
1 23

World Wide Web
Internet and Web Information Systems

ISSN 1386-145X

World Wide Web
DOI 10.1007/s11280-012-0184-2

A flexible service selection for executing
virtual services

Nassim Laga, Emmanuel Bertin, Noel
Crespi, Ivan Bedini, Benjamin Molina &
Zhenzhen Zhao

1 23

Your article is protected by copyright and

all rights are held exclusively by Springer

Science+Business Media, LLC. This e-offprint

is for personal use only and shall not be self-

archived in electronic repositories. If you

wish to self-archive your work, please use the

accepted author’s version for posting to your

own website or your institution’s repository.

You may further deposit the accepted author’s

version on a funder’s repository at a funder’s

request, provided it is not made publicly

available until 12 months after publication.

A flexible service selection for executing virtual services

Nassim Laga & Emmanuel Bertin & Noel Crespi &
Ivan Bedini & Benjamin Molina & Zhenzhen Zhao

Received: 29 September 2010 /Revised: 17 June 2012
Accepted: 17 August 2012
Springer Science+Business Media, LLC 2012

Abstract With the adoption of a service-oriented paradigm on the Web, many software
services are likely to fulfil similar functional needs for end-users. We propose to aggregate
functionally equivalent software services within one single virtual service, that is, to
associate a functionality, a graphical user interface (GUI), and a set of selection rules. When
an end user invokes such a virtual service through its GUI to answer his/her functional need,
the software service that best responds to the end-user’s selection policy is selected and
executed and the result is then rendered to the end-user through the GUI of the virtual
service. A key innovation in this paper is the flexibility of our proposed service selection
policy. First, each selection policy can refer to heterogeneous parameters (e.g., service price,
end-user location, and QoS). Second, additional parameters can be added to an existing or
new policy with little investment. Third, the end users themselves define a selection policy to
apply during the selection process, thanks to the GUI element added as part of the virtual

World Wide Web
DOI 10.1007/s11280-012-0184-2

N. Laga (*) : E. Bertin
Orange Labs France, 42 Rue des Coutures, 14000 Caen, France
e-mail: nassim.laga@orange.com

E. Bertin
e-mail: emmanuel.bertin@orange.com

I. Bedini
Alcatel-Lucent, Bell Labs Ireland, Blanchardstown Industrial Park, Blanchardstown, Dublin 15, Ireland
e-mail: ivan.bedini@alcatel-lucent.com

N. Crespi : Z. Zhao
Institut Telecom, Telecom SudParis, Rue Charles Fourier, 91011 Evry Cedex, France

N. Crespi
e-mail: noel.crespi@it-sudparis.eu

Z. Zhao
e-mail: zhenzhen.zhao@it-sudparis.eu

B. Molina
Universitat Politècnica de València, Camino de Vera, s/n, 46022 Valencia, Spain
e-mail: benmomo@upvnet.upv.es

Author's personal copy

service design. This approach was validated though the design, implementation, and testing
of an end-to-end architecture, including the implementation of several virtual services and
utilizing several software services available today on the Web.

Keywords service discovery . service selection . virtual service . service selector . service
aggregation . marketplace

1 Introduction

The transition from Web 1.0 to Web 2.0 is characterized by an increasing number of services
and by a more and more user-centered design (rich user interfaces, user self service, and user
service creation) [27]. Following the lead of these characteristics, the concept of a “services
marketplace” (or Application store) has emerged [2, 7, 11, 17, 38, 39]. It provides end users
with a common place where services are published, discovered, and in some cases created and
hosted. Current marketplaces embed a huge number of services, and many services can fulfill
similar functional needs. Therefore, virtual services and service selectors, already introduced in
different development environments such as IBMWebSphere andMicrosoft .Net, are pertinent
features in this context. A virtual service is a mediation endpoint between the service potential
consumer and the providers of actual services (real implementation of services). The service
selector is then in charge of selecting the actual service to be executed for a given virtual service,
according to the functionality required and the selection criteria. In this paper, we study the
application of such concepts from end-users’ perspectives, in themarketplace context.We study
the requirements for such a goal, and propose our own solution.

