
n the last few years, wireless sensor networks (WSNs)
have become ubiquitous and are being used in a broad
array of application domains, including healthcare, agri-
culture, surveillance, and security. These WSNs are com-

posed of small-scale nodes that have the ability to sense,
compute, and communicate [1]. While early sensor nodes
were resource-constrained with limited capabilities, recent
advances in sensor hardware technology have made it possible
to produce sensor nodes that have more processing power and
memory, and prolonged battery life.

Virtualization is a key technique for the realization of the
future Internet, and it is indeed quite pertinent to explore it
in the context of WSNs. Virtualization makes it possible to
present physical computing resources by abstracting them into
logical units, enabling their efficient usage by multiple inde-
pendent users, including multiple concurrent applications [2].
Furthermore, it allows for the deployment of applications that
were not even envisioned during an infrastructure’s initial
deployment.

To date, realizations of WSNs have been domain-specific
and task-oriented. Applications are bundled with a WSN at
the time of deployment, and it is next to impossible to use the

same WSN for another application. This leads to redundant
deployments and underutilization of these resources. There
are two approaches to allow multiple applications to access
deployed WSN resources. One is to allow multiple applica-
tions to share the data gathered from a WSN. In this
approach, a sink/gateway node collects all the data from the
WSN and shares it among multiple users. For example, in [3],
WSNs are merged into the cloud by sending observed sensor
data through a host manager that lies outside the WSN. The
host manager simply collects the sensor data, profiles/aggre-
gates it, and then allows multiple applications to use it for
their own purposes.

The second approach is to use the capabilities of the indi-
vidual sensor nodes to execute multiple application tasks con-
currently, and allow applications to group these sensor nodes
together according to their requirements. The key difference
between the two approaches is that the former approach
allows the sharing of WSN data among multiple applications,
while the latter allows sharing of WSN nodes by multiple
applications. This article is focused on the second approach
because it makes it possible to provision more innovative
applications over the deployed WSNs, even applications that
were not envisioned a priori. This will greatly improve the
efficiency of deployed WSNs and will also encourage new
business models.

This article introduces the WSN virtualization concept, crit-
ically reviews the state of the art in WSN virtualization, and
proposes a new early architecture that focuses on fixed WSNs.
We illustrate the potential of the architecture by instantiating
it for a fire monitoring scenario [4] in which multiple applica-
tions share the same WSN. We have built a prototype to
demonstrate its feasibility and to measure its performance.
We also identify further research directions.

The next section presents a critical overview of the state of
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the art. The proposed architecture is presented in the third
section. The fourth section discusses the implementation
alternatives with the proof-of-concept prototype and the
recorded performance measurements. The research directions
are discussed in the fifth section. We conclude in the last sec-
tion by discussing the lessons learned.

A Critical Overview of the State of the Art
There are two categories of WSN virtualization: node level
and network level. Figure 1 shows a high-level view of WSN
virtualization. WSN node-level virtualization allows multiple
applications to run their tasks concurrently on a single WSN
node [5] (Fig. 1a). This execution can be sequential (e.g.,
round-robin) or simultaneous, with context switching between
application tasks.

In WSN network-level virtualization, a subset of sensor
nodes belonging to a deployed WSN forms a virtual sensor
network (VSN) to execute given application tasks at a given
time [6], while the other sensor nodes remain available for
other application tasks. WSN network-level virtualization can
be achieved in two ways. Different VSNs can be created over
the same underlying WSN infrastructure (Fig. 1b), or sensor
nodes can form a single VSN over multiple WSNs in different
administrative domains (Fig. 1c). The latter is possible when
the sensor nodes can support the concurrent execution of
application tasks. This is the case these days because many
popular sensor operating systems (e.g., Contiki and Squawk
VM) that run on resource-constrained devices enable node-
level virtualization through the concurrent execution of appli-
cations’ tasks on the same sensor node.

Motivating Example and Requirements
In this section we first present a motivating example and then
draw requirements from it.

