
1

Authors Version
CACEV: a Cost and Carbon Emission-Efficient
Virtual Machine Placement Method for Green

Distributed Clouds
[This paper has been accepted in IEEE International Conference on Services Computing (IEEE SCC 2016)]

[This file is an author version for personal record.]
Ehsan Ahvar1, Shohreh Ahvar1,3, Zoltán Ádám Mann2, Noel Crespi1, Joaquin Garcia-Alfaro1 and Roch Glitho3

1Institut Mines-Telecom, Telecom SudParis, France.
Emails: {ehsan.ahvar,shohreh.ahvar,noel.crespi,joaquin.garcia alfaro}@telecom-sudparis.eu

2University of Duisburg-Essen, Germany. Email: zoltan.mann@gmail.com
3Concordia University, Canada. Email: glitho@ciise.concordia.ca

Abstract

Distributed clouds have recently attracted many cloud providers and researchers as a topic of intensive interest. High energy costs
and carbon emissions are two significant problems in distributed clouds. Due to the geographic distribution of data centers (DCs),
there are a variety of resources, energy prices and carbon emission rates to consider in a distributed cloud, which makes the placement
of virtual machines (VMs) for cost and carbon efficiency even more critical than in centralized clouds. Most previous work in this
field investigated either optimizing cost without considering the amount of produced carbon or vice versa. This paper presents a
cost and carbon emission-efficient VM placement method (CACEV) in distributed clouds. CACEV considers geographically varying
energy prices and carbon emission rates as well as optimizing both network and server resources at the same time. By combining
prediction-based A* algorithm with Fuzzy Sets technique, CACEV makes an intelligent decision to optimize cost and carbon emission
for providers. Simulation results show the applicability and performance of CACEV.

I. INTRODUCTION

Recent cloud infrastructures are increasingly geographically distributed. The distributed cloud has some benefits in comparison
to the centralized cloud such as lower upfront investment, vulnerability to natural disasters and proximity to users. Due to the
geographical distribution of data centers (DCs), distributed clouds offer a pool of resource options with different prices and carbon
emission rates.

Carbon emission and cost are currently two critical concerns for cloud providers and network operators. Energy consumption
(EC) has a direct effect on both cost and carbon emission. DCs worldwide consumed 270 TWh of energy in 2012, with a Compound
Annual Growth Rate (CAGR) of 4.4% from 2007 to 2012 [1], [2]. According to predictions, they will account for about 8% of
worldwide electricity consumption by 2020, and will generate about 2.6% of global carbon emission [3], [4]. Therefore, providers
try to reduce their EC and carbon emission. For example, France Telecom-Orange has the ambition of decreasing its EC and
carbon emission from 2006 to 2020 by 15 and 20% respectively [5].

As a result, energy saving methods are needed to help providers to reduce both cost and carbon emission. However, as energy
prices and carbon emission rates vary by location (e.g., because of different energy sources), energy savings alone may not
necessarily or effectively imply reduction of carbon emission and cost. In addition to EC which is important for both cost
and carbon efficiency, energy price factor for cost efficiency and cleanness of energy sources for carbon efficiency have to be
considered. Above all, there is no correlation between the cleanness (carbon footprint) of a locations energy sources and the
energy price for that location [3]. Therefore, to optimize both cost and carbon emission, we need to solve a three-dimensional
problem: (i) how to minimize EC (usually in form of resource utilization optimization) (ii) how to find resources with best energy
price and (iii) how to choose the resources which are connected to energy sources with lowest carbon emission rate. Considering
these three, sometimes conflicting, dimensions simultaneously makes the problem very complex.

The main objective of this paper is to devise a new VM placement algorithm considering the above three-dimensional problem
to optimize both cost and carbon emission in a distributed cloud. To do so, we try to allocate newly requested VMs using currently
active cloud devices (i.e., physical machines (PMs) and network elements) in order to avoid the EC associated with the activation
of devices from sleep mode and also to have the lowest possible number of active devices.

To offer a realistic solution, the paper considers a detailed system model characterized by the following points:
1) heterogeneity of resources (DCs, PMs, switches) and VMs
2) heterogeneity of EC models of cloud elements (e.g., different PMs may have different EC models)
3) effects of workload on EC of devices (e.g., EC of a PM depends on its CPU load)
4) multiple paths between a pair of PMs

2

5) a more intelligent algorithm, in contrast to the greedy heuristics that most existing approaches use [17]
6) joint optimization of PM (server) and network resources
7) considering variety in price and location among the resources
8) ability to select resources from multiple DCs to serve a request
9) taking into account inter-VM communication

10) IaaS Service Level Agreement (SLA) violation
To address these points, this paper proposes a cost and carbon emission-efficient VM placement method (CACEV) for distributed

cloud environments. CACEV builds on ideas of integrating the prediction-based A* search algorithm [18] with Fuzzy Sets
technique to obtain better results than typical greedy heuristics. It is a VM placement algorithm for joint optimization of servers
and network, which also considers price, location and carbon emission rate of resources. It can select multiple DCs for the reasons
of cost and carbon emission efficiency or capacity limitations. Network and data transfer awareness in selecting DCs/PMs and
placing VMs makes CACEV capable to optimize network traffic as well.

CACEV is designed for allocating batch jobs, also supporting applications with inter-VM communication. To prevent SLA
violations, CACEV adopts utilization thresholds (for more information, see [21]). The goal is to preserve free resources to prevent
SLA violations due to consolidation in situations where resource requirements of VMs increase. When selecting PMs, CACEV
makes sure not to violate the upper threshold.

The rest of the paper is organized as follows: Section II describes related work. Section III introduces our system model and
Section IV defines the problem. The proposed algorithm is described in Section V. Section VI evaluates CACEV and Section VII
concludes the paper.

II. RELATED WORK

Previous work addressed some of the 10 points listed in the Introduction to characterize the problem, but only in isolation. To
our knowledge, our work is the first to address all aspects in combination.

