Extending the Device Profile for Web Services (DPWS) standard using a REST Proxy

Son N. Han, Soochang Park, Gyu Myoung Lee, and Roedpi
Abstract

The OASIS standard Devices Profile for Web Ser(ilDEAVS) enables the use of Web services for seovierted and
event-driven Internet of Things (I0T) applicatiorBPWS has been proven to be an appropriate teclyyolr
implementing services on resource-constrained @svitlowever, the performance of these servicesnbadeen well
investigated to realize DPWS features such as dimdiscovery and eventing mechanisms for 10T séesaMoreover,
DPWS introduces considerable overhead due to tkeotiSimple Object Access Protocol (SOAP) envelopegchange
messages. We extend the DPWS standard by usingr@s@etational State Transfer (REST) proxy to tadklese
problems, creating RESTful Web APIs to pave thefaragevelopers to invest more in this technology.

Keywords:. Internet of Things, DPWS, REST.
1. Introduction

We are witnessing the next major evolution of thieinet where millions of devices become connetiethe Internet to
create a new ecosystem called Internet of Thing¥)(IloT has recently gained momentum with the adeaent in
technology and the arrival of many commercial pasguthat are penetrating our daily life. When itmes to loT
applications, especially for the integration inte Web, standards such as CoAP [1] and DPWS [2eirey developed to
support the creation of a new generation of apptina. The OASIS standard DPWS enables secure Véebcs
capabilities on resource-constrained devices, wharh be used for service-oriented and event-dragplications in the
area of networked devices, the Internet of Thing3)(DPWS has an architectural concept similaorld Wide Web
Consortium (W3C) Web Service Architecture [3] buffetent in several ways to better fit in resounmmmstrained
environments (constrained nodes and low-powerylogtworks) and event-driven scenarios. DPWS isdbasn Web
Service Description Languag@VSDL) and Simple Object Access Protdd@OAP) to describe and communicate device
services, but it does not require any central servegistry such as Universal Description, Discpvand Integratioh
(UDDI) for service discovery. Instead, it relies 8@AP-over-UDPbinding and UDP multicast to dynamically discover
device services. DPWS offers a publish/subscrienting mechanism, WS-Eventthdor clients to subscribe for device
eventse.g.,a device switch is on/off or sensing when tempeeateaches a predefined threshold. When an ewentrs)
notifications are delivered to subscribers via safgal CP connections.

These features, secure Web services, dynamic disgoand eventing, are the main advantages of DRMV8vent-driven
IoT applications. Nevertheless, in fact, developeosild face several problems when applying DPWSVeb-based IoT
applications. The main concern is about the dynafisicovery in which the network range of UDP muast messages is
limited to the local subnet. Therefore, it is imgibte to carry out this mechanism in a large nekngrch as the Internet.
With WS-Eventing, the establishment of separate TQihections in case of delivering the same evetification to many
different subscribers will generate a global mekb-tonnectivity between all devices and subscsiljeee Figure 1b). This
requires high memory, processing power, and netviaffic and thus consumes a considerable amourgnefgy in
devices. Another issue is the overhead due to #ta@ kkpresentation in XML format and multiple béditional message
exchanges. It is not a problem when most DPWS devatrrently communicate locally, but in a masslaepent of
devices, these messages would generate heavydnteffic and increase the latency in device/aapion communication.
Furthermore, W3C Web services use WSDL for serdescription and SOAP for service communication; fibvener,
despite the fact that it is a W3C standard, reguinech effort from developers to process poorlyettred XML data; the

* http://ww.w3.org/TR/wsdl

2 http://iwww.w3.org/TR/soap/

3 http://uddi.org/pubs/uddi_v3.htm

* http://docs.oasis-open.org/ws-dd/soapoverudp/dMigid-soapoverudp-1.1-spec-os.html
® http://www.w3.org/Submission/WS-Eventing/

latter is mostly common in stateful enterprise agions, whereas recent Web applications are ngotoward the core
Web concepts referred as Representational StatesfEBra(REST) [4] by offering stateless, unifieddaimple interfaces of
RESTful Web APIs.