As several services may have exactly the same functional signature, selecting a service
only by matching the end-user’s goal and the functionality provided by the service is no
longer sufficient. Currently, there is a significant body of research on service selection in
software engineering. The first approaches focused on goal-based discovery and selection
using semantic technologies [6, 18, 28, 31], but researchers have noted the need for more
criteria in the discovery process. Thus, new approaches that consider non-functional param-
eters such as the Quality of Service (QoS) and the end-user’s context have emerged [4, 5, 9,
10, 13, 22, 29, 33–35, 41]. The non-functional parameters may be static, such as price, or
dynamic (known only at runtime), such as the location and the presence of the end user.

Two important limitations can be observed in existing service selection approaches. First,
they are based on a limited set of parameters that can be used in the selection process.
Adding a new parameter usually requires rethinking the selection process implementation.
Second, they lack a user-centric design. Indeed, while some end users may want to select the
service that minimizes the price, others may want to select the service that is best suited to
their context, while some others may want to select the service according to the language
they speak (and some will want a mix of criteria to evaluate). It is important to allow end
users define the selection policy to apply during the selection process.

We propose such a mechanism; a service selection mechanism built on top of a market-
place of services, where the end user defines the criteria to apply for selecting the actual
service to execute for a given virtual service. For this purpose, we design a virtual service as
an association of a functionality, a Graphical User Interface (GUI), and a set of selection
rules that can be applied in the selection process. This association is defined by the
marketplace provider. When a virtual service is invoked, the GUI is displayed. This enables
the end user to define the policy to use in the selection process. It also displays a form that
allows the end user to provide the inputs required for the execution of the functionality.

World Wide Web

Author's personal copy

When the selection policy has been defined and configured, and the form completed, the
marketplace selects the services that best satisfy the policy defined by the end user. Finally,
the selected service is executed and the results are displayed within the GUI.

There are two important contributions in this paper. First, it is the end user who defines
the policy to apply. Second, in addition to being able to refer to static parameters such as
service price, marketplace administrators can also refer to any dynamic parameter generated
by another service in the marketplace (e.g., end-user location, end-user presence, network
traffic, etc.), and in a seamless fashion. This aspect makes the policy language very flexible,
as marketplace administrators can add new rules that refer to new parameters with little
investment.

This paper is organized as follows: In section 2, we first present the requirements for
virtual service execution by end users; and then review the state of the art in relation to the
service selection field and its limitations. We summarize our proposal in section 3. In
section 4, we present the end-to-end architecture for our proposed user-centric service
selection mechanism. We focus essentially on three aspects: the specification of the virtual
service, the specification of actual services, and the specification of our selection rules’
language. We detail the implementation of our approach and validate it by prototyping the
different virtual services and the list of software services considered in section 5. In section 6
we conclude with a summary and discuss the potential applications of our proposal in other
research domains.

2 Requirements and related work

This section begins by defining the requirements for using virtual services by end-users. The
two categories of related work we have identified, service selection based on static param-
eters, and service selection based on dynamic parameters, are then reviewed.

2.1 Requirements

This paper proposes a novel approach for executing a virtual service in the marketplace context.
For this purpose, we have identified a set of requirements. The first requirement is related to the
heterogeneity of parameters that can be considered in a selection policy. Service price, QoS
parameters (bandwidth, response time, availability, security…etc.), service reputation, end-user
location and presence are all examples of parameters that can be pertinent in the service
selection. Therefore, as the service selection mechanism can not anticipate all these parameters,
it is important to provide a seamless approach for adding new ones.

