
Rating Credibility of Sources for Profiling Risk and 

Business Context of Service Requests  
Rebecca Copeland, Noel Crespi 

Institute Mines-Telecom, Telecom SudParis, Paris, France 

 
Abstract— Attributes credibility, trustiness and accuracy are 

often considered, but not incorporated in decision making 

algorithms. In this paper a credibility-based risk/business context 

model is proposed, to profile communication service requests 

using sources’ credibility, as well as observed intensity and 

customizable policy-based prioritization. The paper proves that 

this Credibility-based approach can cope with the complexity 

and uncertainty of context models, which Bayes probabilities 

cannot, and with degrees of discordance and uncertainty, which 

DST cannot. The paper provides reviews of concepts and 

techniques to determine credibility from its components and 

aggregate corroborated credibility within observations and 

ultimately key factors of the model. The paper tests and proves 

the effectiveness of the modelled credibility, intensity and policy, 

and shows that incorporating Credibility is a better way to make 

informed decisions.  
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I. INTRODUCTION  

Establishing users’ context at the point of requesting a 
service is highly desirable for increasing number of functions, 
such as establishing business priority, selective funding, 
optimizing access choice and more. However, while cyber-
crime is rapidly rising, the greatest benefit would come from 
early detection of risks at the time of requesting a service, 
before granting access to sensitive data and scarce resources. 
This type of context analysis derives information not only from 
the request’s details, but also from users’ situation and 
behavior.  The context model hinges on situational aspects 
such as ‘Integrity’ and ‘Urgency’. Attributes are determined by 
indirect information and inference procedures that involve a 
high level of uncertainty.  Therefore, as much information as 
can be gathered should be utilized to assemble context details 
and enhance the decision reliability.  

Behavioral context must carry a high level of confidence 
that the ‘verdict’ is accurate enough to act upon it. The 
plausibility of evidence is assessed by either ‘metric’ means or 
‘probabilistic’ predictions. Credibility of metric observations is 
based on the specifications of sensitivity or failure rates of the 
measuring instruments and sensors. However, context 
information is not directly ‘sensed’, but is inferred from ‘hints’ 
and indirect indications, so gauging credibility of the whole 
process of extracting information is essential.  

Probabilistic models rely on previous occurrences of 
context attributes in statistical data. Many Bayes algorithms 
base their forecast entirely on generated ‘training data sets’, 
which are never updated by real results. While creating such 
training data for a small number of variables is feasible, this is 
not the case for the much larger numbers of attributes that are 

needed for evaluating situational context. Additionally, Bayes 
models stipulate attributes independence, which is impossible 
to achieve for context clues and supplemental evidence. Hence 
a new approach is sought, to cope with uncertainty and 
contradiction, while producing definitive decisions, according 
to preferred policies. This requires obtaining fresh observations 
with their intensity and degrees of support or disagreement, 
and robust mechanisms of inference and aggregation. 

This paper proposes an approach that incorporates sources’ 
Credibility in the context evaluation. This approach has been 
implemented in an enterprise Business & Risk (eBCR) Context 
model, which was first described in [20],[21]. In this paper, 
credibility structure and rating are proposed, with methods of 
aggregating context scores using credibility, intensity and 
prioritization. In Section II, types of aggregation are reviewed. 
In Section III, the credibility approach is explained. Section IV 
computing Credibility procedures are discussed. In Section V, 
alternatives approaches (Entropy, Bayes and DST) are 
investigated. In Section VI, the effectiveness of model 
components is analyzed. In VII related work, and in VIII, 
conclusions are given. 

II. THE CREDIBILITY-BASED APPROACH  

A. Definition of Credibility and its Components 

Credibility components include Confidence, Accuracy and 
Precision (CAP), which are terms that are often confused. An 
observation that is precise is not necessarily accurate- stating 
that there are 58 red sweets in the jar is precise, but perhaps not 
accurate, and without means of counting the sweets, the 
confidence in the estimate is low. Credibility concepts, as 
shown in Figure 1, are defined in the International Vocabulary 
of  Metrology [4], stating that “measurement ‘accuracy’ should 
not be used for measurement ‘trueness’” and “measurement 
‘precision’ should not be used for measurement ‘accuracy’”.  