We propose the extension of DPWS standard usinge&TRproxy to solve these problems by providing fbléiowing
features: (1) global dynamic discovery using WSeDiery® in local networks; (2) proxy-based topology for
publish/subscribe eventing mechanism; (3) dynanitSR addressing for DPWS devices; (4) RESTful WellsABnd (5)
WSDL caching. This REST proxy extension of DPWS umdens Internet traffic by processing the main loadocal
networks. Also, the proxy can extend the dynamiscaltery from locally to globally through RESTful WeAPIs.
Developers do not have to parse complex WSDL doatsr® get access to service descriptions; theyusenRESTful
Web APIs to control devices. Experiment resultsvsl@oplain topology and substantial reductions ie tverhead and
latency when using our proposed proxy.

2. Web Servicesfor theInternet of Things

The 10T is an ecosystem where all smart things eiwarked devices (i.e., sensors and actuators, duebledevices,
electronic appliances, and digitally enhanced elayy objects) are connected using IP protocols tollitite
interoperability. It envisions an era of pervasaplications that are built on top of these netwdrllevices. 10T scenarios
require not only to have devices connected to titerhet but also seamlessly integrated into exjdtiternet infrastructure
in which Web applications are predominant. The ¢otild benefit from the Web service architecture likday's Web does
by using the DPWS standard. DPWS brings W3C Welicetechnology into the era of networked devicgsiéfining a
set of specifications to provide a secure and #gifeanechanism for describing, discovering, messggand eventing of
services for resource-constrained devices. DPWS W8DL to describe the device, Web Services MetaBathangéto
define metadata about the device, and WS-Trahsfeetrieve the service description and metadsf@ration about the
device. Messaging is done by using SOAP, WS-Adirigssand MTOM/XOB® with SOAP-over-HTTP and SOAP-over-
UDP bindings. It uses WS-Discovery for discoverandevice (hosting service), WS-Eventing for settipgand managing
subscriptions to the device events, and Web ServRwmicy to define a policy assertion to indicate complamd the
device with DPWS.

Since its debut in 2004 by a consortium led by Wsoft, DPWS has become part of Microsoft's Winddvista and
Windows Rally (a set of technologies from Microsiotended to simplify the setup and maintenanceioéd and wireless
networked devices), and has been developed inaewesearch and development projects under theparolnformation
Technology for European Advancement (ITEA) and Feaork Programme (FP): SIRENA (02014 ITEA2), SODA@R2
ITEA2), SOCRATES (FP6), and on-going IMC-AESOP (fFaid WOO (10028 ITEA2). Many technology giantstsas
ABB, SAP, Schneider Electric, Siemens, and Thakegehbeen participating in these projects. As theeyeharge market
shares in electronics, power, automation technetogis well as enterprise solutions, their promotérthe DPWS
technology promise a wide range of the future DPW@AS/products. Schneider Electric and Odonata pimtkdhe
implementation of DPWS leading to the early andnepeurce release of software stacks implementingyBRn C and
Java available at Service-Oriented Architecture Dawvice Website (SOA4D.org). Web Services for Desidnitiative
(WS4D.org) reinforces the implementation by prowgliand maintaining a repository to host severahegmirce stacks
and toolkits for DPWS. In addition, many researdh@ge been recently carried out to complete then@ogy. Experiment
results show that DPWS is able to be implement&al (@ven) highly resource-constrained devices sisckensor nodes
with reasonable ROM footprints [5]. Other technicsdues of DPWS have also been explored such amdiegcand
compression [6], the integration with IPv6 infrastiure and 6LOWPAN [7, 8], the scalability of sesideployment [9],
and the security in the latest release of WS4D DREks.