The second requirement is related to the heterogeneity of end-users’ selection policies.
When a virtual service is invoked, the marketplace must be able to select the best actual
service to execute for the needed functionality. However, the criteria that define the best
service are likely to be different from an end-user to another. Let us take the execution of a
Send SMS virtual service. Some end-users may choose the cheaper service, while others
may choose the best ranked service for the same functionality. It is therefore important to
enable end-users to define their own selection policy for a given virtual service invocation.
In other words, it is important to design a user-centric service selection mechanism, where
end-users can define their own selection policy.

The third requirement is related to the intuitiveness of the GUI that enables the end-user
to define the selection policy for a given functionality. Script languages must be transparent
to the end-users.

World Wide Web

Author's personal copy

2.2 Related work

Various mechanisms may facilitate the selection of the best available service according
to a user’s goal. In the current Web environment, several services provide similar
functionalities, and thus aim to fulfil similar goals. Therefore, it is important to
investigate other criteria to enable the selection of the most appropriate service among
functionally equivalent ones. In this section we classify such criteria into those that
refer to static parameters and those that refer to dynamic parameters. Basically, we
define static parameters as a parameter whose value does not depend on the runtime
context. The service price and negotiated bandwidth are examples of such a param-
eter. Dynamic parameters are in contrast parameters whose value is known only at
runtime. User location, user presence, and actual network traffic are typical examples
of such a parameter.

2.2.1 Service selection based on static parameters only

In order to select a single service among functionally equivalent ones, selection mechanisms
based on non-functional parameters, mainly SLA (Service Level Agreement) related param-
eters (e.g., price, availability, and response time), have emerged [10, 41]. This selection
includes several issues [42]:

& Identifying the most relevant non-functional parameters;
& Incorporating the non-functional parameters into the service description; and
& Aggregating these different non-functional parameters into a single quantitative value

when selecting a service.

Non-functional parameters may be classified into quantitative and qualitative parameters
[1]. Quantitative parameters include, for example, the price of a service, service availability,
bandwidth, loss rate, and response time. Some qualitative parameters are the quality of the
user interface, and the quality of a code; these are usually related to the end-user service
perception [30].

Once we have identified the non-functional parameters to be considered in the service
selection, these properties should be integrated into and be able to be retrieved from the
service registries. To this end, several description languages and UDDI (Universal Descrip-
tion, Discovery and Integration) extensions have been proposed (HQML [19], QML [16],
OWL-S [24], and [40]). We do not discuss the performances of these languages in this paper,
but instead focus on the process of selecting services.

In [5] and [33], this process of selecting a service among functionally equivalent
ones has been called “horizontal composition” – in contrast to “vertical composition”
which aims at finding the best combination of “tasks” to respond to a consumer’s
needs (these “tasks” are also called “abstract web services” [5]). These authors have
focused on selecting a service that satisfies a set of constraints (expressed as a
condition referring to non-functional parameters) while optimizing a given linear
objective function:

f x1; . . . ; xnð Þ ¼ c1:x1þ . . .þ cn:xn

where x1,…,xn are the considered and normalized non-functional parameters, and c1,…,cn

are the corresponding weights of each parameter, respectively. Thus, the importance of
a parameter in the service selection is expressed by its assigned weight.

World Wide Web

Author's personal copy

2.2.2 Service selection based on static and dynamic parameters

Another approach for choosing a service among others that offer the same functionalities is
to take into account runtime parameters such as the context of the end-user (e.g., end-user
location, or end-user presence status) [13], the actual quality of service parameters [29], or
the reputation of services [13, 23, 36, 37]. This kind of service selection has been investi-
gated in many studies [4, 8, 9, 12, 15, 32, 34]. In [9] for example, a framework called eFlow
was proposed; a service composition framework that supports automatic adaptation accord-
ing to the composite service parameters. Indeed, this framework enables the service con-
sumer (a service composer) to express his/her needs through service nodes, associating a
selection rule to each one that refers to the runtime values of the current parameters of the
composite service.