Li et al. [10] and Dong et al. [11] considered server and network resources at the same time for their proposed VM placement
algorithms. You et al. [12] designed a network-aware VM placement method to improve communication cost. But all these works
are limited to a single-DC environment and are not appropriate for a distributed cloud with varying resource prices. Alicherry et
al. [13] proposed algorithms for network-aware selection of DCs and allocation of VMs on PMs in a distributed cloud. But their
primary objective is to minimize the maximum latency in communication between the VMs allocated for a user request, which
is different from our objective. They also did not consider hardware and VM heterogeneity in their solution. Our previous study
[14] focused on improving communication cost between DCs in a distributed clouds. But, unlike this paper, it did not consider
server cost, nor VM placement inside DCs. In addition, our current work is different from all mentioned results since we consider
not only costs but also carbon emission.

Khosravi et al. [15] addressed both energy and carbon emission during VM placement in a distributed cloud. However, they did
not consider the variability of energy prices. Also, inter-VM communication was not considered, although it is an important factor
for reducing traffic and energy of network resources. Zhou et al. jointly considered SLA, electricity cost, and emission reduction
for distributed DCs [4] and, recently, Gu et al. proposed a method to minimize carbon emission of cloud DCs while satisfying
constraints on response time, electricity budget and maximum number of running PMs in an environment with homogeneous PMs
[16]. Different from our work which is for batch jobs with constraints on inter-VM communication, these papers target service
jobs with constraints on response time.

III. SYSTEM MODEL

We consider a hierarchical distributed cloud architecture [6] including a cloud controller and site (i.e., DC) and PM controllers.
The DCs are given by a complete graph G1 = (Dc,E1, wDc,wE1) where Dc is a set of DCs, wDc denotes their current
capacity, E1 consists of connected edges (representing network paths), and wE1 denotes the edge weights (e.g., number of
routers on the network path). Each DC has its own Power Usage Effectiveness (PUE) value and is associated with one or more
energy sources with different carbon footprint rates and energy prices. PUE is defined as the ratio of total power consumed by a
DC to the power consumed by IT devices [15]. We assume the cloud provider owns or leases a high-capacity backbone network
to carry the traffic between DCs. Inside DCs, our model (and our proposed VM placement algorithm) supports both structured
(e.g., Fat-Tree [7]) and arbitrary [8] topologies.

Each DCj (1 ≤ j ≤ |Dc|) is represented by a weighted graph G2j = (Nj , E2j , wNj , wE2j) where Nj is the set of nj PMs
and wNj shows their current capacity. Similar to [9], for every pair of PMs x and y in DCj , a set of pre-calculated paths from
PM x to PM y is considered. E2j consists of the set of calculated paths between pairs of PMs in DCj . Resource parameters of
each PMi are given as a vector wE2i, including CPU, memory, disk, and I/O bandwidth. Each basic resource unit is represented
by one slot [10]. We consider sleep and active modes for both PMs [26] and switches [24], [25].

The model supports different types of VMs. Each VM type k (1 ≤ k ≤ U) is specified by a vector V ck of requested resources,
including CPU, memory, disk, and I/O bandwidth in unit of slots.

To handle time-varying request rates and energy prices, time is split into equal time windows (T). A set A including r requests
is received in each time slot T [19]. We assume that within a time slot T the energy price is fixed, and the IaaS provider rents
VMs based on unit of the time slots (even if a VM is finished in the middle of T , the rental fee should be paid for the whole
time window).

3

TABLE I. OVERVIEW OF THE USED NOTATION

General parameters and notation
d = | Dc | number of DCs Nj set of PMs in DCj
nj number of PMs in DCj ComCost inter-DC network costs for running the set A of requests
OverallCost total cost of running the set A of requests DcEn IE for running the set A of requests within DCs
DcCost costs of running the set A of requests within DCs IE Incremental energy
CarbonEmission carbon emission amount for running A EC Energy consumption

Request parameters
M number of requested VMs in A V cj vector of requested resources of VMj

VMi requested VMs, 1 ≤ i ≤M
Quantities relating to server costs

wNi capacity vector of PMi CEj carbon emission rate (in g/kW) for DCj
SerEni IE caused by running VMs of set A on PMi TSerEnj IE caused by servicing the set A of requests in DCj
Selti =1 if at least one VM of set A is on PMi, otherwise 0 VMki =1 if VMk is allocated on PMi

E iV Mk EC of running VMk on PMi (without considering PMi mode) E iinc,VMk
IE on PMi caused by running VMK

EN i EC of PMi for processing VMs of set A EN i
wakeUp energy needed for PMi to go from sleep to active mode

EN i
idle EC of PMi if idle (i.e., active, with zero load) EN i

max maximum EC of PMi (i.e., with full load)
ωi percentage of the CPU usage of PMi CPU imax processing capacity of PMi (FLOPs/sec)
CPUVMk

CPU load of VMk (FLOPs/sec) SeriSlp =1 if PMi is in sleep mode, 0 if in active mode
rk carbon emission rate of energy source k in DCj SelDCj =1 if DCj is selected, otherwise 0
EnPrj price of energy for DCj

Quantities relating to network costs
NB
Slp =1 if network element B is in sleep mode, otherwise 0 ComEnab IE of data transfer between DCa and DCb for set A

δij number of exchanged packets between PMi and PMj for set A EBpkt EC of element B to serve a packet (without considering element modes)
EBinc,pkt IE of an element B caused by servicing the packet pkt λijφ number of intermediate elements between PMi and PMj on φth path
NetEnij network EC for data transfer between PMi and PMj TNetEnj total network EC for set A on selected PMs of DCj
αpktijφ =1 if packet pkt is assigned to the φth path between PMi and PMj NetEnpktij IE of network elements between PMi and PMj for transferring pkt
Rij number of exchanged packets between PMs i and j for the set A TR(tr)M.M traffic matrix for set A (M VMs)
trq,w amount of traffic (packet numbers) between VMq and VMw EBp needed per-packet processing energy
EBS&F per-byte store and forward energy L packet length in bytes
PAij number of paths between PMi and PMj λ′ab number of intermediate elements between DCa and DCb
δ′ab number of exchanged packets between DCa and DCb for set A ComEnabpkt IE of network to transfer pkt between DCa and DCb
ComPrab energy price of communication between DCa and DCb ComCEab carbon emission of communication between DCa and DCb

Each request Ri (1 ≤ i ≤ r) demands mi VMs where M =
∑r

1Ri. A request usually requires multiple VMs which need to
communicate to each other. A traffic matrix TRM.M contains VM relations and/or the amount of traffic exchanged among the
M VMs. TRM.M can be created either from traffic information attached to the requests coming from PaaS or normal users, or
created based on estimation techniques. Operating cost and carbon emission are related to the amount of EC by server and network
resources. EC of a PM is considered as a function of its CPU, since the CPU is the major component of power consumption in
a PM [2], [26], [23]. Routers and switches are the main contributors to network EC [20].