Motivating Example — A real-world deployment of a WSN is
presented in [7], in which a WSN is used to monitor the
impact of constructing a road tunnel under an ancient tower
in Italy, as it was feared that the tower could lose its ability to
stand on its own and might collapse during the construction.
Now consider that there are three users interested in the fate
of the tower. The first is the construction company, as it needs
to make sure that the tower does not lose its ability to stand
on its own; otherwise, it will have to pay a heavy fine. The sec-
ond user is the conservation board, which routinely monitors
all the ancient sites around the city. The third user is the local
municipality, which has to plan emergency remedial/rescue
actions in case the tower falls during the construction.

It is quite possible that the conservation board has already
deployed its own WSN to monitor the health of ancient sites,
including this tower. In this case the construction company
and local municipality can reuse the existing sensor nodes
during the construction period. In the absence of WSN virtu-
alization, there are only two possible solutions. One is to rely
on the information provided by the conservation board appli-
cation. However, this information may not be at the required
granularity level. Worse, some of the information that is need-
ed might simply not be available because the requirements of
the construction company and the local municipality were not
considered when the conservation board application was
designed and implemented. The second solution is that each
user deploys redundant WSN nodes, but this is an inefficient
approach.

Requirements — The first requirement is the support of node-
level virtualization to allow the execution of multiple applica-
tion tasks on the same sensor node. The second requirement
is the ability of sensor nodes to dynamically form groups to
execute isolated and transparent application tasks concurrent-
ly (i.e., support for WSN network-level virtualization). The
third requirement is support of application priority. In some
critical application scenarios such as fire monitoring, it is
important that other tasks have less priority than the one
reporting the fire event.

The fourth requirement is that the proposed solution
should be applicable to a wide range of applications and not
tailored for a particular scenario or domain, as is the case
with most solutions. The fifth requirement is that the pro-
posed solution should be platform-independent and not
depend on specific operating systems or customized/tailored
interfaces. The sixth and final requirement is that the solution
should address heterogeneity, that is, cope with sensor nodes
that have different capabilities (e.g., processing power, memo-
ry).

The State of the Art and Its Shortcomings
We divide the related work into three classes: node-level, net-
work-level, and hybrid virtualization solutions. The hybrid
solutions combine both node- and network-level virtualization.

Node-Level Virtualization — In order to achieve node-level vir-
tualization, mechanisms must be in place to allow deployed
WSN nodes to execute new application tasks as well as update
existing ones. One solution is to reprogram WSN nodes indi-
vidually, but that is neither feasible nor efficient. Wireless
reprogramming, on the other hand, allows large numbers of
WSN nodes to be updated with new application tasks with
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Figure 1. WSN virtualization categories: a) a general-purpose sensor node; b) multiple VSNs over a single WSN; c) a single VSN
over multiple WSNs.
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minimum effort. It is now the main mechanism used for node-
level virtualization. Two examples of node-level virtualization
based on wireless reprogramming are discussed below. Their
main drawback is platform dependence.

Maté [5] is a pioneering work that provides sequential exe-
cution of application tasks on resource-limited early-genera-
tion sensor nodes. It is a tiny virtual machine consisting of a
stack-based binary code interpreter and works on top of
TinyOS. Application tasks are divided into code capsule(s) of
up to 24 instructions and are executed one by one. A viral
code distribution scheme is used to propagate code and repro-
gram the sensor nodes. As there is tight coupling between the
application code and TinyOS, installing a new code requires
the replacement of the whole OS. There is no support for
application priority, and only a limited set of applications is
supported. Furthermore, the approach is not platform-inde-
pendent since it only works on TinyOS, but it does address
heterogeneity.

MANTIS [8] is a thread-based embedded operating system.
Programs are created as user-level threads with dedicated
memory space and static data attached to them at compile
time. Long-running threads can be preempted by short-run-
ning threads. The work on wireless reprogramming is ongoing
according to the authors. The techniques used are the wireless
reflashing of the OS and reprogramming of single threads.
Unlike Maté, MANTIS does provide application priority.
However, it is not platform-independent.