Figure 1.  Credibility’s  Confidence, Precision and Accuracy definitions 
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Confidence (evidential reliability) is defined in [4] as the 
“coverage probability”, i.e. the likelihood that a data item is 
contained within a specified interval. Confidence is “close 
agreement between measured quantity value and a true 
quantity value”, which is theoretically replicated by infinite 
number of tests. Confidence that a data item is within the 
‘coverage-range’ is interpreted as the combined effect of  
reliability, availability, manageability, efficiency of data 
retrieval and the level of data changeability of the sources. 

 Accuracy (correctness and data integrity) is defined in [4] 
as “closeness to a true or an expected value”. Accuracy is often 
considered as correctness (positive/negative true/false status), 
but such determination is not available for service requests. 
Therefore, accuracy is derived from estimated properties of 
error management and error prevention procedures, e.g. secure 
data input or extensive data audit and validation procedures.  

Precision (level of details) is defined in [4] as “closeness of 
agreement between indications obtained by replicate 
measurements”. Precision includes Resolution, Proximity and 
Inclusion Zone. Distance proximity is crucial to spatial 
attributes, but temporal proximity affects many assertions, 
where their relevance is determined by elapsed time.  

B.  Credibility Component Structure 

Each source is assessed by credibility components, in three 
layers: Measures, Traits and Elements, as shown in Figure 2. 
This allows for source characteristics, such as reliable retrieval, 
tamper-proof storage or data freshness, to be assessed 
individually. Procedures of data entry, storing and retrieval are 
also considered as atomic elements.  

Figure 2.  Credibility components structure 

Measures include Confidence, Accuracy and Precision 
(CAP). Confidence Traits include reliability, manageability, 
changeability and timeliness; Accuracy Traits include data 
fidelity, error management and procedure robustness; and the 
Precision Traits include resolution, proximity and inclusion 
zone. Traits are further broken down to atomic Elements with 
properties that can be estimated or measured.   

C. Estimating Credibility Intensity and Policy  

Observations are drawn from a number of data sources, 
including the request details (e.g. destination, network access), 
stored previous records, positioning services, concurrent login 
activities, and so on. Enterprise sources or hosted services 
often have suppliers’ specifications for Meantime-Between-
Failure (MBF) or 24/7 Availability. Other properties, such as 

auditability or retrieval frequency are estimated by IT 
personnel. This process of establishing credibility rates per 
source is an off-line procedure, which only needs to be 
revisited periodically or when sources have changed.  

When sources are interrogated, dynamic readings are 
gathered that identify the active status of an observation. Some 
observations are binary, i.e. just true or false. Others have an 
associated degree of strength, i.e. Level of Intensity (LoI). 
Intensity does not show how credible an assertion is, but 
measures the strength of the observation, such as the length of 
‘Long Duration’ or the proximity to the ‘busy-hour’. Unlike 
credibility, LoI is obtained dynamically and is specific to the 
service request. LoI grading is expressed via special scales, 
where subjective grades (high, medium, low) are transformed 
by fuzzy indices to unit-less numerals. 

While Credibility rates determine the degree of trust in the 
evidence, Policy is used to inject the organization’s own 
preferences and rules. Policy does not identify which attribute 
prevails, but used to decide what to do about it. Policy should 
not be confused with impact weighting that is used to align 
contributing elements by their significance. Policy 
prioritization is applied after attributes are evaluated, to 
distinguish between credible context and prioritized context.  

Hence, observations scores are compiled from the inherent 
value of the aggregated Credibility of all the contributing 
sources, together with the dynamically observed Level of 
Intensity. When the observations are aggregated into attributes 
and in-turn into Key-Factor (KF) classes, policy-based 
prioritization that is specific to each profile is applied to the 
attributes and KFs, producing a score for each profile type. 
Figure 3 shows context profiles that are compiled from sources 
(instigating, supporting and qualifying), and rated by their 
credibility, observed intensity and customized policy.  