® http://docs.oasis-open.org/ws-dd/ns/discovery/20D9
7 http://www.w3.0rg/TR/ws-metadata-exchange/

& http://www.w3.0rg/Submission/WS-Transfer/

9 http://www.w3.0rg/Submission/ws-addressing/

0 http://mww.w3.org/TR/soap12-mtom/

1 http://www.w3.org/Submission/WS-Policy/

DPWS thus far has been widely used in automatidnstry, home entertainment, and automotive sys{@@isand also
applicable for enterprise integrations [11]. ltisfés many requirements for 10T applications sashresource-constrained,
event-driven, and dynamic discovery; In the meaetiih can maintain the integration with the Intéraed enterprises
infrastructures. In addition, the strong suppartrfrthe community is another reason to make it anfging technology for
the future 10T. However, 0T systems containingugérnumber of devices, in contrast to small numbemsdustrial and
home applications, cause some features of DPWSasidiinamic discovery and publish/subscribe evgritipossible in a
global and mass deployment of devices. It is tlmeeehecessary to extend DPWS to fit to 0T scesawih several
problems need to be resolved before DPWS can ssfallgsarrive in the 10T domain. In the followingstions, we are
going to analyze DPWS problems with 0T and propgbgseextension of DPWS standard by using a RESXypro

3. Usecase

In the new ecosystem of networked devices, manydlfforms are provided to build a new generatibWeb-based
applications aggregating these services. Peteiganser, chooses a DPWS platform for his Web-bdsede automation
system. He would like to make a module for conimglla newly-purchased DPWS heater. The heaterugpped with a
temperature sensor, a switch, memory, a processar,networking media, and is implemented with atdwsieater
service.Heater service consists of seven operations: (1) checkhdaer statusGetStatu} (2) switch the heater on/off
(SetStatus (3) get room temperaturésétTemperature (4) adjust the heater temperatu®@etTemperatuje (5) add
(AddRulg, (6) remove RemoveRule and (7) getGetRule} available policy rules for defining automatic ogtgon of the
heater.

Peter connects the heater to the network andttriesntrol it from his 10T application. We will fiaw Peter's development
process to understand what challenges he can eteconhen developing, deploying, and consuming teéad from his
0T application and how the extended DPWS helpsthisolve these problems. This use case illusteatesmmon case in
several consumer applications when a new devios jibie network.

4. REST Proxy Design
4.1. Global Dynamic Discovery

When an application tries to locate a device iretwork, it sends a UDP multicast message (usingstbAP-over-UDP
binding) carrying a SOAP envelope that contains SxBiscoveryProbe message with search critereag.,the name of the
device. All the devices in the network (local sufpribat match the search criteria will respond withunicast WS-
DiscoveryProbe Matchmessage (also using the SOAP-over-UDP binding)uinuse case, it is the heater that séhdve
Match message containing network information. The apgither can send a series of other messages by Itte m@ans to
invoke a required operation. At this point, Peteuld realize that it is impossible for his 10T apption to dynamically
discover the heater because of the network rangett local subnet of multicast messages.

If a REST proxy is applied, it allows the applicatito suppress multicast discovery messages ambasenicast request to
the proxy instead. Then, the proxy can represemigtisendProbe and receiveProbe Matchmessages to and from the
network while the behavior of devices remains unified} they still answer td°robe message arriving via multicast. In
networks with many changes in the device structufgere manyProbe messages appear, the proxy can significantly
unburden the Internet traffic.

REST proxy provides two RESTful Web APlIs to harttiie discovery as follows:

1) PUT http://123.456.789.1:8080/discovery: updhtediscovery with search criterie.g.,name of device)
2) GET http://123.456.789.1:8080/discovery: getlisteof discovered devices

(123.456.789.1 is the IP address, 8080 is thermortber of the proxy)

We also propose a repository in the proxy to mairtae list of active devices. The repository islafed when devices join
and leave the network. In addition, the proxy perf® a routine to periodically check the consistevitthe repository, says
every 30 minutes. For a proxy with 100 devices dize of the repository is about 600 kb, so itiasible for unconstrained
machines used to host a proxy.