Network-Level Virtualization — In [6], sensor nodes form clus-
ters to support applications that monitor dynamic phenomena.
The sensor nodes within each cluster execute application(s)
tasks, meaning a sensor node can be part of multiple clusters.
With each cluster dedicated to an application, a WSN can be
utilized by multiple applications concurrently, hence realizing
network-level virtualization. Two illustrative applications are
presented as motivation. Unfortunately, the work is poor in
terms of technical details (e.g., how individual nodes execute
application tasks). Furthermore, there is no discussion of how
application priority, heterogeneity, and platform indepen-
dence are tackled. This work was extended in [9] in order to
facilitate the creation, operation, and maintenance of dynamic

clusters to achieve network-level virtualization. Once an event
is detected, sensor nodes are grouped as a dynamic cluster
tree by exchanging VSN formation messages. However, in
terms of our requirements, none of the drawbacks of [6] are
addressed.

The authors in [10] introduce the problem of mission
assignment in WSNs. The work can be related to network-
level virtualization because the WSN is able to support multi-
ple missions at the same time. Each mission uses a dedicated
subset of sensor nodes that are not shared with other mis-
sions. A mission assignment problem is modeled as a weight-
ed bipartite graph to optimally assign the sensor nodes to
missions. Achieving a mission produces a profit, so the goal is
to maximize profit by efficiently achieving as many missions as
possible. Both centralized and distributed solutions are pre-
sented, using proofs and algorithms including an energy-aware
solution. This solution does not consider any specific applica-
tion domain. Heterogeneity is addressed along with platform
independence. However, application task priority is not pro-
vided since each sensor node executes only one application
task at a time.

Hybrid Solutions — The authors in [11] discuss the SenShare
platform, which supports both WSN-node and network-level
virtualization. They consider TinyOS applications with an
embedded hardware abstraction layer. The underlying sensor
node resources are then accessed using a runtime layer on top
of TinyOS. Since TinyOS supports multiple tasks at the same
time, node-level virtualization is achieved. For network-level
virtualization, an overlay network using Collection Tree Pro-
tocol (CTP) is created to group sensor nodes executing the
same application. The physically scattered sensor nodes exe-
cuting the same application can be grouped into a single over-
lay network. SenShare is the first solution targeting
comprehensive WSN virtualization. It supports node- and net-
work-level virtualization, application priority, and heterogene-
ity, and it is independent of any application domain. However,
it is not platform-independent, as only TinyOS applications
are supported.

Melete [12] is an extension of Maté and supports both
node- and network-level virtualization. Concurrent execution
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Figure 2. Multi-layer WSN virtualization architecture.
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of application tasks is achieved by making the fol-
lowing enhancements to Maté: dedicated storage
and execution space for applications to allow con-
currency, and a code dissemination protocol to
allow selective and reactive (re)programming of
sensor nodes. For network-level virtualization it
uses a dynamic grouping technique of sensor
nodes. A sensor node can be part of more than
one logical group at the same time. The support-
ed network topology is a connected graph. Melete
does not support application priority and is not
platform-independent. It only supports a limited
set of applications, but it does tackle heterogene-
ity.

Proposed Architecture
In this section, we first present the architectural
principles. We then present our multi-layer archi-
tecture based on overlays, followed by a discus-
sion of the interfaces and the overlay creation
procedure.

Architectural Principles
The first architectural principle is that new appli-
cations/services are deployed as new overlays on
top of the physical WSN. Overlays have several
advantages: they are distributed, lack central con-
trol, and allow resource sharing [13]. The second
principle is that any given physical sensor node
can execute (locally) a task for a given application
deployed in the overlay. Any given sensor node
may execute several such application tasks at any
given time.

The third principle is that not all WSN nodes perform the
overlay-related operations, as they may not have enough capa-
bilities to support the overlay middleware. When that is the
case, they will delegate the operations to more powerful sen-
sors and even to other nodes. This principle in effect makes it
possible to address the heterogeneity requirement and enables
network-level virtualization for early-generation resource-con-
strained sensor nodes.

The fourth principle is that within the architecture there
are separate data and control paths. The sensor data (e.g.,
temperature values) is transmitted from sensor nodes to the
overlay application using the data path. The control data (e.g.,
changing application priority and overlay management) is sent
over the control path. This separation of paths makes it easy
to work on new protocols for each path independently.

The last principle is the use of emerging standards, aimed
at resource-constrained devices, to tackle the platform inde-
pendence challenge. These standards include protocols such
as the Constrained Application Protocol (CoAP) [14] and
DNS-Service Discovery (DNS-SD) [15], and standards such as
Sensor Model Language (SensorML) [16], Observations &
Measurements (O&M) [17] and Sensor Markup Language
(SenML) [18]. This principle of course implies the need for
converters/mappers for devices that do not support the stan-
dards.