Figure 3.  The Credibility Approach to Profiling Requests   

D. Data Sources Selection 

Observations are based on one or more sources of data. 
Readings are obtained from sources, such as server logs, 
historical database, and WLAN logins. These sources are 
classed as ‘instigating’- main sources that identify a triggering 
fact; ‘supporting’- secondary information that confirms or 
disputes the fact; or ‘qualifying’- conditional tables that match 
the assertions. Qualifiers can be special filtering tables, but 
also records from other systems (e.g. user profile records or 
work schedules). Raw information becomes Observation when 
it is supported, qualified and the LoI) is gauged.  
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The reliability and trustiness properties of all the 
contributing sources are incorporated in the credibility score of 
the observation. This combination of sources characterizes the 
observation and is documented [14]. However, it may be 
modified by Probability Logic [36] conditions, e.g. when 
sources are temporarily unavailable. While instigating sources 
may be shared by observations, the particular source 
combination is uniquely defined for a particular observation, 
and this contributes to well-distinguished inherent values that 
are needed for differentiating observations. Figure 4 shows the 
relationships of sources, observations, attributes and key 
factors. Observations support assertions that define specific 
attributes. Attributes are classified by key-factors that describe 
the perspective of the attributes, e.g. space, time or activity [8]. 
Prioritized attributes and key-factors are aggregated to produce 
profile scores, so sources’ credibility has considerable 
influence on the outcome of the model. 

Figure 4.  Relationships of Profiles and Credibility & Sources 

III. AGGREGATION METHODS FOR A CREDIBILITY MODEL 

A. Multi-Criteria Decision Making Methods 

Credibility based models rely heavily on aggregation of 
criteria at several levels: joining estimates of credibility 
components, combining source credibility into observations, 
aggregating observations into asserted attributes, corroborating 
attributes in their key-factors and totaling prioritized key-
factors into profiles. Aggregation methods, such as SAW 
(Simple Additive Weighting) and WPM (Weighted Product 
Model), which are reviewed in [15], are commonplace but not 
necessarily suitable for certain context aggregation types. They 
join the variable members by rank or by proportions, and adjust 
them with weights. SAW and WPM differ by the type of 
computing operations: sums (SAW) versus multiplications 
(WPM). While sums require using the same units, 
multiplications are unit-less, but need pre-processing to discard 
zero values. SAW is intuitive but produces linear unscaled 
results. WPM exaggerates the impact of the weights, which are 
used as exponents, and produces disproportional scores. 

Ranking is used to emphasize higher valued members at the 
expense of lower ones, and renders the impact of the least 
significant members (especially in larger sets) almost 
negligible. OWA (Ordered Weighting Aggregation) is a family 
of ranking methods [9,10,11]. OWA multiplies the members’ 
values by their transposed ranking order, so that the highest 
amount is multiplied by the highest ranking number. Induced 
OWA enables an associated vector to ‘induce’ ranking, instead 

of using the rank numbers as weights. An example of using 
these methods for combining sources credibility is given in (1). 
The observation score (OBb) is compiled from the credibility 
rates of sources (S

ob
s) that are assigned to this observation and 

their observed level of intensity (LoIb), weighted by their 
significance rate (SWs). 

B. The Corroboration Algorithm 

For proportional corroborative aggregation of members, a 
new algorithm CEDAR (Corroborative Evidential Diminishing 
Aggregation Ranking) is proposed, which is subject to a further 
study. Cedar uses the ranking order as the processing sequence 
that progressively diminishes the lesser members’ 
contributions. The diminishing effect is achieved by a 
coefficient that is calculated from the residual interval (1-
previous contributions). This coefficient is multiplied by the 
product of the member’s inherent Credibility-based value, and 
the assigned impact weight. At each step, the residual is 
reduced in proportion to the contribution, as in (2).  

C. Comparing aggregation Results 

Analysis of several aggregation methods shows that there is 
a great disparity between the produced scores and their 
distributions of rates, even after normalization into the same 
scale. In Table I, four different methods aggregate the 
credibility of the three sources (Instigating, Supporting, 
Qualifying), which have been already weighted.  