4.2. Publish/subscribe Eventing

To receive event notifications, Peter can subschiseapplication directly to the heater by sendin@OAP envelope
containing a WS-Eventin§ubscribemessage (using the SOAP-over-HTTP binding). Thegdneresponds by sending a
WS-EventingSubscribeResponseessage via the HTTP response channel. When an eseurs, the heater establishes a
new TCP connection and sends an event notificatiothe subscriber. Therefore, in scenarios with yreuwbscribers, it
generates high level of traffic, requiring high cesces, and causing devices to consume more eni@yever, this
publish/subscribe mechanism can be done throughTRE&Xy to reduce the overhead of SOAP messageaeges and
resource consumption, replacing global mesh-likeneativity by proxy-based topology (see FigureQne RESTful Web
API is dedicated for event subscription; insteadsefding a WS-Eventin§ubscribemessage, the application sends an
HTTP POST request to the subscription resourcelbsifs:

- POST http://123.456.789.1:8080/heater/event (patar: application endpoint): subscribe to an event

The proxy, on behalf of applications, receivesdhient notification from the device and then dissetes these messages
to the applications.

4.3. Dynamic REST Addressing

DPWS uses WS-Addressing to assign a unique ideatiifin for each device (endpoint address), indeganfdlom transport
specific address. This unique identification is duseith a series of message exchandesobe/ProbeMatch
Resolve/ResolveMatdb get a transport address and then another sarim@ssages are sent back and forth to invoke an
operation. This process creates the overhead onlirteenet. We define a mapping between a pair o3P
endpoint/transport addresses and a single proxy, WRHl thus replace several SOAP messages by sirh{ii@iP
request/response messages. The mapping is cautetymamically when a device is discovered. Fomge, in our use
case of the DPWS heater:

Endpoint address: urn:uuid:800fa0d0-f5c0-11e2-8dkc 7defefdc

Transport address: http://123.456.789.10:4567/Heate
mapped to

URI: http://123.456.789.1:8080/Heater

The mapping is unique for each device service,datd are stored in the device repository of thexyprdhe repository is
also updated when there is a change in devicesstatd/or periodically when the proxy runs its roatio check all the
active devices.

4.4. RESTful Web APIs

As it is based on the above dynamic REST addressiechanism, our REST proxy can generate a set &TRE Web
APIs associated with each device. It means thate&d of sending several SOAP-over-HTTP bindingsagss involving
strict and large data formats, Peter can take ddgarof the simple, familiar Web interfaces. ThdsA€nsist of functions
for discovery, subscription and service calls inSREarchitectural style. In order to generate tHRE8Tful Web APIs from
DPWS operations, we propose a design constraifDPWS devices’ implementation. It is based on tha fhat most
device services provide simple operations comptretrmal Web services with complex input/outputadstructure. Our
proposed constraint follows a simplified CRUD mo(ereate”, "read", "update”, "delete") to map betn these services
and HTTP methodsDPWS Operation Prefix2> CRUD Action=> HTTP Method Specifically, four CRUD actions are

applied to map DPWS operations to HTTP methodsl&sAfs:

Get_ > READ - GET
Set_ > UPDATE > PUT
Add_ > CREATE > POST
Remove_ > DELETE -> DELETE

Table 1 shows a list of RESTful Web APIs providegd & REST proxy for the heater device mapping witAWS
operations. Listing 1 is an example of request r@sgponse messages to get and return the stathis béater by using the
proxy APIGET http://123.456.789.1:8080/heater

GET /heater HTTP/1.1

Host: 123.456.789.1:8080

Accept: text/html
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Connection: keep-alive

HTTP/1.1 200 OK

Server: Apache-Coyote/1.1
Content-Type: text/html
Transfer-Encoding: chunked

Listing 1. Request and response messages for obtainintaths sf the heater.
4.5, WSDL Caching

When an application knows a devikested servicg¢representing device functionalities) endpointradd, it can ask that
service for its interface description by sendingGatMetadata Servicanessage. The service may respond with a
GetMetadata Service Responsmssage including a WSDL document. The WSDL docuindescribes the supported
operations and the data structures used in theelegrvice. Some DPWS implementations (such as WBABEDS?)
provide a cache repository to store the WSDL doainaé runtime. After the application retrieves ¥WSDL file for the
first time, the file can be cached for local usagthe subsequent occurrences within the life cpélthe DPWS framework
(start/stop). This kind of caching mechanism wasilghificantly reduce both the latency and the mgssaverhead. Our
DPWS proxy can provide WSDL caching not only attime but also permanently in a local database.CHube is updated
along with the routine to maintain the device réfoog in proxy described in the dynamic discoveegtion.