IV. PROBLEM FORMULATION

An IaaS cloud controller receives a set A of requests (i.e., tasks or applications) in a time slot T . The cloud controller has to
select appropriate DCs and distributes VM requests to the selected DCs. The distributed requests in each selected DC are then
allocated on appropriate PMs. Moreover, appropriate paths are selected between related PMs. All symbols in this section and
their definitions can be found in Table I.

The objective is to select a subset of DCs and, then, in each selected DCj choose a subset of the PMs to accommodate the set A
of requests (including M VMs) in a way which leads to optimal overall cost (OverallCost) and carbon emission (CarbonEmission).
OverallCost depends on the EC of the selected resources and on its price. Carbon emission can be improved by reducing EC of
resources and selecting resources with access to energy sources with low carbon emission (i.e., low carbon emission rate). The
Cost and Carbon emission Optimization Problem (CCOP) in distributed clouds is formalized as follows:

minimize OverallCost+ CarbonEmission, where
OverallCost = DcCost+ ComCost, and
CarbonEmission = DcEmission+ ComEmission

(1)

with the constraint that the selected DCs must have enough total capacity to accommodate the M VMs:∑
j∈Dc

nj∑
i=1

(wNi · SelDCj) ≥
M∑
j=1

V cj . (2)

4

A. Overall cost formulation (OverallCost)
DcCost in Eq.(1) is the cost of incremental energy of selected DCs (both servers and intra-DC networks) to accommodate the
requests. TSerEnj , TNetEnj and EnPrj are the incremental server energy, network energy, and the energy price in DCj .

DcCost=

d∑
j=1

PUEj ·(TSerEnj+TNetEnj)·EnPrj ·SelDCj (3)

TSerEnj =

nj∑
i=1

SerEni · Selti (4)

SerEni =

M∑
k=1

E iinc,VMk
· VMk,i (5)

Subject to the following constraints:

VMk,i ≤ Selti, ∀i, k 1 ≤ i ≤ nj , 1 ≤ k ≤M, (6)
nj∑
i=1

VMk,i = 1, ∀k 1 ≤ k ≤M, (7)

M∑
k=1

VMk,i · V ck ≤ wNi, ∀i 1 ≤ i ≤ nj . (8)

Eq. (6) ensures that a VM can be assigned only to one of the selected PMs. Eq. (7) guarantees that each VM is assigned to
exactly one PM and (8) guarantees that the total load of the VMs assigned to a PM does not exceed its capacity. IE of running
VMk on PMi is computed as follows:

E iinc,VMk
= (EN i

wakeUp + EN i
idle) · SeriSlp + E iV Mk

. (9)

If PMi is in sleep mode and receives the first VM, it needs to spend energy EN i
wakeUp to go from sleep to active mode. If

active but idle, PMi consumes constant energy of EN i
idle; VMk adds E iV Mk

to it. As the first VM lets the PM wake from sleep
mode, the resulting EC is EN i

wakeUp +EN i
idle + E iV Mk

. But for VMs added to an already active PM, the increase in energy is
only E iV Mk

. To compute E iV Mk
, we use formulas from [26] and [22]:

EN i = EN i
idle +

M∑
k=1

(E iV Mk
· VMk,i) (10)

EN i = EN i
idle + (EN i

max − EN i
idle) · ωi (11)

ωi =

∑M
k=1(CPUVMk

· VMk,i)

CPU imax
(12)

Using (10) and (11) for one VMk, E iV Mk
is computed:

EN i
idle +

M∑
k=1

(E iV Mk
· VMk,i) = EN i

idle + (EN i
max − EN i

idle) · ωi (13)

E iV Mk
= (EN i

max − EN i
idle) ·

CPUVMk

CPU imax
. (14)

To calculate TNetEnj , we first compute NetEnij :

NetEnij =

δij∑
pkt=1

NetEnpktij . (15)

Here, δij is computed based on the characteristics of the allocated VMs on PMi and PMj and also TR information:

δij =

M∑
q=1

M∑
w=1

VMqi · VMwj · trq,w (16)

NetEnpktij =

PAij∑
φ=1

αpktijφ ·
∑

B∈λijφ

EBinc,pkt (17)

5

PAij∑
φ=1

αpktijφ = 1; ∀pkt∈δij i, j ∈ X (18)

Today’s DC networks are typically provisioned with redundant links and excessive bandwidth to accommodate peak traffic loads
and tolerate link failures, and run well below capacity most of the time [27]. Therefore, in (17), we assume at least one path with
enough link capacity between each PM pair.

The incremental energy consumption of a network element B is computed analogously to servers (see Eq. (9)):

EBinc,pkt = (EBwakeUp + EBidle) ·NB
Slp + EBpkt (19)

In (19), EBpkt is computed as follows [20]:
EBpkt = EBp + EBS&FL, (20)

where EBp and EBS&F are constants for a given switch or router configuration. Finally, the total IE of the network for running A
on selected PMs of DCj is given by:

TNetEnj =
∑
i∈N

∑
j∈N
j 6=i

NetEnij . (21)

Only the selected PMs will be considered automatically in (21), because in (15), when there is no traffic between PMi and PMj

(δij=0), the related NetEnij = 0 as well.
Inter-DCs communication cost (ComCost) in Eq.(1) includes the incremental energy of the inter-DC network to transfer data
for running the set A of requests. ComEnab is the incremental energy between DCa and DCb; ComPrab is the energy unit
price for communication between DCa and DCb.