 Averaging always results in a lower value than the 
maximum member. This may be acceptable in source 
credibility aggregation, but in the case of attributes aggregation 
where credibility should be cumulative (e.g. Urgency KF), or 
where the largest member (the prime) has a particular role (e.g. 
Spatial KF), corroborative process should augment the overall 

TABLE I.  COMPARING OBSERVATION RATING AGGREGATION 

Risks Instigate Support Qualify Ave SAW OWA Cedar 

Non Habitual Location  0.365 0.283 0.034 0.227 0.682 0.653 0.560 
Undesirable Activity  0.404 0.191 0.053 0.216 0.648 0.516 0.543 
Repeated Requests  0.442 0.283 0.032 0.252 0.756 0.781 0.612 
Exceeded Authority 0.305 

 
0.053 0.179 0.358 0.663 0.342 

Large data/long duration 0.266 
 

0.032 0.149 0.298 0.563 0.289 
Conflicted Location   0.365 0.311 0.034 0.237 0.711 0.717 0.578 
Repeated Failed Authen. 0.305 0.283 0.205 0.264 0.792 0.721 0.603 
Repeated DB Hits 0.266 

 
0.032 0.149 0.298 0.563 0.289 

Excessive Net Usage 0.404 0.283 
 

0.343 0.687 1.091 0.572 
Implausible Location 0.365 0.311 0.034 0.237 0.711 0.717 0.578 
Unauthorised Updates 0.266 

 
0.205 0.235 0.470 0.736 0.416 

Demanding Media 0.404 
 

0.053 0.229 0.457 0.861 0.436 
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credibility, as in Cedar. OWA increases the score unreasonably 
when a small contributory member is added to a large one (as 
highlighted in blue). SAW raises the amounts linearly, and can 
exceed the scale limits, so further normalization process is 
required. Cedar performs best, producing consistent, 
proportional scores within the scale.  

IV. COMPUTING CREDIBILITY-BASED SCORES 

A. Balancing Credibility Estimates and Consistency 

Sources credibility is estimated by the enterprise experts. These 
subjective estimates may be biased, clustered, or equal-rated, 
preventing clear differentiation. Hence, it is important to 
balance estimates using a formal tool, such as AHP (Analytic 
Hierarchy Process) [19]. AHP applies pairwise comparison to 
the list of variables and calculates a Consistency Ratio, as in 
Figure 5. In this example, weights are calculated for the 
Confidence Measure. Each pair of the (g) elements is assessed 
pairwise for relative impact. The eigenvector is the gth root of 
the product of each matrix row, which is then normalized. The 
resulting eigenvector is the element’s weighting rate. To check 
consistency and randomness, the Consistency Index (CI) is 
computed from the original estimates and their eigenvectors, 
and then the Random Index (RI) constant (as observed by 
Saaty’s experiments) is used for the CR (Consistency Ratio), 
which must remain below one. 

Figure 5.  AHP calculation for Confidence  

B. Computing Source Credibility  

Source credibility is computed from Elements (Ee), Traits 
(Tt) and Measures (Mm), which are weighted by Ewe, Twt, Mwm 
respectively. Source credibility (Screds) is the combined 
weighted components (using SAW in this case), as in (3).  

Measures have varying significance in different Key 
Factors (KF), e.g. Media KF is not affected by Precision, but 

Precision is much more important to Spatial KF than Accuracy. 
Therefore, there is also a key-factor based Measure weighting 
(KFMwmk) that relates to the key-factor identity (k). Figure 6 
shows the varying proportions of Measures in sources. For 
example the dominant component in ‘Appointment’ is 
precision, but App&Data, Email and LAN/WLAN login 
servers are characterized by high accuracy. Confidence is never 
the dominant component, which may indicate that estimates 
need to be re-checked.  

Figure 6.  Proportions of CAP Credibility Measures in Sources 

C.  Transformation of Intensity  

Credibility-based models must also consider the variable 
levels of intensity (LoI) of observed data. Some attributes are 
always on/off, i.e. binary intensity, but others, e.g. location or 
integrity, have greater uncertainty that is expressed as intensity 
grades. Transformation normalizes binary and graded values 
into unit-less relative scales, ensuring that the score distribution 
is as wide as possible, for better differentiation. One 
transformation option is to align LoIb Min/Max of the 
Observation (OBb) with [1,0] as the new limits. This results in 
stretching graded LoI between 0 and 1, producing duplicates of 
L=0 and H=1. A better alternative is to determine the high/low 
limits (excluding 1 and 0) across the whole service request 
(RQ), so that binary rates are squeezed down into the Min/Max 
scale of all non-binary observations, as in (4). Normalizing 
across the whole request involves longer real time 
computation, but maintains better scaling balance. 

