, we can statically ana-
lyze the energy saving effect of state switching. We already
have assumed the circle shape of objects and define wake-
up zone as radio range r. As shown in Fig. 15, if we assume
sensor nodes density q per a unit area and average radius R
of circle shape of objects, then expected the number of
active sensor nodes in boundary zone at time t denoted
by BZ[t] can be represented as follows:

EBZ ½t� ¼ pfðRþ rÞ2 � ðR� rÞ2gq ¼ 4prRq; ð14Þ

then, we can estimate the total energy consumption of
EBZ½t� as follow:

Eall½t� ¼ ðD2 � 4prRÞq� bþ 4prRq� aþ C; ð15Þ

where Eall½t� indicates the total energy consumption of
EBZ ½t� and D2 indicates square sensor field with width D.
Each of a; b and C represents constant values of active
mode power consumption, sleep mode power consump-
tion, and total transmitting and receiving power consump-
tion. C is based on the fact that in the proposed boundary
detection scheme, every active sensor nodes broadcast
and receive event detection message once respectively.

Then, total energy saving Esaving ½t� compared with
all-active-scheme can be estimated as below:

Esaving ½t� ¼ ða� bÞðD2 � 4prRÞq: ð16Þ

Thus, energy saving effect of the proposed state switch-
ing scheme is depends on the size of sensor filed and sen-
sor nodes density. In this experiment, based on described
characteristics of IRIS hardware we can save almost
average 9000 mW energy saving in every second. Our
experiment just use small size of sensor filed, but in real
environment, huge sensor field could be deployed for large
scale of continuous objects, and it is obvious that tremen-
dous energy saving can be expected proportional to the
size of sensor filed through the sensor state switching
scheme.
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However, the proposed state switching scheme has the
communication overhead for waking up sleeping sensor
nodes of the next predicted boundary compared with the
all-active scheme. In the proposed scheme, the communi-
cation overhead is both the cost for broadcasting a wakeup
message from each MBN of the previous boundary to all
sleeping sensor nodes in its wakeup zone of the next pre-
dicted boundary and the cost for receiving the wakeup
message by all sleeping sensor nodes in all wakeup zones
of the next predicted boundary. With the example In
Fig. 14, the wakeup message broadcasting cost is
NP MBN � et and the wakeup message receiving cost is
4prRq� er , where NP MBN is the number of MBNs in the
previous boundary, and et and er are the communication
costs for transmitting and receiving, respectively. When
the width for the distance between two MBNs is given as
w;NP MBN is approximately 2pðR� rÞ=w. Thus, the commu-
nication overhead for waking up sleeping sensor nodes of
the next predicted boundary in the proposed state switch-
ing scheme is as follows:

Eoverhead½t� ¼ ð2pðR� rÞ=wÞ � et þ 4prRq� er: ð17Þ

However, the communication overhead Eoverhead½t� is con-
siderably small compared with total energy saving Esaving ½t�.
Fig. 16. Impact of state switching.
Fig. 16(b) shows the total energy consumption of our
boundary zone-based state switching scheme (i.e. selective
neighbors) and an all-active scheme (i.e. all neighbors).
This figure includes both the saving energy and the over-
head energy by our boundary zone-based state switching.
As shown in the figure, our boundary zone-based state
switching is more efficient than an all-active scheme
because the saving energy is much higher than the over-
head energy in our boundary zone-based state switching.
Fig. 16(a) shows the prediction accuracy of our boundary
zone-based state switching scheme (i.e. selective neigh-
bors) and an all-active scheme (i.e. all neighbors). In spite
of much energy saving, boundary zone-based state switch-
ing scheme has the similar boundary prediction result
compared with the all-active scheme.