ComCost =
∑

a,b∈Dc

ComEnab · ComPrab · SelDCa · SelDCb (22)

ComEnab =

δ′ab∑
pkt=1

ComEnpktab =

δ′ab∑
pkt=1

∑
B∈λ′

ab

EBinc,pkt (23)

δ′ab =
∑
i∈Dca

∑
j∈Dcb

M∑
q=1

M∑
w=1

VMqi · VMwj · trq,w (24)

B. Computing carbon emission
DC carbon emission (DcEmission) in Eq.(1) is the carbon emission amount caused by incremental energy within the selected
DCs (servers and intra-DC networks) to run the requests:

DcEmission =
d∑
j=1

PUEj · (TSerEnj + TNetEnj) · CEj · SelDCj , (25)

where CEj is the average carbon emission rate (in g/kW) of the energy sources of DCj . It is computed as follows [4]:

CEj =

∑`
k=1 CE

k
j · rk∑`

k=1 CE
k
j

, (26)

where CEkj and rk denote the electricity generated by energy source k and its carbon emission rate, respectively.
Inter-DC carbon emission (ComEmission) in Eq.(1) is the amount of incremental carbon emission resulting from data transfer
between the selected DCs:

ComEmission=
∑

a,b∈Dc

ComEnab · ComCEab · SelDCa · SelDCb, (27)

where ComCEab is the average carbon emission rate for communication between DCa and DCb.

6

V. COST AND CARBON EMISSION-EFFICIENT VIRTUAL MACHINE PLACEMENT (CACEV)
CACEV is a two-stage VM placement algorithm (see Algorithm 1). Stage 1 selects DCs and distributes VMs on them

simultaneously (joint DC selection-VM distribution, lines 2-3). Stage 2 chooses PMs in each selected DC and allocates VMs on
them simultaneously (joint PM selection-VM placement, lines 4-6). For both stages, CACEV first creates candidate subgraphs
and then selects the best subgraph in terms of overall cost and carbon emission. CACEV is structured as follows.
Module 1: VM Mapper (VMM). The VMM module (lines 30-38) receives a candidate v (PM or DC) with its current capacity
and a set X of VMs with their traffic information (TRM.M) as input. Starting from each VMi ∈ X , VMM creates one subset. It
first starts from VM1. If the capacity of v is greater than the load of VM1, VMM adds an element VMnew which has the highest
traffic with VM1. If v still has free capacity, a third element (a VM which has highest traffic with the two already selected VMs)
is added to the subset. This procedure continues until the capacity of v is exhausted or all elements of X are allocated. After
creating a subset starting from VM1, the VMM module creates the second subset starting from VM2, etc. Finally, there are |X|
subsets of VMs so that any would fit into v. VMM selects the subset with highest inter-VM traffic and maps it to v.
Module 2: Candidate Subgraph Creator (CSC). This module (lines 8-20) receives a weighted graph G = (V,E,wV,wE)
and a list of VMs as input and returns |V | subgraphs. The aim of CSC is to determine for each vi ∈ V an induced subgraph
G′(vi) with sufficient total capacity and optimized overall cost-carbon emission. G′(vi) is grown from {vi} as starting point by
iteratively adding one vertex a time. The already selected vertices are stored in an array SbG; initially, SbG[i][0]=vi. In each step,
CSC checks whether the selected vertices have sufficient total capacity. If yes, G′(vi) is finished. Otherwise, the PFBS module
is called to select one more vertex for inclusion in SbG, and the cycle continues, until the total capacity of the selected vertices
is sufficient. Then, G′(vi) is the subgraph induced by SbG. This way, a subgraph is created for each vertex v as starting point,
yielding altogether |V | candidate subgraphs.

Selecting each vertex vi as starting point is important because the subgraph formed starting from vi will often be biased towards
vertices in the proximity of vi; taking the best one of the candidate subsets helps to find a globally optimal subset. In principle, it
would also be possible to consider all subgraphs of G with sufficient total capacity. However, the number of all such subgraphs
can be exponential, making this approach intractable in practice. In contrast, our method is a faster, polynomial-time heuristic.
Module 3: Prediction and Fuzzy Sets-Based Selector (PFBS). Whenever CSC needs to add a new vertex to the candidate
subgraph G′ being generated, it calls the PFBS module (lines 21-29). Let SubGr denote the list of already selected vertices in
subgraph G′ and V \ SubGr the vertices still available in G for selection. PFBS receives a graph G, SubGr and a set of VMs
as input and returns the most cost/carbon effective vertex vi ∈ V \ SubGr to be included in the subgraph.

The PFBS mechanism is based on a combination of the A∗ algorithm [18] and Fuzzy Sets technique. Selecting the best node
only in cost or carbon emission is almost a simple work. But making a certain decision to select the best node considering these
two, sometimes conflicting, metrics simultaneously is more complex and even sometimes not possible. To this end, we use Fuzzy
Sets technique. Fuzzy Sets technique [28] is an effective method for modeling uncertainty and for processing vague or subjective
information in mathematical models. It has been utilized to a great variety of real problems. The Fuzzy Sets theory considers
membership values which are indicated by a value on the range [0, 1]. Where 0 representing absolute Falseness and 1 shows
absolute Truth. PFBS considers a (fuzzy) set which includes all possible (DC or PM) candidates. The membership function of this
set maps each candidate to a membership value (MV) in the range [0, 1]. Inspired by the A∗ algorithm, the membership function
(for each possible candidate vi ∈ V \ SubGr) combines the costs and carbon emission incurred by selecting the candidate vi
and an estimate of the overall costs and carbon emission that will be incurred in the future if vi is selected now. The estimation
aspect of A∗ algorithm helps to consider capacity of each candidate in addition to cost and carbon emission. For each possible
candidate vi ∈ V \ SubGr, the A∗ function is

c(vi) = g(vi) + h(vi). (28)

The algorithm selects the candidate with the smallest c(vi) value or highest membership value of MV (vi) (i.e., MV (vi) =
1− c(vi)). Here, g(vi) is the incremental overall cost and carbon emission incurred by selecting vi and includes the incremental
network and server costs and carbon emission. g(vi) will be certainly incurred if vi is selected.

g(vi) = K1 ·K2, (29)

where K1 and K2 are normalized values of cost and carbon emission (in range of [0,1]) respectively.