D. Joining Sources’ Credibility Rates per Observation 

The observation score is aggregated from the credibility 
rates of all the contributing sources and qualifiers, weighted 
according to their perceived significance. The numbers of 
participating sources vary from one observation to another. For 
example, the ‘Habitual’ assertion is instigated by a GPS 
positioning and is qualified by tagged locations, while 
supporting information is provided by the historical database 
that determines the intensity level of the ‘habituality’. An 
instigating source is always present, and most observations 
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require a qualifying source, but they don’t always have 
supporting information. When combining sources credibility 
into an observation rate, the sources are weighted according to 
their types, where instigating sources are given higher impact 
than supporting or qualifying sources.  Figure 7 shows sources 
that are: X=instigating, &=supporting or Q=qualifying.  

Figure 7.  Joining Credibility per observations for assertion types 

E. Attributes Aggregation from Observations 

An attributes (Aa) incorporates all observations that support 
its assertion. The most significant observation (OB1) is the 
‘prime’, with the highest value of combined sources’ Scred and 
the observed LoI. Cedar gives precedence to the most 
significant observation and minimizes the impact of lower 
rated ones.  It ensures that scores remain within the scale 
without having to normalize them, as in (5). 

F. Key-Factors Aggregation from Attributes 

Key Factor (KFk) aggregation depends on their type. Some 
factors require a single attribute selection, while others are 
cumulative, with a selected ‘prime’ attribute (Ap). The prime 
determines the prioritization that dictates the outcome, e.g. 
prime=Home means that home-working policies are applied, 
but prime=Office means that different rules prevail. In cases of 
cumulative key-factors with contributive evidence, a 
corroborative aggregation method is required. The attributes 
and key-factors are also weighted by the policy-based 
prioritization rates,  for attributes (AWa) and factors (KFWk,) 
before adding up the profiles scores, as in (6).  

V. ALTERNATIVE APPROACHES 

A. Entropy for Component Performance 

Information Theory and Entropy offer insights for 
parameters inter-dependence and the level of doubt associated 
with the estimated values. Uncertainty is intrinsic in behavioral 
models, so quantifying tools are particularly useful. Concepts 
of Mutual Information and Conditional Mutual Information 
can be adapted to assess the model’s components, with 
extended applicability to arrays and random distributions, as 
proven in [2] and applied in [3]. In (7), Context Profiles 
Efficiency (CPE) is quantified, based on attribute credibility 
rate (Acred) and its probable occurrence rate per profile type 
(P(Ai)) in the RQS database of proven requests. Context Profile 
(CPc) is treated as a vector of all attributes (Ai) with n 
members. The attributes entropy rates are summed up and 
normalized, to provide the profile’s entropy.  

Entropy can be used to indicate the profiles’ performance 
and assess attribute impact on the profile scores. It can indicate 
where additional assurance is required, perhaps by adding 
supporting sources. The relative Entropy scores can determine 
which profile type prevails in cases of a tie (equal profile 
scores), so that the profile with the lowest uncertainty is 
selected. Entropy was computed for five profiles in the Risk 
Model, with 24 risks. The Entropy procedure was adapted for 
using combined attribute occurrence rate with credibility rate. 
Entropy was calculated for each attribute and the entropy for 
each profile type was aggregated, as shown in Figure 8.  

Figure 8.  Entropy of risk profiles 

This example shows that RP4 (Risk Profile 4) has the 
lowest Entropy by a good margin. The ‘Excessive Net Usage’ 
risk (light blue) dominates RP4, but its Entropy is lower than 
most other risks, so trustiness is high. However, such high 
dependence on a single risk is inadvisable, calling for further 
examination of the key-factor structure. The span of Entropy in 
RP1 is significantly smaller than RP2 or RP4, and many risks 
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are above zero, i.e. high uncertainty, so RP1 is not as safe a 
verdict as it should be.  