CoAP is an application-layer transfer protocol, like HTTP,
designed to work with resource-constrained devices. It has less
overhead, memory, and processing requirements than HTTP.
DNS-SD offers service discovery in resource-constrained net-
works and allows for the seamless integration of such architec-
tures into the existing IP networks. SensorML provides
standard models and XML-based encoding to describe sensor
measurements and processes. It is able to provide interoper-

ability, automatic discovery, utilization, and sensor sharing.
O&M is a standard that defines encoding schemas for the
observations made by sensors. SenML provides a data model
for sensor measurements and simple metadata about sensors
in JSON, XML, and EXI formats.

Overall Architecture
Figure 2 shows our proposed multi-layer architecture, and
Table 1 provides the list of components used. There are four
layers (physical, virtual sensor, virtual sensor access, and over-
lay), two paths (data and control), five interfaces (data [Di],
proprietary Di ([PDi], control [Ci], proprietary Ci [PCi], and
gateway [Gi]), and a registration server.

At the physical layer we have independent WSNs that con-
sist of two types of sensor nodes, that is, resource constrained
(type A) and capable (type B) sensors. Each WSN also has
specialized nodes, called GTO nodes. Their role is to help
type A sensors join the application overlays and provide het-
erogeneity. Gateways, sink nodes, or  type B sensors can act
as GTO nodes when required. For example, in the motivating
example in the previous section, if the existing sensors are of
type A, either the existing gateway node or type B sensors
deployed by the construction company can help those sensors
become part of the construction company overlay. This might
increase the complexity of the type B sensor nodes but does
allow flexibility.

The virtual sensor layer consists of the logical representa-
tion of each sensor executing multiple application tasks con-
currently. Each logical representation is called a virtual sensor
in our architecture, which is an abstraction of an application
task run by a sensor.

The virtual sensor access layer consists of sensor agents,
which ensure platform independence. This is achieved by pro-
viding standardized interfaces (Di and Ci) to interact with the

Table 1. Components of the architecture.

Abbreviation Component Remarks

— Type A sensor Legacy/resource-constrained sensor

— Type B sensor New-generation smart IP sensor
node

GTO node Gates-to-overlay
node

Gateway/sink node capable of 
joining application overlays on
behalf of type A sensors

— Sensor agent
Functional entity providing a unified
interface to provide platform 
independence

— Registration server Sensor repository

Di Data interface Interface to send sensor data to
application overlay

PDi Proprietary data
interface

Proprietary interface to send virtual
sensor data to sensor agent

Ci Control interface Interface to send/receive control
data from end-user application

PCi Proprietary control
interface

Proprietary interface to send/receive
control data from virtual sensor to
sensor agent

Gi Gates-to-overlay
interface

Interface to send/receive control
data between type A sensors and
type B sensors/GTO nodes
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end-user applications, and are mapped onto platform-specific
(proprietary) interfaces (PDi and PCi) for the underlying
physical sensor nodes. Sensor agents can be implemented in
either capable (type B) sensors or GTO nodes.

The overlay layer consists of independent application-spe-
cific overlays (two are shown in Fig. 2, but there could be
many more). Each application overlay is created by the end-
user application and consists of virtual sensors that run the
overlay application tasks. An overlay protocol is used for mes-
sage exchange inside an overlay. A registration server, which
contains the details of the deployed sensor nodes, is used by
end-user applications to find sensor nodes.

Interfaces
The data path uses the data interface (Di) supported by all of
the sensor agents to send the data received from the virtual
sensors executing the end user’s application task to the appli-
cation overlays. The control path uses the control interface
(Ci) supported by all sensor agents to send/receive control
data. Examples of control data include sending requests to
change application priority and sampling frequency. The inter-
faces, PDi and PCi, are proprietary and are used by the sensor
agent to communicate with WSNs. Figure 3 shows high-level
examples of when sensor data is sent over PDi and Di inter-

faces (Fig. 3a) (when fire is detected) and
when a request to change application task
priority is sent over Ci and PCi interfaces
(Fig. 3b). In this case it is the priority of the
task running on sensor 02. The gates-to-over-
lay interface (Gi) is provided by all the sen-
sors as well as the GTO nodes. Any
communication from type B or GTO nodes
with type A sensors is done using this inter-
face.