5. Evaluation
5.1. Experiment Setup

We set up an experiment to evaluate the latencycaedhead in two different scenarios: one usespooposed REST
proxy (Figure 1) and the other uses the origina\[¥ (Figure 1b). In both cases, there is an loT iagfbn
communicating with a DPWS device (a heater) toycaut the tasks of invoking the devibested serviceTo replicate a
realistic deployment of the IoT application, itdeployed on a server running the Tomtapplication server, using public
Internet connection, and locating about 30 km awvirayn the local network of the devices. The DPWS téeds
implemented with éhosted servicgroviding seven operations as shown in Table 1WSPoperations 3 to 9). These
operations use simple command line messages toaiedthe effect of each operation sucH@srent status: on” and
“new status updated: off’A REST proxy is implemented in Java using theggt library on Tomcat for handling the nine
RESTful Web APIs of the heater as shown in the @dblThe loT application uses RESTful Web APIs e by the
REST proxy (Figure 1a) and the WS4D JMEDS librafig(re 1b) to carry out four functionalities progatiby the DPWS
heater: get heater status, set heater statuseaddute, and delete a rule.

12 http://ws4d.org/jmeds/
13 http://tomcat.apache.org/
* http:/fjersey.java.net/

5.2. Features Comparison

For the original DPWS communication, we exclude pheprocessing phase to discover the device infiiomgendpoint
and transport addresses). Round-trip time (RTT)randsage size are measured for invoking operatiolys It should be
noted that the actual time of the whole processldvbe higher and varies according to implementasimategies. One can
choose to have a device discovered and its seririgeged in real-time; one can have the informatdnout device stored
and then only send requests to invoke the deviagcgse The real RTTs and message sizes would bayalWigher than the
ones using our proposed REST proxy.

With our proposed design of the REST proxy, the [EP$tandard is extended to have new features asnsihawe Table 2
that doesn't exist in DPWS. These new featuresidiicty Global Discovery, Global Addressing, and REGWeb APIs
are required to realize the technology for I0T a>lons. The extension in the meantime preseitveptiblish/subscribe
eventing mechanism of DPWS even with better mesgdagirmat.

5.3. Latency and M essage Over head

Latency evaluation presents the mean RTTs (Figajef@ an application to send requests and recedgponses to
consume four operations of the hedtested servicby using RESTful Web APIs from the proxy (PROXYidaby original
DPWS operations in two situations when WSDL is eaclfWSDL) and not cached (DPWS). The use of theypro
significantly improves the latency compared to tiwh cases of DPWS communication with WSDL cached aot
cached, about 75% and 20% respectively. In manyagere 10T scenarios requiring high responsivenessonable delay
would improve system performance and the user eqess.

Figure 2b shows the message sizes of requests (EEQJand responses (RESPONSE) in four RESTful Wels A
(PROXY) and their counterpart DPWS operations (DRVWéSulfill the same tasks. In DPWS operation® thessages do
not include WSDL documents as we assume that desedochoose to cache these documents when desitreirg
applications (real-time processing WSDL documemisegates more messages). It shows a great improverheessage
overhead when applying REST proxy. Especially wiverconsider real deployments of applications andces in original
DPWS communication, it is inevitable to avoid altnfosl-mesh connectivity (Figure 1b) compared te gimple and linear
increments of HTTP traffic in the REST proxy scéndFigure 1a).