B. Belief Function for Joint Credibility 

The DST Belief function is considered as an alternative to 
probability models as well as to the Credibility model. DST 
assigns Belief ‘masses’ to the set of options, where Plausibility 
is whatever has not been assigned as a contrary belief. This 
allows for some unknown mass to be included in the 
plausibility. DST was widely criticized as inconsistent and 
paradoxical, and was proven unable to deal with large conflict. 
Despite the criticism, the DST debate has highlighted some 
important principles that are glossed over by the probability 
approach. DST can support equal-probability and partial 
knowledge. It separates the degree of support (=Level of 
Intensity) from the source reliability (=Credibility), as in this 
paper. The DST combination rule, as in (8), focuses on the 
intersection of sets, using Exclusive-OR to combine ‘masses’. 
This segregates conflicting evidence as contrasting data sets, 
but they are used merely as normalization [7].  Thus, conflict is 
discarded instead of taken it into account, leading to counter-
intuitive results. A significant drawback of the rule is the 
complexity when joining more than two sources, because DST 
defines ‘mass’ as a power set function, that quickly ramps up 
the number of combinations that need to be computed.  

Table II compares handling of concordant and discordant 
attributes using the Dempster rule, Cedar, SAW and OWA. It 
is assumed that credibility/intensity values represent the masses 
for DST and weighted values for SAW. The scenario data 
includes two pairs, with discordant (in red), and concordant (in 
blue) contributing attributes. Mass1 and Mass2 are computed 
from their respective credibility and LoI values, taken from the 
model scenarios and source credibility calculation.  

 

The results show that DST produces higher rates when 
conflict is present (example 1) than without conflict (example 
2), which is counter-intuitive, and has the lowest span of 
scores, i.e. low differentiation. SAW produces negative results, 
which is a disadvantage. OWA shows disproportionally lower 
or higher values compared with Mass1 and Mass2 (example 

3,4). By contrast, Cedar provides consistently proportional, 
positive scores, in the widest spread. 

C. The Bayes Classifier 

The most popular alternative to Credibility-based 
modelling is probability-based classification. The Bayes 
classifier is used to determine the Context Profile type (CPc) 
per new request with a set of attributes {A1,…Aa’}. A request is 
treated as a vector of all its attributes, irrespectively of any key-
factors classification, since the probabilities of these attributes 
are not dependent on KF prioritization. The probability of an 
attribute is the occurrence rate within each profile type in the 
RQS dataset of requests that have been computed using the 
credibility-based model. A profile PCc is classified by Bayes 
classifier in (9).  

 The Bayes results for the Risk Model, with 24 attributes 
and 60 scenarios were respectable, with overall 75% correct 
profile predictions, but the Credibility model outperforms 
Bayes with 95%, as shown in Table III. When classifying 
Business Context profiles with 56 attributes and 50 scenarios, 
only 50% of Bayes predictions were correct - no better than 
pure chance. This confirms that Bayes requires an 
unrealistically large training data to provide sufficiently high 
ratio of data-points to variables. To quote MYCIN developers 
[1], they rejected Bayes because it would require “unfeasibly 
large numbers of ‘proven’ cases” while “the assumption of 
independence is unrealistic”.  

VI. MODEL COMPONENTS ANALYSIS 

Different compositions of model components were tested, 
to gauge their effectiveness. The ‘Full Model’, containing 
Credibility, LoI, and Policy (by KF, Attributes and Groups), 
represents the expected results, against which deviations 
(wrong profile type, increased ambiguity, equal-ranking and 
blurring) are noted. The total deviation in Figure 9a rises 
sharply when Policy components are omitted. The spread of 
scores is most affected by the lack of Attribute Policy, though 
the standard deviation and the mean remain generally steady. 
Compositions without Attribute Policy are particularly prone to 
equal-ranking, as the trend line shows.  