Moreover, in [4] researchers introduced an approach for context-aware services compo-
sition, one result has been the MAIS (Multi-channel Adaptive Information System) project
[3]. Their contribution consists in having improved the current SOA platform with context
awareness capabilities. These researchers propose a new template to publish services; a
template that includes a description of accessing channels, quality of service, and other non-
functional parameters. When an entity wants to access a service, it provides a request that
includes requestor context information such as the accessing channel and the device. Thus,
the platform is put in charge of discovering the service that matches both the functional
needs of the requestor and his/her context.

A very similar approach is introduced in [34], where context information is published
along with services, and requestor context may be included in the request to enable the
platform to select the service that best matches that context.

Finally, extensive work has been done on the context aware systems, such as location-
aware systems, context-managing frameworks and context-aware service composition ar-
chitecture [4, 12, 34].

2.3 Limitations

Table 1 presents the limitations of the related work regarding the requirements we have
identified for using the concept of virtual service by end-users.

3 Overall approach

The goal of this paper is to propose an end-to-end architecture and implementation for a
virtual service execution by end-users. We present two innovations in this paper. First, we
enable end-users to specify the service selection policy they want to apply during the
execution of a virtual service. A selection policy is defined as a combination of selection
rules. For each virtual service we associate a set of applicable selection rules. Then, using a
GUI element added as part of the virtual service, the end-user chooses which rule(s) to apply,
and by consequence defines the selection policy. Second, such as introduced in [8] and [15],
the language we propose for defining a selection rule can refer to any static parameter and to
any dynamic parameter which can be generated by a service present in the marketplace. The
process for integrating a new parameter can be confined to publishing to the marketplace the
service that generates the parameter. For example, to add end-user location as a parameter
which can be referred to in a selection rule, the administrator should only publish the
location service to the marketplace.

World Wide Web

Author's personal copy

Figure 1 illustrates the overall architecture of the proposed solution. We distinguish three
main concepts. The first one is “Actual Service”. It is a computer software system that
exposes a software interface (typically provided by third parties), with methods that can be
defined by a generic goal (e.g., get route, send message, translate news…); Web Services
[26] or RESTful services [14] are common examples. The Flickr REST photos search API or
the Telefonica SOAP send MMS API are actual services. In our proposal, actual services are

Table 1 Related work limitations.

Requirement Related Work limitation

Heterogeneity of parameters that can be
considered in a selection policy.

Existing solutions consider only a limited set of parameters; the
solutions that consider the QoS parameters, for instance, do
not consider the end-user context parameters such as location
and presence. In addition, the issue of how to integrate a new
selection parameter to an existing solution is not discussed.

Heterogeneity of end-users’ selection
policies.

Existing solutions are conceived from developer perspectives.
More precisely, they are designed from service composers’
perspectives, where a chaining of virtual services is defined,
and for each virtual service, a set of selection criteria is
associated. The solutions presented in [4] and [34], for
instance, require the service requestor to first detect the context
of the end-user and then invoke the service platform with that
information. This requires service integrators to master the
context enabler API and to manage cross format adaptation
between what was generated by the enabler and the platform
format. Consequently, end-users without computing skills
cannot define their own selection criteria.

Intuitiveness of the GUI for defining a
selection policy.

Existing solutions have not considered a GUI element for
creating selection policy.

Marketplace

Orange
send SMS

Telefonica
send SMS

Vodafone
send SMS…

Interpreter

Actual Service

Google
Map

Mappy

Exposure

…

send
SMS

Map

Virtual Services

End-user Send SMS

Service Selector

Figure 1 Virtual services exposure.

World Wide Web

Author's personal copy

published to the marketplace by providing a description. This description would include a
functional view (goal, inputs and outputs) as well as a non-functional view (e.g., QoS, price,
usage limitations) of the service.