Since BNs and RNs (called MBNs in our paper) have dif-
ferent roles, we compare the energy consumption for BNs
and RNs according to their roles. Since the tracking of con-
tinuous objects only focuses on the boundary information
of the continuous objects, if sensor nodes detect a con-
tinuous object at a time t1, BNs and RNs among them are
generated by the algorithm of the proposed scheme at
the time t1. Because the continuous object changes (i.e.
moves or diffuses), the boundary of the continuous object
is changed at next time t2. Thus, new BNs and RNs are gen-
erated at the time t2. Thus, we compared the energy con-
sumption for BNs and RNs at a time t1. As a continuous
object happens, sensor nodes around it detect it and
exchange an event message between one-hop neighbor
sensor nodes. Then, a detecting sensor node becomes a
BN if it checks all event messages from its neighbor sensor
nodes and meets two conditions to be a BN. Thus, the ener-
gy consumption of a BN is as follows when a sensor node
has N neighbor sensor nodes:

BNðEÞ ¼ Nðet þ erÞ: ð18Þ

If BNs are generated on the boundary of the continuous
object at the time t1, Some BNs among them become RNs
due to having shorter expire times to be a RN than the
other BNs. Then, each RN broadcasts a RN selection mes-
sage to its one-hop neighbor BNs. The energy consumption
for this is 1et . Next, the RN sends a SBN (Slave Boundary
Node in our paper) selection message to the most left BN
and the most right BN. The energy consumption for this
is 2et . Last, the RN sends a wakeup message to the wakeup
region on the next boundary of the continuous object. The
energy consumption for this is 1et . Thus, the energy con-
sumption of a RN is as follow:

RNðEÞ ¼ BNðEÞ þ 1et þ 2et þ 1et ¼ BNðEÞ þ 4et ð19Þ

As shown in the Eqs. (18) and (19), RNs consume more
energy than BNs but the difference is only 4et .

Fig. 17 shows the distribution of the residual energy for
the total energy (100%) of every sensor nodes. In the
all-active scheme, about 40% sensor nodes have 20–40%
residual energy because they are continuously awake and
detect the continuous object. The other sensor nodes of
about 48% have about 60–70% residual energy because they
are only awake and do not need to detect the continuous
object far from them. On the other hands, in our boundary
zone-based state switching scheme, many sensor nodes



Fig. 17. The distribution of residual energy.

Fig. 18. Impact of diffusion velocity.

Fig. 19. Impact of wakeup region width.
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have high residual energy. About 25% sensor nodes have
about 50–60% residual energy because they use state
switching and conduct the roles for BN. About 15% sensor
nodes have about 40–50% residual energy because they also
use state switching and conduct the roles for RN. The other
sensor nodes of 45% have about 80–90% residual energy
because they are much time in sleep mode by state switch-
ing and do not need to conduct as BNs or RNs due to not
detecting the continuous object far from them.

6.3. Impact of diffusing velocity

In this simulation, we evaluate an impact of different dif-
fusing speed. Diffusing speed is basis for estimation of dif-
fusing zone in each master node. For different diffusing
speed scenario, we use same simulation environment as
previous simulation except that diffusing speed. We simu-
late with four different diffusing speeds that are 5 m/s,
10 m/s, 15 m/s, and 20 m/s and each of speed do not get
changed during simulation time. As shown in Fig. 18(a),
fixed slow or fast diffusing speed do not influence in predic-
tion accuracy, because current local measured diffusing
speed always is same as future diffusing speed as well as
previous speed. The problem occurrence timing in proposed
scheme is when the speed is rapidly changed. Since the
depth of diffusing zone is radio range r (50 m) and report
time is 10 s, if the variation of speed is less than 5 m/s, then
ideally sensor nodes in diffusing zone can detect the
boundary.
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An interesting acceleration problem is shown in
Fig. 18(b). We simulate two case of uniform acceleration.
Since our local diffusing velocity measurement do not con-
sider the acceleration, the gap between actual increasing
velocity and instant local velocity enlarge as time goes
on. At some moment, it cross over the threshold of estimat-
ed diffusing zone, and eventually every active nodes fail to
detection boundary. But in real environment, continuous
object usually diffuse outward steadily though it some-
times can changes unexpectedly speed or direction.