In Figure 9b, analysis per scenario is shown, with score 
distortions (e.g. wrong profile types) noted where peaks are not 
synchronized with the Full Model (in red). It is evident that 
No-Credibility and No-Intensity graphs (blue and purple) track 

TABLE II.  DEMPSTER COMBINATION RULE FOR SPATIAL ATTRIBUTES 

  LoI1 Cred Mass1 LoI2 Cred2 Mass2 DST Cedar SAW OWA 

1 
Office 0.800 0.776 0.621 0.300 0.617 0.185     

-Home 0.500 0.776 0.388 0.700 0.617 0.432     

Set-Cred   0.241   0.080 0.317 0.192 -0.004 0.147 

2 
Office 0.800 0.776 0.621 0.300 0.617 0.185     

Office 0.500 0.776 0.388 0.700 0.617 0.432     

Set-Cred   0.241   0.080 0.209 0.878 0.406 0.380 

3 
Branch 0.800 0.617 0.494 0.300 0.582 0.175     

-Regular 0.700 0.617 0.432 0.600 0.582 0.349     

Set-Cred   0.213   0.061 0.204 0.193 -0.028 0.110 

4 
Branch 0.800 0.617 0.621 0.300 0.582 0.175     

Branch 0.500 0.617 0.388 0.600 0.582 0.349     

Set-Cred   0.241   0.061 0.188 0.875 0.383 0.363 

  Span 0.129 0.686 0.435 0.271 

TABLE III.  COMPARING  SUCCESS RATE BAYES WITH RISK MODEL  

 Model Bayes 

Non-marginal 100.00% 72.73% 

Marginal 88.89% 77.78% 

Overall 95.00% 75.00% 
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the model graph, while No-Policy (light green) and LoI-only 
(black) are much flatter, with inferior score differentiation. In 
Figure 9c, ambiguity per scenario is shown, measured by the 
1

st
 margins (between largest and second-largest scores). The 

Max1
st
Margin trend line (black) tracks the Full Model (red) 

very well, while other compositions are erratic.   

Figure 9.  a) Spread & Variation   b) Score Deviation    c) Score Ambiguity 

This analysis reveals that Credibility and LoI support 
consistent choice of profiles and LoI increases the distribution 
span. Policy by Groups/Key-Factors increases differentiation 
and reduces ambiguity, while Attributes’ Policy avoids equal-
ranking and inconclusive verdicts. None of the components is 
superfluous, as they all have significant impact. 

VII. RELATED RESEARCH  

Although the need to account for accuracy of context data 
has been recognized in many papers, it is rarely integrated into 
decision making algorithms. In [24], lack of data quality is 
proven detrimental to decision making, due to increased task 
complexity. The Credibility concepts appear in various 
disciplines: metrology [4], actuarial risk [5] and medicine [1]. 
Data inconsistency issues are raised in [12], noting that OWL 
(Web Ontology Language) lacks such consideration, but 
Accuracy is now included in enhanced XCML (eXtended 
Context Modeling Language) [14]. In [31], quality of context 
in terms of privacy, security, resolution, completeness, and 
precision, are noted using OWL-DL semantics, still not 
covering the whole range of credibility properties. In [18], 
‘credibility’ in MCDM (Multi-Criteria Decision Making) has 
been linked with approximate (fuzzy) reasoning, but no 
indication of how it is ascertained.  

On Credibility aggregation mechanisms, MCDM methods 
such as SAW (Simple Additive Weighting) and WPM 
(Weighted Product Model), are reviewed in [15]. They are 
lightweight and fast, but ignore ranking and primacy. Where 
aggregation by ranking is called for, OWA (Ordered Weighting 
Aggregation) is popular, as in [9, 10], and expanded in [11]. 
However, OWA produces disproportional scores that do not 
corroborate the prime member in proportion to each 
contribution and do not remain within a given scale. 

The most common alternative to the Credibility-based 
model is using probability-based models, especially Bayesian 
classifiers, as described in [29]. Extended Bayesian algorithm 
is used for context measured by environmental sensors in [16], 
which groups together dependencies, to assess ‘correctness’. In 
[27], Naïve Bayes algorithm outperforms the proposed 
extensions, but [28] claims success with an augmented 
classifier that copes with dependencies, using Galois lattice. 
Independence of context attributes is not achievable, and 
methods that rely on such independence will distort the 
outcome. For a substantial number of variables (above ten), 
Bayes requires a large proven data set that represents all the 
combinations that may occur, which is unfeasible for 
behavioral context. 