The second important concept is “Virtual Service”. It is an association of a goal concept
(e.g., send MMS, send email, search pictures), a set of selection rules (built following a rule
language we propose), and a GUI. The GUI enables the end-user to enter the inputs expected
by the functionality, define the policy to apply by choosing the selection rules, invoke the
service selector to select the best actual service, and execute the selected actual service.

Finally, the third important concept is the service selector, implemented in our solution by
the Interpreter component of Figure 1. It is in charge selecting the best actual service to
execute for a given virtual service. It receives as inputs the functionality (goal concept) of the
virtual service, the inputs provided by the end-user, and the selection policy defined by the
end-user (a set of selection rules).

4 Framework design

In this section we will detail our proposed design of an end-to-end architecture to
enable a user-centric virtual service execution. We first show the different roles
involved in our marketplace with a use case diagram, and then we detail how each
use case is realized.

4.1 Framework use case diagram

The components we define to enable a user-centric execution of virtual services are based on
service marketplace. Figure 2 is a high-level view of the different roles and use cases
involved in this mechanism. The administrator of the marketplace is in charge of specifying

System

Specify Virtual Service

Publish Actual Service

Use Virtual Service

Marketplace

administrator

Service

provider

Service

consumer

Define Selection Rules

Implement GUI

<<include>>

<<include>>

Specify Selection Policy

Fill the GUI Form

Validates a Selected Service

<<include>> <<include>> <<include>>

Describe the Functionality

<<include>>

Figure 2 Framework use case diagram.

World Wide Web

Author's personal copy

the virtual service; this includes the design of the GUI, the definition of a set of selection
rules that could be applied, and the association of these selection rules with the GUI and the
goal concept (functionality).

The service providers publish their actual services into the marketplace by filling out a
form designed to capture the functional and non-functional parameters of the actual service
being published. The publication process may require an adaptation of the actual service on
the part of the provider to comply with a functionality signature.

Finally, the end-user can use a virtual service, which comprises the definition of the selection
policy, filling the GUI form (required inputs), the selection of the best actual service (by the
marketplace), and the validation and invocation of the selected actual service.

4.2 Specifying a virtual service

In this section we detail the concept of the virtual service and design the generic
model for specifying the selection rules. These selection rules are intrinsic elements to
the concept of virtual service. Figure 3 summarizes the whole model and highlights
the virtual service section. It shows the different relationships among the various
concepts.

A virtual service is basically an association of a functionality description, a GUI (virtual
service front-end), and a set of selection rules that can be applied during the selection process
on the functionality. The following subsections describe each part.

4.2.1 Functionality description

The functionality is described through a goal concept that is used to discover the
corresponding actual services. Goals are formally defined via semantic tags. Each goal is

Goal

Input Type Output Type

Selection Rules

expected output

*

expected input

*

is related to

1..*

Virtual Service

realize

1

Actual Service

is functionaly defined by

1..*

Data Format

is formatted according to

1

is formatted according to

1

GUI

is presented through

1

Figure 3 Service related concepts.

World Wide Web

Author's personal copy

modeled through a unique tag, the type of mandatory inputs it expects, and the type of
outputs it generates. The input types, as well as the output types, are associated to a data
format. For example, an SMS sending functionality would be modeled with a unique tag
“send_SMS”, which expects a mobile phone number (“mobile_phone_number”) and a text
message (“text_message”) as its input parameters, and expects the acknowledgement of
receipt (“ack”) as its output parameters.

4.2.2 Selection rules definition

To select the best available actual service at runtime, we also need mechanisms to
assess actual services and decide which one to select. We propose here a user-centric
approach in the selection process; an approach in which the end-users themselves
specify the selection policy to apply in the selection process. This requires a generic
model, in which both static and dynamic parameters can be considered on the one
hand, and where new selection criteria can be added easily on the other hand. In this
section we design this model, which is also summarized in Figure 4 (the model is
shown focused on the selection rule portion).