Overlay Creation Procedure
This section describes the overlay creation
procedure. The creation of the overlay is a
three-step procedure initiated by the end-user
application. The first step is dynamic resource
discovery and overlay preconfiguration, allow-
ing the discovery of the sensors and GTO
nodes on the fly according to the require-
ments of the end-user application. The sec-
ond step is the activation of the overlay. The
selected sensor (type B) and GTO nodes
receive an overlay join request (or advertise-
ment) over the Ci interface. After joining the
overlay, the type B sensors and GTO nodes
(for type A sensors) may receive the applica-
tion task with its desired priority level. The
final step is the execution of the end-user
application, which begins when each sensor
starts executing the end-user application task.
Depending on the application requirements,
sensors may exchange messages among them-
selves in the overlay before sending any data
to the end-user application over the Di inter-
face.

Implementation Alternatives,
Proof of Concept Prototype, and
Measurements
Implementation Alternatives
Our proposed architecture consists of the

data plane, the control plane, and several interfaces that
belong to them. The Di interface, belonging to the data plane,
carries the actual data. The Ci and Gi interfaces carry control
messages and are part of the control plane.

There are several options for implementing a data plane
interface. Both HTTP and CoAP can be used as application-
layer protocols, but we chose CoAP as it will allow type A
nodes to support the same protocol for Di and Gi interfaces.
We use SenML specifications to encode the sensor data in
standard JSON format. The combination of SensorML and
O&M is another option, but we selected SenML since it is
less complex.

For the control plane, one candidate protocol is JXTA [19],
an open source peer-to-peer protocol specification that allows
the creation of independent, robust, and efficient overlay net-
works. ScatterPastry [20] is another option. For our work we
opted to use JXTA since its implementations are readily avail-
able.

Prototype
We implemented a simple brush fire scenario discussed in [4]
as a prototype. In this scenario, the city administration is
interested in the early detection of brush fire eruption and in
its evolution, using a WSN and a fire contour algorithm

Figure 3. Example of communication over data and control interfaces: a) send-
ing sensor data over PDi and Di interfaces; b) changing application task prior-
ity over PCi and Ci interfaces.
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(FCA). Some houses in the area already have their own sen-
sors to detect fire. To accelerate the deployment of its appli-
cation and avoid redundancy, the city administration has
opted to deploy sensors in areas under its jurisdiction (i.e.,
streets and parks) and incorporate the sensor nodes already
deployed in private homes. The home owners get incentives
like tax rebates for allowing the use of their sensors by city
administration. The home gateways acts as GTO nodes. All of
the privately owned sensors execute two application tasks  one
for the home owner and one for the city administration. Fig-
ure 4a shows the mapping of the scenario onto our architec-
ture.

We make the following assumptions. First, we assume that
the city administration has already discovered and sent its
application task to each of these sensors. The second assump-
tion is that all of the sensors in the prototype are type A sen-
sors that need a GTO node for overlay-related tasks. Third, as
it was not possible to generate a fire in a lab environment, the
city administration application task periodically measured the
temperature value in a sensor and sent it to the GTO node.
We used six Java SunSpots sensors, each executing three
application tasks concurrently. The application tasks were
coded in Java 2 Platform Micro Edition (J2ME). J2ME is a
robust, flexible Java platform that enables the development of
applications for mobile and embedded devices. The city
administration’s overlay network was implemented using a
Java-based implementation of JXTA, JXSE 2.6.

A RESTful web service is used by the city administration
node to receive fire alerts. Each GTO node, upon receiving
fire notification from its sensor, sends an HTTP POST mes-
sage to a URI (http:///FireContourService/events/fire/) to create
a fire event. The content type of the HTTP POST message is
set to application/senml+json, and the event data received
from Java SunSpot is mapped to JSON format according to
SenML specifications. Once the event is created, the city
administration node sends a fire notification message to the
peers in the overlay.