6. Conclusion

DPWS was designed to be an appropriate technoloagyde in event-driven 10T applications thanksedatdires such as
eventing and dynamic discovery, which cannot beertpd natively with HTTP protocol. The key of thdgatures is their
use of SOAP-over-UDP multicast and SOAP-over-HTTRding, which are, in practice, limited in networ&nge and
introduce considerable overhead by using SOAP epesl We have proposed the design of the REST pmogytend the
DPWS standard to better integrate it into the Ipplizations and the Web world while maintaining ddvantages. The
experiment results show a significant improvementeducing the latency and overhead as well asli§yimg the global
topology of using RESTful Web APIs. For the futwrgage of our REST proxy design, it will be necessarestablish a
standard in designing DPWS device services forreetyaof devices and to be used in the dynamic geims of RESTful
Web APIs. Also, its adoption in many other sceramdth real-time constraints or highly dynamicigych as in military
applications and disaster monitoring, should béh&rrinvestigated.

Tablesand Figures

Table 1. Proxy RESTful Web APIsfor the heater device

No. RESTful Web APIs DPWS Oper ations Parameters Functionalities
1 GET http://123.456.789.1:8080/discovery Discovery List of devices
PUT http://123.456.789.1:8080/discovery deviceName Search for device(s)
2 POST http://123.456.789.1:8080/heater/event Subscription Subscribe to an event
3 GET http://123.456.789.1:8080/heater GetStatus() Get heater status
4 PUT http://123.456.789.1:8080/heater SetStatus(String) status Set heater status
5 GET http://123.456.789.1:8080/heater/temp GetTemp() Get room temperature
6 PUT http://123.456.789.1:8080/heater/temp SetTemp(int) temperature Adjust heater temperature
7 POST http://123.456.789.1:8080/heater/rules AddRule(String) rule Add new rule
8 GET http://123.456.789.1:8080/heater.rules GetRules() List of rules
9 DELETE http://123.456.789.1:8080/heater/rules/{{Dle RemoveRule(int) rulelD Delete a rule

Device Device

SOAP(L,\\ J] N i J] 1\\ " "\

| Device | Device | Device Global Mesh-like Connectivity

(10T App Device / loT App Device ™

INTERNET

——HTTP Request—p|

T [—GetMetatdata Service—p» * GetMetatdata Service————————Jp»
GetMetatdata Service)

) € — T i [€—GetMetatdata Service Response:
2| INTERNET [T Feworss 3
— —Service Usage Request-J»| — Service Usage Request———p»
l l€Service Usage Response— + |@——Service Usage Response————

| €—HTTP Response:

(a) Proxy Extended DPWS (b) Original DPWS

Figure 1. Experiment setup in two cases showing that oriddRWS communication configures global mesh-likarectivity of HTTP/SOAP binding
while our proposed scheme only configures proxyetdaspology with local HTTP/SOAP binding. Conseduerthe original DPWS introduces higher
latency and overhead.

Table 2. Features compar ison between DPW S and the proxy extended

Features DPWS Proxy
Global Discovery NO YES
Publish-subscribe Eventing YES YES
Global M essaging SOAP messages HTTP methods
Global Topology Mesh-like Proxy-based
RESTful Web API NO YES
Configuration Module NO YES
1400
%)
£ 1200
()
£ 1000
2 800
T 600
3
s 400
C
& 200
=
0
GET /heater PUT /heater POST /rules DELETE /rules/2
GetStatus() SetStatus() AddRule() RemoveRule()
B PROXY 287,71 285,8 298,54 280,56
= WSDL 364,43 364,29 367,65 367,65
= DPWS 1142,35 1151,07 1139,15 1135,48
(@) Mean round-trip time.
4500
4000
)
% 3500
< 3000
N
‘D 2500
&
% 2000
= 1500
1000
500
0
PROXYDPWS PROXYDPWS$S PROXYDPWS Proxy DPWS
Get status Set status Add rule Delete rule
RESPONSE 201 | 2345 199| 2344 201 2349 193 2388
B REQUEST | 167 | 1320 203| 1572 248 1572 170 1563
(b) Message size.