A selection policy is defined as a set of selection rules. There are two types of rules:

& Constraint rules, designed to remove services that do not fulfil a list of constraints. The
result of a rule evaluation is either a true or false value. Constraint rules enable the
marketplace provider to specify conditions that the selected service must satisfy. For
instance, if we consider an SMS sending functionality, a constraint rule could be
formulated as follows: select actual services whose home network location is the same
as the location of the recipient.

& Objective rules, structured so as to rank an actual service from the perspective of a given
objective. The result of a rule here is a quantitative value that enables the classification of

selection rule

rule parameter

static parameter dynamic parameter Actual Service

refers to
1..*

knowledge base

generates

0..*

generates

0..*

constraint rule objective rule

Figure 4 Selection rules model.

World Wide Web

Author's personal copy

different actual services. Objective rules could include, for example, the price optimization
of a selected service. This can also be a linear objective function that refers to several
parameters such as price, bandwidth, and/or reputation.

Both constraint rules and objective rules indirectly refer to static parameters and/or
dynamic parameters. Static parameters are those whose value is known before runtime;
service price and end-user preferences are typical examples. They are usually provided
when the service is published to the marketplace. When such a parameter is referenced
in a rule, the engine invokes the knowledge base component, which is a component that
accesses the marketplace database to retrieve static parameters. Dynamic parameters are
those whose value is known only at runtime. These parameters are usually the results of
the execution of other services, such as presence and location. One of important
innovations in this paper is the ability of the rule engine we propose to get the value
of dynamic parameters. Indeed, when a reference to such a parameter is found in a rule,
the engine invokes the corresponding service to get its current value. Consequently, to
add a new parameter to the selection mechanism, we only need to create the service
that generates it.

4.2.3 GUI implementation

The virtual service also includes a GUI that enables the end-user to use and take advantage of the
functionality and the associated selection rules and selection mechanism we define. It represents
the virtual service front-end. It displays the GUI elements that enable the end-user to enter the
inputs required by the functionality; it enables the end-user to define the selection policy by
choosing the rules to apply during the selection process; it invokes the selection mechanism; and
then it executes the selected actual service and displays the result to the end-user.

The GUI must fulfill four conditions. First, it must implement the form that enables the
end-user to provide the inputs needed by the functionality. This form is different from a
virtual service to another as it depends on the required inputs of the corresponding func-
tionality. Second, the GUI must enable the end-user to define the selection policy to apply by
choosing/configuring the selection rules. Third, after validation, the GUI must invoke the
selection mechanism implemented by a component called Interpreter. The Interpreter must
receive the functionality tag of the virtual service, the selection rules (constraint rules and
objective rules) chosen by the end-user, and the input values provided by the end-user as its
input parameters. The Interpreter responds with a set of selected services. Fourth, the GUI
must prompt the list of selected services to the end-user, enables him/her to select one of
them, execute it, and display the execution results.

4.3 Actual service publication

Figure 5 depicts our model, emphasizing the actual service section. It shows the different
information that must be provided by service providers when registering a new actual service
in the marketplace.

In summary, service providers must specify the following:

& The goal(s) of the actual service;

& The inputs and outputs of the actual service, referring to the inputs and outputs linked to
the service goal(s);

& The non-functional parameters associated with the actual service; and

World Wide Web

Author's personal copy

& Optionally, a specific interface, implemented to support interaction with the virtual service.
This interface is required when the format of inputs and outputs of a specific service are
different from the format of the inputs and outputs of the corresponding goal. In other words,
this interface ensures the grounding compatibility of the actual service with the platform.

To avoid unusable free text values, these elements should be expressed through a predefined
list of semantic tags. The marketplace is in charge of providing such a list. This task is performed
manually by the administrator, who maps and adds new concepts as new services and function-
alities appear.