The overlay is created by the city admin node, acting as
rendezvous peer, by advertising its peer group (fire contour
service) using JXTA pipe advertisements before the fire
event. The GTO nodes join the fire contour service as edge
peers by replying to the received pipe advertisement. The
city admin node sends the fire notification message using
the JXTA multicast socket, which provides efficient mes-
sage exchange between members of the same peer group.
After the execution of the fire contour algorithm, the reply
message is sent directly to the city admin node instead of
being multicast.

The prototype uses a simple probabilistic fire contour
algorithm, considering that a distant house will send fire
notifications less frequently than a nearby house because
the fire is far from it. The city administration’s applica-
tion, created using JavaFX, receives the fire alert mes-
sages  as  wel l  as  the  peers ’  rep l ies ,  and  d i sp lays  the
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Figure 4. Instantiation of the architecture and prototype setup: a) instantiation of the architecture; b) prototype setup.
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output  us ing  the  area  map.  JavaFX i s  a  se t  o f  Java
libraries that allow developers to rapidly design, create,
and deploy client applications that operate across diverse
platforms.

The prototype setup is illustrated in Fig. 4b. The city
administration application and its fire contour web service ran
on a laptop with an Intel Core i5 CPU clocked at 2.67 GHz,
and a 4 GB RAM with 32-bit Windows 7 Enterprise. The
other two laptops acted as GTO nodes for Java SunSpots and
ran three JXTA peers each. Their configurations were an
Intel Core i7 CPU clocked at 2.70 GHz with 8 GB RAM, 64-
bit Windows 7 Professional, an Intel Core i5 CPU clocked at
2.60 GHz, and a 4GB RAM with Windows 7 Enterprise. All
three laptops used JVM version 1.7.0_21 and were connected
to a private LAN.

Performance Measurements

Performance Metrics — The performance of the prototype was
assessed in terms of the following delays: HTTP POST delay
(HPD), overlay creation delay (OCD), and fire notification
delay (FND).

HPD is the time difference between when the GTO
node sends an HTTP POST request and when it receives
the corresponding success code (201 created). HPD is
calculated for each sensor. OCD is the time it takes to
set up the city administration overlay from a nonexistent
state to a ready state, when it advertises its fire contour
service and is ready to accept join requests. We measured
this delay inside the Java code to ensure that the OCD
does not include the JVM start-up delay. FND is mea-
sured as the time it takes for the city admin node to mul-
t icast  f i re  not i f icat ion messages  to  JXTA peers  and
receive their replies after they execute the fire contour
algorithm. For each experiment we restarted the JVM
and cleared the previous JXTA configuration cache. All
delays are measured in milliseconds and calculated at the
sender side.

Performance Results — The HPD measurements are shown in
Fig. 5a (for clarity, only 15 measurements are shown). The
dark blue horizontal line shows the average delay for the 50
measurements, 18.96 ms. It is observed that the delay for the
first POST message is much larger than that for the subse-
quent messages. This long delay is due to the three-way hand-
shake of TCP connection that takes place during the first
POST message, whereas for subsequent requests a persistent
HTTP connection (a.k.a. HTTP keep-alive) reduces delay
considerably. Figure 5b shows the OCD of a city admin JXTA
peer with an average value of 1983 ms from 50 iterations indi-
cated by the horizontal blue line. The delay includes the
JXTA core startup, the creation of a fire contour service, the
related pipe advertisement, a JXTA multicast socket, and the
thread for accepting join requests from other JXTA peers.
For each iteration a new JXTA cache was generated instead
of using the old one. Figure 5c shows the average FND of five
sensors that executed a fire contour algorithm in response to
a notification message sent by a city admin JXTA peer. In this
case sensor E reported the fire. The average FND of five sen-
sors is 19.58 ms.

In order to determine the overhead of WSN virtualization,
we consider the scenario where sensors do not support node-
level virtualization and only execute city admin tasks. There
is also no network-level virtualization and no overlay network
for message exchange. In this case, the fire counter algorithm
will be executed by the GTO nodes after getting an HTTP
POST message from the city admin node. For a simple com-
parison, if we consider that the FND without WSN virtualiza-
tion is similar to HPD, that is, 18.96 ms, and FND with WSN
virtualization is 19.58 ms, then with WSN virtualization we
have approximately 3.27 percent overhead. This overhead is
due to the processing of XML-based JXTA messages. Our
implementation demonstrates that WSN virtualization is
indeed feasible and does not incur much overhead. Node-
level virtualization is achieved with Java SunSpots with very
little effort. Network-level virtualization is achieved using
JXTA, and once JXTA is operational, the delays are mini-
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Figure 5. Results: a) HTTP POST message delay; b) overlay creation delay; c) fire notification message delay.
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mal. OCD is inevitable, but in the long run, using JXTA is
beneficial as it provides a robust, highly scalable, and effi-
cient solution.