K1 =
SerEnvi · EnPrvi +NetEnvi ·NetPrvi

SerEnmax · EnPrmax +NetEnmax ·NetPrmax
, (30)

K2 =
SerEnvi · SerCEvi +NetEnvi ·NetCEvi

SerEnmax · SerCEmax +NetEnmax ·NetCEmax
, (31)

where SerEnvi is the IE of the selected vi caused by running allocated VMs of the set A on it. EnPrvi is the current price of
energy in location of vi. NetPrvi is the energy price for network elements. For intra-DC network, it can be the same as EnPrvi .
NetEnvi is the IE of network elements caused by adding the candidate vi to the subgraph:

NetEnvi =
∑

vj∈SbG

NetEnvi,vj , (32)

7

Algorithm 1: CACEV Algorithm
Input : G1(V 1, E1, wV 1, wE1): a weighted graph of DCs; TotalVM[M]:M requested VMs; TR[M][M]:VM traffic matrix; G3={G2i(V 2i, E2i, wV 2i, wE2i) : G2i

internal graph of DCi,1 ≤ i ≤ |V 1| }
Output: Selecting appropriate DCs and PMs and Placing requested VMs on them

1 Function mainCACEV(G1, G2, TotalVM)
2 (sGrDCs,VMsOnDCs)= CSC (G1,TotalVM);
3 SelsGrDC = FBSS(sGrDCs,VMsOnDCs);/*returns the best subgraph of DCs*/
4 foreach DC ∈ SelsGrDC do
5 (sGrPMs,VMsOnPMs)=CSC(G2DC ,VMsOnDCs[SelsGrDC][DC])/*returns subgraphs of PMs of DCk*/
6 SelsGrPM= FBSS(sGrPMs,VMsOnPMs);

7 return(SelsGrDC,SelsGrPM,VMsOnPMs[SelsGrPM])/*selected DCs,PMs,VMs on them*/

8 Function CSC(G(V,E,wV,wE),VM[])/*returns G subgraphs, their allocated VMs*/
9 Let SbG[|V |][|V |]= {}, SubGrVM[|V |][|V |][|X|]= {}

10 copy members of array VM[] into a set X;
11 for 1 ≤ i ≤ |V | do
12 Let SbG[i][j]=vi, j=0, X′ = {}
13 SubGrVM[i][j]← VMM(wvi, X \X′, TR);
14 TC=wvi; TR =

∑|X|
k=1 size(VM [k])

15 /*TC:Total Capacity, TR:Total Requirement*/
16 while TC < TR do
17 j ← j+1;
18 (vnew, SubGrVM [vi]) = PFBS(G,SubGr[vi], X \X′, TR); /*selects one more vertex and its VMs*/
19 Let SbG[i][j]=vnew , TC=TC+wvnew

20 return (SbG,SubGrVM) /*returns candidate subgraphs*/

21 Function PFBS (G(V,E,wV,wE),SbG[],X,TR)
22 cmin =∞;
23 foreach vi ∈ V \ SubGr do
24 if vcpui < SLAThreshold then
25 SubGrVM[vi][j]← VMM(wvi, X, TR);
26 compute c(vi) using Equations (28)-(38);
27 if c(vi) < cmin then
28 cmin = c(vi), selected = vi;

29 return (selected,SubGrVM[vi])

30 Function VMM(v, X, TR)
31 foreach VMi ∈ X do
32 Y = {}
33 Add VMi to set Y
34 Allocate VMi on v
35 while (v not fulled) or (Y 6= X) do
36 Find a VMnew ∈ X \ Y with total highest traffic with Y elements
37 Allocate VMnew on v, add VMnew on Y, add Y to sSet

38 return (a subset of sSet with highest inter-VMs traffic)

39 Function FBSS(SbG[][],SbV[][])/*returns the best subgraph and its VMs*/
40 MFmin =∞, i=0
41 while SbG[i] 6= null do
42 compute cost(SbG[i]) using Equation (39);
43 compute carbon(SbG[i]) using Equation (40);
44 compute MF (SbG[i]) using Equation (41);
45 if MF (SbG[i]) < MFmin then
46 MFmin=MF(SbG[i])
47 selected=SbG[i]

48 i=i+1

49 return selected

where NetEnvi,vj is the IE of transferring data from candidate vi to already selected vertices. For DC selection, NetEnvi,vj is
computed based on (23) and for PM selection (15) is used. PFBS calls for each candidate vi the VMM module to detect allocated
VMs on the candidate vi and, then, computes δi,j for PMs based on (16) and for DCs from (24). Recall that (15) also selects
the best path between two PMs.

The function h(vi) is an estimate of the incremental overall cost and carbon emission caused by the further vertices that we
have to select later on to accommodate all the M VMs.

h(vi) = K1′ ·K2′, (33)

where K1′ and K2′ are normalized values of the estimated cost and carbon emission (in range of [0,1]) respectively.