The method of DST ‘Belief Function’ tackles uncertainty of 
evidence. In [23], the Dempster-Shafer Theory (DST) is used 
to assess sensors’ dissimilarity. In [17], DST is proven for 
intervals of probabilities, but paradoxes are still ignored. In 
[32], Shafer admits that Belief Function is best used for an 
interactive subjective process. However, DST offers some 
advantages: belief functions do not require prior probabilities 
and missing data can be estimated under ‘Plausibility’. As per 
[33], belief function models do not deteriorate as fast as 
probability models, when the gap between estimations and 
reality grows. However, the Dempster combination rule as 
detailed in [7], cannot cope with conflict. The rule is extended 
in [26], by assigning separate masses to conflict, but this 
eliminates discord, not integrate it.  

Quality-of-Information is measured in [6,22] for the 
reliability of unknown sources. For the Credibility approach, 
knowledge of the sources is essential. It requires structuring 
attributes from their sources with a bottom-up approach, as in 
[25], where attribute trees are built up from observations that 
link to sources properties. Observations must allow for both 
concordant and discordant observations, as described in [13], 
to account for discord and reduce the score accordingly. 

Several tools are useful help in different parts of the model. 
The credibility components estimates and the assigned weights 
must be non-ransom, balanced and well spread. Saaty’s AHP 
(Analytic Hierarchy Process), as explained in [19] provides a 
tool to do that. Information Theory and Entropy help to assess 
context profiles uncertainty. In [3] Entropy and Conditional 
Mutual Information are utilized to correlate contributions to 
service composition quality. The Shannon rule is augmented by 
[2] to any distribution of random intervals. To manage 
dynamically context uncertainty, Goertzel’s Probability Logic 
[36] and the OpenCog project provide some inspiration, with 
advanced, but complex, logic functions such as induction, 
abduction, analogy, speculation, and causality.  
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VIII. CONCLUSIONS  

In this paper, a pragmatic approach is proposed which 
derives context credibility from the properties of sources and 
incorporates it in the evaluation algorithms. The credibility 
based model computes context afresh for every instance, with 
no prior probabilities or training data, and is not vulnerable to 
contamination by previous faulty classification. This approach 
can cope with more complex modelling, higher levels of 
uncertainty and lack of previous history. Since credibility rates 
are computed off-line, this method reduces the load on real-
time processing. However, such a credibility model is useful 
only where information is drawn from a diverse range of 
known sources that have measurable reliability and trustiness, 
so that credibility rates can be differentiated and ultimately 
produce good distribution of attribute scores. The Credibility 
approach incorporates source credibility, intensity and policy 
in the scoring of criteria, so differentiation is also achieved 
due to the dynamically gauged Intensity and the variable mix 
of sources per observation.  

The accuracy of the Credibility-based model relies heavily 
on an appropriate aggregation method that is corroborative 
and proportional to the contributions. It must aggregate two 
members as well as numerous contributing members in an 
equitable manner and produce reliable and conclusive results.  
The new Cedar algorithm aggregates contributory members in 
a recursive process. It accrues contributions proportionally to 
the inherent credibility-based values, in a diminishing ratio, so 
that less credible members have less impact. This is achieved 
by using a coefficient that is calculated at each iterative step as 
the absolute value of the residual interval, after previous 
contributions have been subtracted. This algorithm, which 
operates on ordered set of members, always augments the 
‘prime’ (the largest member), with supportive contributions. 
Discord is accounted for by aggregating conflicting members 
as negative amounts in the same way, decrementing the score 
in proportion to the conflicting evidence.  

The Credibility approach is proven to be robust and can 
cope with more elaborate context structures, attributes discord 
and dependency. Furthermore, incorporating Credibility in the 
evaluation integrates further knowledge that goes beyond 
occurrence likelihood and provides a better way for informed 
decisions to be made. 
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