Figure 2. Mean round-trip time of 100 tests and /responessage sizes when using REST proxy (Proxy) anthatipPWS (DPWS) in four cases: GET
/heater - GetStatus(), PUT /heater - SetStatu§(®P/rules — AddRule(), DELETE /rules/2 - Removesl

Acknowledgement

This work is supported by two European ITEA2 prige@ 0028 “Web of objects” (WoO) and 11020 “Sodidérnet of
Things: Apps by and for the Crowd” (SiTAC).

References

[1] Z. Shelby, K. Hartke, and C. Bormann, “Consted Application Protocol (CoOAP)|ETF Internet Draft Jun. 2013.

[2] “Devices profile for web services version 1.QASIS Standardul. 2009.

[3] “Web services architecture,” W3C, W3C WorkingoBp Note, Feb. 2004.

[4] R. T. Fielding, “Architectural styles and thesign of network-based software architectures,DPtissertation, University of California, Irvin2000.

[5] C. Lerche, N. Laum, G. Moritz, E. Zeeb, F. Golaski, and D. Timmermann, “Implementing powerfutlvservices for highly resource-constrained
devices,” in2011 IEEE International Conference on Pervasive @ating and Communications Workshops (PERCOM Wopsh2011, pp. 332—-335.

[6] G. Moritz, D. Timmermann, R. Stoll, and F. Gmiaski, “Encoding and compression for the devicesfile for web services,” ir2010 |IEEE 24th
International Conference on Advanced Informatiomwdeking and Applications Workshops (WAIN2)10, pp. 514-519.

[7] G. Moritz, F. Golatowski, D. Timmermann, and Cerche, “Beyond 6LOWPAN: Web services in wirelssnsor networks,JEEE Transactions
onindustrial Informaticsvol. 9, no. 4, pp. 1795-1805, Nov. 2013.

[8] I. Samaras, G. Hassapis, and J. Gialelis, “Adified DPWS protocol stack for 6LOWPAN-based wisslesensor networks|EEE Transactions
onindustrial Informaticsvol. 9, no. 1, pp. 209-217, Feb. 2013.

[9] X. Yang and X. Zhi, “Dynamic deployment of enduked services for dpws-enabled devices,” 20812 International Conference on
Computing,Measurement, Control and Sensor NetwOkGSN) 2012, pp. 302-306.

[10] T. Cucinotta, A. Mancina, G. Anastasi, G. Lipd.. Mangeruca, R. Checcozzo and F. Rusina, “AlReéme Service-Oriented Architecture for
Industrial Automation,” IEEE Transactions on Indigtinformatics, vol. 5, no. 3, pp. 267-277, 2009.

[11] P. Spiess, S. Karnouskos, D. Guinard, D. Sa@ioBaecker, L. Souza, and V. Trifa, “Soa-basedgration of the internet of things in enterprise
services,” INEEE International Conference on Web Services (IQ8®) 2009, pp. 968 —975.

Biographies

Son N. Han, Student Member, IEEEs a Ph.D. student at Institut Mines-Telecom, Tete SudParis. His research focuses
on Internet of Things. He has a M.Sc. in Computeei®e from The University of Seoul. Contact himsah.han@it-
sudparis.eu.

Soochang Park, Member, IEEEjs a research associate at Institut Mines-Teledatecom SudParis. His research focuses
on Networking. He has a Ph.D. from Chungnam Natitmaversity. Contact him at soochang.park@telecrdparis.eu.

Gyu Myoung Lee, Senior Member, IEEHSs adjunct associate professor at Telecom SudBadsat the Korea Advanced
Institute of Science and Technology (KAIST). Hisearch focuses on future networks and servicehadea Ph.D. from
KAIST. Contact him at gm.lee@it-sudparis.eu.

Noel Crespi, Senior Member, IEEHS a professor at Institut Mines-Telecom, Telec8auParis. His research focuses on
Web-Next Generation Network (Web-NGN) convergeneeé SaaS. He has a Ph.D. from Paris VI Universignt@ct him
at noel.crespi@mines-telecom.fr.