NS · SerEnavg · EnPravg +NE ·NetEnavg ·NetPravg
NS · SerEnmax · EnPrmax +NE ·NetEnmax ·NetPrmax

. (34)

NS · SerEnavg · SerCEavg +NE ·NetEnavg ·NetCEavg

NS·SerEnmax·SerCEmax+NE·NetEnmax·NetCEmax
, (35)

8

where NS and NE are the estimated number of vertices and edges (network paths) that will be added later to the subgraph (in
the course of allocating the remaining VMs), SerEnavg is the estimated average and SerEnmax the maximum possible IE for a
new vertex, NetEnavg is the estimated average and NetEnmax the maximum possible IE of the network for the further edges.
EnPriceavg and NetPriceavg are the average, EnPricemax and NetPricemax the maximum price of energy for vertices and edges,
respectively. To estimate NE, recall that G is a complete graph, so that each new node added to a subgraph with z vertices will
add z new edges. After adding vi to the subgraph with z vertices, it will consist of z+1 vertices, so adding further vertices will
lead to z + 1, z + 2, . . . new edges. Hence, if y further vertices will have to be selected after vi, we have

NE =

(z+1)+(y−1)∑
k=z+1

k = z · y + y · (y + 1)

2
. (36)

y =
M − ((

∑
w∈Al F (w)) + F (vi))

AvgS
, (37)

where M is the total number of VMs needed for the set A of requests,
∑
w∈Al F (w) is the number of allocated VMs till now

for the user request, F (vi) is the number of VMs that can be allocated if vi is chosen next, and AvgS is the average capacity
of all vertices.

It remains to estimate NetEnavg , the average network EC for the edges that will be added to the subgraph in subsequent steps.
One possibility is to use the average network EC among all PMs. This would be a good estimate if we sampled edges randomly.
However, our algorithm is biased towards edges of lower energy, so that the overall average may be an overestimate. We can get
a more accurate estimation by calculating the average EC of the edges that the algorithm has selected so far, i.e., the edges within
a set SubGr that includes the subgraph G′ as well as the candidate vi (say Al’). However, when selecting the second vertex, G′
has only one vertex and no edge, so in this case, we use the average network EC between the first vertex and all other vertices.

NetEnavg =

∑

vi∈Al′

∑
vj∈Al′,vj 6=vi

NetEn(vivj)

z(z+1)/2
if z > 1∑

w∈P

NetEn(sw)/N − 1 if z = 1, Al′ = {s}
(38)

Putting all the pieces together, we get a fairly good estimate of the overall cost-carbon emission to select candidate v. Based on
these estimates, the algorithm can select the best choice.
Module 4: Fuzzy Sets-based Best Subgraph Selector (FBSS). This module receives as input a set of subgraphs (SbG) along
with a list of allocated VMs on their vertices (SbV). Subgraph i of this set is denoted by SbG[i]. SbV[i] consists of the allocated
VMs of SbG[i]. FBSS computes the overall cost (Eq.(39)) and carbon emission (Eq.(40)) of all subgraphs (lines 42-43) and then
selects the most appropriate one in terms of overall cost and carbon emission using Fuzzy Sets technique (lines 44-47). While
selecting the best subgraph based on only cost or carbon emission is easy, finding the best subgraph in both aspects simultaneously
is a real challenge. Fuzzy Sets, here, help us to find the best subgraph in both aspects of cost and carbon emission.∑

v∈SbG[i]

∑
j∈SbV [i]

Evinc,j · EnPr(v) +
∑

v,v′∈SbG[i]

Netv,v′ ·NetPr(v) (39)

∑
v∈SbG[i]

∑
j∈SbV [i]

Evinc,j · CE(v) +
∑

v,v′∈SbG[i]

Netv,v′ ·NetCE(v), (40)

where Einc,i is computed based on (9)-(14), Netv,v′ for DC subgraphs is computed from (23) and for PM subgraphs from
(15)-(18). As we have the list of allocated VMs for each vertex, the number of exchanged packets between two nodes is easily
computed for PMs from (16) and for DCs from (24).

After computing OverallCosti and CarbonEmissioni for a subgraph SbG[i], function MF (SbG[i]) is considered

OverallCosti
MaxOverallCost

· CarbonEmissioni
MaxCarbonEmission

. (41)

Finally, the subgraph with lowest MF (SbG[i]) or highest membership value MV (SbG[i]) is selected (MV (SbG[i]) = 1 −
MF (SbG[i])).

VI. PERFORMANCE EVALUATION

For our experiments, we used a modified version of the CloudSim simulator [29]. We considered a distributed cloud including
10 DCs. The capacity of the whole distributed cloud was chosen randomly, between 1,000 and 2,000 resource slots, in each
run. This total capacity was divided among the DCs (each DC has capacity between 100 and 200 slots). Each PM has available
capacity between 10-15 slots. Three different sets of requests with 100, 200, and 300 VMs were considered. The traffic matrix
of the VMs was generated randomly.

Based on information from the US Energy Information Administration [31, Table.5.6.A], we consider energy price is in range
[4,20] Dollar Cents/kWh and for each DC was randomly selected between 4 and 20. For inter-DC networks the energy price was
considered as average (12 Cent/kWh). The PUE value was considered in range [1.56,2.1] based on [15]. We considered six energy

9

sources with different carbon emission rates from [4] (Nuclear:15, Coal:968, Gas:440, Oil:890, Hydro:13.5 and Wind:22.5 g/kWh),
and assumed five different combinations with average 100,200,300,400 and 500 g/kWh. We selected one of them randomly for
each DC.

The path length for each PM pair inside a DC was randomly chosen from 1 to 8 hops (switches) and for DC pairs from 10
to 20 routers. We used real energy models for routers and switches from [20] and for servers from [30].

We evaluate the performance of CACEV by comparing it against CACEV-Cost, CACEV-Carbon, Random and Greedy resource
allocation algorithms. CACEV-Cost is a version of CACEV which only considers cost optimization and CACEV-Carbon only
considers carbon footprint optimization. Comparing CACEV to these two special versions can show how CACEV manages to
find a trade-off between the two optimization goals. The Random algorithm starts by selecting a vertex (DC or PM) randomly
and placing as many VMs as possible in the selected vertex. If not all VMs could be allocated in the selected vertex, then a
further vertex is selected, again randomly, to place the remaining VMs. This process is repeated until the requested number of
VMs is placed. The Greedy algorithm selects a vertex with maximum free capacity and allocates as many VMs from the request
as possible in the selected vertex. If further VMs are necessary, then the Greedy algorithm selects from the remaining vertices
again the one with maximum free capacity. This process continues until all VMs are placed [13].