Overall, the results show the typical delays experienced in a
private LAN setting. The same JXTA pipe advertisement of
the fire contour service was used to send and receive the fire
notification messages over a JXTA multicast socket, which
greatly improved the overall performance.

Research Directions
WSN virtualization is a very rich research area, and our pro-
posed preliminary architecture has raised several interesting
issues. This section provides a non-exhaustive sample. The
first issue is a dynamic publication and discovery framework
for sensor and GTO nodes. In this work, we assumed a static
publication process where the sensor and GTO owners pub-
lish their nodes to a central repository. To automate the pro-
cess of WSN virtualization, an on-the-fly publication and
discovery mechanism would be required. A CoAP-based
framework could be used as starting point. For a centralized
solution, a CoAP resource directory (RD) mechanism can be
used, while a CoAP resource discovery mechanism would be
more appropriate for a distributed solution. Similarly, a DNS-
SD mechanism can be used in combination with CoAP to pro-
vide new solutions.

The choice of data formats for various interfaces is another
issue. The current OGC — O&M and SensorML specifica-
tions use the XML format, which is inefficient in resource-
constrained environments. SenML addresses this issue by
using JSON and EXI formats, and it works with both HTTP
and CoAP, but it also has some open issues. For example, we
can use it to specify simple metadata about measurements,
but there is no mechanism to provide such data for describing
the sensors, their capabilities, and their resources (memory,
space, and battery life) at a particular time. The possibility of
a lightweight mechanism for reporting a sensors’ runtime sta-
tus is very appealing. Similarly, a semantically enriched format
would be of particular use for creating intelligent sensor-
based systems in the context of the Internet of Things, which
is currently not possible with SenML.

An important issue is optimal task assignment to sensors.
The problem is essentially the mapping of end-user applica-
tion requirements to the available resources, which is very
challenging in a virtualized environment. Reference [10] pro-
poses a solution, but it assumes that every sensor executes a
single task, which is not the case in a virtualized environment.
However, it could be used as starting point for further
research. WSN-oriented overlay middleware is yet another
issue to investigate. We need an efficient solution that pre-
vents overlays from interacting in a harmful way when they
compete for underlying resources. JXTA and similar protocols
work well, but not in resource-constrained environments.
Some early attempts like [20] exist, but they must be com-
bined with the concept of WSN virtualization.

A signaling framework to support quality of service (QoS)
and session management is also needed. Issues like handling
application requests for setting/changing task priority will be
tackled by such a general QoS framework. There are several
signaling frameworks, such as SIP/RSVP, but they may not be
suitable for sensors. Again, a CoAP-based signaling protocol
is a potential solution. Using the virtualization concept for
mobile WSNs is also interesting, since they are becoming
more and more popular. Vehicular ad hoc networks, social
networks, and crowd-based sensing can provide concrete
application scenarios to motivate the virtualization of mobile
WSNs.

Lessons Learned
In this article we have proposed a new preliminary multi-layer
architecture for WSN virtualization and have identified sever-
al research directions.

We have learned several lessons. The first is that WSN
node-level virtualization is still in its infancy, and very few
WSN kits supporting node-level virtualization are readily
available. This is certainly due to the challenges of designing
hypervisors in resource-constrained environments. A second
lesson is that most existing WSN standard specifications perti-
nent to our work are still embryonic. SenML, for instance, is
very promising. However, in its present form, it is not suitable
for control functions. On the other hand, SensorML is com-
plex and not suitable for a general-purpose and efficient solu-
tion. A third lesson is that most existing overlay middleware is
unsuitable for WSNs because it is usually not designed for
resource-constrained devices. We used JXSE, which is one of
the best choices available. However, its current open source
implementation is rather old, and the future of the initiative is
uncertain.
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