6.4. Analysis of wakeup zone parameters

In the proposed switching scheme, in order to provide
flexible size of wakeup zone, we define three parameters
for wakeup zone; wakeup region width and wakeup region
depth. In general, we can have intuition that a big size of
wakeup zone will decrease the error rate caused by wrong
prediction, but it could wake up unnecessary nodes, which
result in more energy consumption. Thus, those para-
meters have trade-off between energy efficiency and track-
ing quality caused by the prediction error. This trade-off is
shown in Figs. 19 and 20.

Fig. 19 shows the impact of different wakeup region
widths. We evaluate the performance with setting of
widths as radio ranges R, 2R/3 and 1R/3. The default value
Fig. 20. Impact of wakeup region depth.
of the other parameters, and depth is 1R/2. The narrower
width results in more energy consumption and better pre-
diction accuracy, since a narrower width activates more
number of predictive boundary nodes and their neighbor
nodes.

Fig. 20 shows the impact of different wakeup region
depths. In this experiment, we divide the region depths
into radio ranges R, 2R/3 and 1R/3. The default value of
the other parameters, and width is R. The longer radius
makes somewhat rapidly increasing energy consumption,
but the impact to prediction accuracy is not too much in
comparison with energy consumption. This is because
linear increasing of radius causes the activation of expo-
nential increasing sensor nodes, which result in a lot of
unnecessary active sensing nodes.
6.5. Impact of latency about waking and moving

Since the proposed scheme uses a sleep-wake schedul-
ing method for the energy efficiency, RNs on the current
boundary of a continuous object should wake sleeping sen-
sor nodes on the next boundary of the continuous object.
To make the proposed scheme work well, the latency for
Fig. 21. Impact of latency about waking and moving.
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waking the sleeping sensor nodes on the next boundary
should be smaller than the latency for moving to the con-
tinuous object from the current boundary to the next
boundary. If the latency for waking the sleeping sensor
nodes on the next boundary is larger than the latency for
moving of the continuous object from the current bound-
ary to the next boundary, because sensor nodes on the next
boundary cannot detect the continuous object due to their
unawakened states, the proposed scheme may have very
low prediction accuracies. Generally, the latency of waking
the sleeping sensor nodes on the next boundary is affected
by the number of sensor nodes on the next boundary pre-
diction regions (i.e. the density (number) of sensor nodes
in the network when seeing with a large view). As the den-
sity of sensor nodes increases, the latency of waking the
sleeping sensor nodes on the next boundary grows and
thus the proposed scheme decreases the prediction accura-
cy. Fig. 21(a) shows the prediction accuracy for the density
of sensor nodes through our simulations. On the other
hand, the latency for moving of a continuous object from
the current boundary to the next boundary is apparently
affected by the speed of the continuous object. If the speed
of a continuous object increases, the continuous object can
move to the next boundary before waking sleeping sensor
nodes on the next boundary and thus the proposed scheme
decreases the prediction accuracy. Fig. 21(b) shows the
prediction accuracy for the speed of a continuous object
through our simulations.
7. Conclusion

In this paper, we concentrate on energy efficiency and
accuracy for monitoring large-scale phenomena, called
continuous objects. Firstly, we try to reduce Boundary
Nodes (BNs) and Master Boundary Nodes (MBNs) that are
mainly related to communication costs and monitoring
accuracy. While existing studies are based on the radio
range to choose those nodes, i.e., it means there are a large
number of BNs and MBNs and the number depends on the
node density, we select BNs only close to boundaries of
objects and allocate MBNs to a certain distance. In addi-
tion, we consider sleep state switching of sensor nodes that
is the most efficient way for energy saving. For this, we
propose a state switching scheme with boundary predic-
tion relying on the BN and MBN selection mechanism.
Finally, by a variety of computational simulations we prove
that our proposals show better performance regarding
energy efficiency and accuracy than previous works.
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