It is worth highlighting that, even though the parameters (e.g. capacity) of the DCs and PMs are set randomly, they remain
fixed across the runs of all tested algorithms, to ensure comparability of the results. Because of simulation limitations, each run
simulated one hour. However, the result values may seem small on the given scale (1 hour), but it is only to show efficiency of
the proposed algorithm. The values can be much larger in real world with a longer time scale. For each test, we report the results
as average of 10 runs.

0

10

20

30

40

50

60

100 200 300

T
ot

al
 C

os
t

($
 C

en
t)

Req. Num.

CACEV

Greedy

Random

CACEV
-Cost
CACEV
-Carbon

(a)

0

10

20

30

40

50

60

100 200 300

S
er

. C
os

t
($

 C
en

t)

Req. Num.

CACEV

Greedy

Random

CACEV
-Cost
CACEV
-Carbon

(b)

0

0.00005

0.0001

0.00015

0.0002

0.00025

0.0003

100 200 300

N
et

. C
os

t
($

 C
en

t)

Req. Num.

CACEV

Greedy

Random

CACEV
-Cost
CACEV
-Carbon

(c)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

100 200 300

In
te

r
D

C
 C

os
t

($
 C

en
t)

Req. Num.

CACEV

Greedy

Random

CACEV
-Cost
CACEV
-Carbon

(d)

0
2
4
6
8

10
12
14
16

100 200 300

T
ot

. C
ar

. E
m

is
. (

gr
)

H
u

n
d

re
d

s

Req. Num.

CACEV

Greedy

Random

CACEV
-Cost
CACEV
-Carbon

(e)

0
2
4
6
8

10
12
14
16

100 200 300

S
er

. C
ar

. E
m

is
. (

gr
)

H
u

n
d

re
d

s

Req. Num.

CACEV

Greedy

Random

CACEV
-Cost
CACEV
-Carbon

(f)

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

100 200 300

N
et

. C
ar

. E
m

is
. (

gr
)

Req. Num.

CACEV

Greedy

Random

CACEV
-Cost
CACEV
-Carbon

(g)

0

2

4

6

8

10

12

14

100 200 300
In

te
r

D
C

 C
ar

. E
m

is
. (

gr
)

Req. Num .

CACEV

Greedy

Random

CACEV
-Cost
CACEV
-Carbon

(h)

0

1

2

3

100 200 300

N
u

m
. o

f
S

el
. D

C
s

Req. Num.

CACEV

Greedy

Random

CACEV
-Cost
CACEV
-Carbon

(i)

0

1

2

3

4

5

100 200 300

T
ot

. E
n

er
gy

 C
on

s.
 (

J)

T
ho

u
sa

n
d

s

Req. Num.

CACEV

Greedy

Random

CACEV
-Cost
CACEV
-Carbon

(j)

Fig. 1. Simulation results for set of requests with 100, 200 and 300 VMs: (a) total cost, (b) server cost, (c) intra-DC network cost, (d) inter-DC network cost,
(e) total carbon footprint, (f) server carbon footprint, (g) intra-DC carbon footprint, (h) inter-DC carbon footprint, (i) number of selected DCs and (j) total energy
consumption (EC).

Fig. 1 shows the simulation results (each run simulated one hour, so that the cost and carbon emission values are for one hour).
In particular, Fig. 1 (a) and (e) show how CACEV could make a joint cost-carbon emission optimization successfully. CACEV
outperforms the Random and Greedy algorithms in both dimensions. It was predictable that CACEV-Cost can get the best cost
efficiency. However, the carbon emission of CACEV-Cost is sometimes even worse than that of Random or Greedy. Similarly,
CACEV-Carbon is the best in carbon efficiency but performs poorly in cost efficiency. In general, CACEV improves 45-115%
in carbon emissions on CACEV-Cost while incurring 20-60% higher costs. In comparison to CACEV-Carbon, CACEV improved
total cost by 40-60% while increasing carbon emission only by 10-30%.

As seen in Fig. 1 (i), Greedy always has the least number of selected DCs. Together with Fig. 1(a)-(d), this shows that only
reducing the number of selected DCs (and PMs) does not lead to total cost reduction. In Fig. 1 (j), because of the limited
simulation time scale, there is no significant difference in EC between the methods. Since there are still big differences in costs
and carbon emissions, this shows the importance of taking into account the different energy sources (i.e., with variety of prices
and emission rates) of the DCs in a distributed cloud.

10

VII. CONCLUSION

This paper addressed the problem of allocating VMs in distributed clouds with the aim of optimizing overall cost and carbon
emission together. We have claimed that combining multiple metrics, i.e., joint optimization of network and server resources along
with resource prices and carbon emission rate, can significantly optimize overall cost and carbon emission together. We have also
claimed a prediction-based A* algorithm can give more sophisticated results than typical greedy heuristics for DC/PM selection,
because it also predicts the overall cost and carbon emission that will be incurred by future DC/PM selection and based on the
prediction makes more intelligent VM placement decisions. To this end, motivating from the A* algorithm, we have proposed
a cost and carbon efficient VM placement method (CACEV). We have also proposed the idea of using Fuzzy Sets to make an
appropriate decision in this environment with multiple, sometimes conflicting, metrics. Simulation results prove that CACEV
can considerably optimize overall cost and carbon emission in comparison to other algorithms. The results also show that only
minimizing the number of used DCs/PMs is not enough to optimize the overall cost and carbon emission.

REFERENCES

[1] M. Dayarathna, Y. Wen and R. Fan, “Data Center Energy Consumption Modeling: A Survey”, IEEE Communications Surveys & Tutorials, 18(1), 2016.
[2] D. Hatzopoulos, I. Koutsopoulos, G. Koutitas, W. van Heddeghem, “Dynamic Virtual Machine Allocation in Cloud Server Facility Systems with Renewable

Energy Sources”, IEEE ICC Conference, Budapest, Hungary, 2013.
[3] P. Xiang Gao, A. R. Curtis, B. Wong, S. Keshav, “Its Not Easy Being Green”, ACM SIGCOMM, Finland, 2012.
[4] Z. Zhou, F. Liu, Y. Xu, R. Zou, H. Xu, J. C. S. Lui and H. Jin, “Carbon-aware Load Balancing for Geo-distributed Cloud Services”, IEEE 21st International

Symposium on Modelling, Analysis & Simulation of Computer and Telecommunication Systems, San Francisco, CA, 2013.
[5] S. Gosselin, F. Saliou, F. Bourgart, E. Le Rouzic, S. Le Masson, A. Gati, “Energy Consumption of ICT Infrastructures: an Operator’s Viewpoint”, 38th

ECOC Conference, Amsterdam, 2012.
[6] M.H. Kabir, G.C. Shoja, S. Ganti, “VM Placement Algorithms for Hierarchical Cloud Infrastructure”, 6th IEEE CloudCom, Singapore, 2014.
[7] M. Al-Fares, A. Loukissas, A. Vahdat, “A scalable, commodity data center network architecture”, ACM SIGCOMM. USA, 2008.
[8] A. Singla, C. Hong, L. Popa, P. Brighten Godfrey, “Jellyfish: Networking Data Centers Randomly”, 9th USENIX conference (NSDI), USA, 2012.
[9] M. Rahnamay-Naeini, S. Sen Baidya, E. Siavashi, and N. Ghani, “A Traffic and Resource-aware Energy-Saving Mechanism in Software Defined Networks”,

IEEE ICNC-SIREN, USA, 2016.
[10] X. Li, J. Wu, S. Tang, S. Lu, “Let’s stay together: Towards traffic aware virtual machine placement in data centers”, IEEE INFOCOM. 1842–1850 Toronto,

CA, 2014.
[11] J. Dong, X. Jin, H. Wang, Y. Li, P. Zhang, S. Cheng, “Energy-Saving Virtual Machine Placement in Cloud Data Centers”, IEEE/ACM CCGrid. 618–624

Delf, 2013.
[12] K. You, B. Tang, and F. Ding, “Near-optimal virtual machine placement with product traffic pattern in data centers”, IEEE ICC, 3705-3709, 2013.
[13] M. Alicherry, and T.V. Lakshman, “Network aware resource allocation in distributed clouds”, IEEE INFOCOM, 963-971, 2012.
[14] E. Ahvar, S. Ahvar, N. Crespi, J. Garcia-Alfaro, Z.A. Mann, “NACER: a Network-Aware Cost-Efficient Resource allocation method for processing-intensive

tasks in distributed clouds”, IEEE NCA, Cambridge, USA, 2015.
[15] A. Khosravi, S. Kumar Garg, and R. Buyya, “Energy and Carbon-Efficient Placement of Virtual Machines in Distributed Cloud Data Centers”, Euro-Par,

2013.
[16] C. Gu, C. Liu, J. Zhang, H. Huang and X. Jia, “Green scheduling for cloud data centers using renewable resources”, IEEE Infocom workshop, Hong Kong,

2015.
[17] Z.A. Mann, “Allocation of virtual machines in cloud data centers – a survey of problem models and optimization algorithms”, ACM Computing Surveys,

48(1), 2015.
[18] S. J. Russell and P. Norvig, “Artificial Intelligence: A Modern Approach”, Prentice Hall, 2010.
[19] Z. Xu, W. Liang, “Minimizing the Operational Cost of Data Centers via Geographical Electricity Price Diversity”, IEEE Conference on Cloud Computing.

99–106 Santa Clara, 2013.
[20] A. Vishwanath, K. Hinton, R.W.A. Ayre, R.S. Tucker, “Modeling Energy Consumption in high-capacity routers and switches”, IEEE Journal on selected

areas in communication. 32(8) 1524–1532, 2014.
[21] A. Beloglazov and R. Buyya, “Energy Efficient Allocation of Virtual Machines in Cloud Data Centers”, 10th IEEE/ACM Conference on Cluster, Cloud

and Grid Computing, 2010.
[22] G. Warkozek, E. Drayer, V. Debusschere, S. Bacha, “A new approach to model energy consumption of servers in Data Centers”, IEEE Conference on

Industrial Technology (ICIT), 211–216 Athens, 2012.
[23] I.S. Moreno, J. Xu, “Customer-Aware Resource Overallocation to Improve Energy-Efficiency in Real-Time Cloud Computing Data Centers”, IEEE

Conference on Service-Oriented Computing and Applications. 1–8 Irvine, USA, 2011.
[24] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis, P. Sharma, S. Banerjee, N. McKeown, “ElasticTree: Saving Energy in Data Center Networks”,

7th USENIX conference on Networked systems design and implementation, USA, 2010.
[25] N. Vasi, P. Bhurat, D. Novakovic, M. Canini, S. Shekhar, and D. Kosti, “Identifying and Using Energy-Critical Paths”, 7th ACM Conference on Emerging

Networking Experiments and Technologies, USA, 2011.
[26] C. Mobius, W. Dargie, A Schill, “Power Consumption Estimation Models for Processors, Virtual Machines, and Servers” IEEE Transactions on Parallel

and Distributed Systems. 25(6), 2014.
[27] W. Fang, L. Xiangmin, S. Li, L. Chiaraviglio, N. Xiong, “VMPlanner: Optimizing virtual machine placement and traffic flow routing to reduce network

power costs in cloud data centers”, Computer Networks, 57(1), 179–196, 2013.
[28] L. Zadeh, “Fuzzy sets”, Inform. Control, Vol.8, pp.338-353, 1965.
[29] R.N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, R. Buyya, “CloudSim: a toolkit for modeling and simulation of cloud computing environments

and evaluation of resource provisioning algorithms”, Software: Practice and Experience, 41(1) 23-50, 2011.

11

[30] X. Zhang, J. Lu, X. Qin, “BFEPM:Best Fit Energy Prediction Modeling Based on CPU Utilization”, IEEE Conference on Networking, Architecture and
Storage. 41–49, 2013.

[31] US Energy Information Administration. www.eia.gov/electricity/monthly/epm table grapher.cfm?t=epmt 5 6 a