4.4 Interpreter component design

The Interpreter component is one central component of our mechanism. It is the service selector
of our platform. It assesses existing actual services regarding selection rules (policy) chosen by the
end-user. Thus, it receives as input parameters the needed functionality, the selection rules to
apply, and the input values provided by the end-user, and it generates a list of selected services. As
we illustrate in Figure 6, the first action carried out by the Interpreter component is the discovery
of all available actual services that perform the received functionality. Thereafter, the discovered
services are filtered according to a set of constraint rules. Each constraint rule may refer to static
parameters, dynamic parameters, and the inputs provided by the end-user. The static parameters
are referenced through the knowledge base component (e.g., service prices, QoS parameters); the
dynamic parameters are referenced through the corresponding actual service (e.g., invocation of
localization actual service to get an end-user location parameter); and the inputs are referenced
through the corresponding tag. Once all constraint rules have been applied and a set of actual
services selected, the Interpreter evaluates the objective rule(s) if present. This objective rule may

Actual Service

Goal

+is functionaly defined by

1..*

Input Type

+expected input *

Output Type

+expected output

*

Input Value

Output Value

+receives

0..*

+type

1

+generates
0..*

+type
1

Non Functional Parameter

+characterized by

0..*

Figure 5 Actual service specification.

World Wide Web

Author's personal copy

refer to static parameters, dynamic parameters, and/or the input values provided by the end-user.
At the end, a set of actual services is selected; services that satisfy the constraint rules and optimize
the objective rule. This list of selected actual services is sent back to the requestor (e.g., the GUI).

5 Implementation and validation

In order to validate the different concepts and components we have introduced, we first
detail the implementation of our contributions. We then show their pertinence by detailing
the list of virtual services we implement and the list of actual services we consider. To
demonstrate the efficiency of using virtual services, we show the scalability of the Inter-
preter component in terms of response time.

5.1 Implementation

The main contributions we introduce in this paper are a generic model for specifying service
selection rules in the context of a marketplace of services, and the concept of virtual service.

Discovery Of Services reponding to the functionality

Constraint Rules Evaluation

Single Constraint Rule Evaluation

List of Services, One Constraint Rule

Functionality

List of Services, Constraint Rules

Objective Rule Evaluation

List of Services, Objective Rule

List Of Services

Figure 6 Service selection algorithm.

World Wide Web

Author's personal copy

After detailing the implementation of the rule language with the Interpreter, we show in the
following subsections how a virtual service is implemented by the marketplace administrator.

5.1.1 Rule language and the interpreter component

In order to implement the generic model for specifying selection rules we define a language
whose finite state machine diagram is depicted in Figure 7.

The grey states are legacy final states, which means, for example, that a rule is considered
complete when we reach state S2 or S3 (Figure 7.1). Each rule could be an objective or a
constraint rule as depicted in Figure 7.1. Objective rules necessarily contain an optimization
operator (e.g., Max or Min) and a function to optimize. Constraint rules are simple
conditions that are evaluated to true or false (Figure 7.1). Each condition includes one
comparison statement between two functions (Figure 7.2 and 3). A function, referred to from
both constraint rules and objectives rules, contains mainly numbers, variables, and oper-
ations. There are three types of variables:

a. Dynamic Parameters

A dynamic parameter must be resolved at the runtime. Indeed, its value differs from an
end-user to another and instant t and t’. It is computed by invocating the corresponding
actual service at the runtime. The service to invoke is directly specified in the rule. For
example, the selection rule hereafter selects an actual service according to the end-user
location. End-user location is a dynamic parameter known only at runtime. It is generated by
the context service referred to within the rule.

$Contextðidentifier : knowledge:phoneNumberÞ:location:country ¼
¼ selectedService:country;

Rule

Condition

Comparison Function

S0

S1

S2

S3

Min or Max Function

Condition

Objective rule

Constraint rule
S0

S1

S2

Comparison

Logical
operator

Comparison

S0

S1
S2

Function

Comparison
operator

Function S0

S1

S2

Number / Sof tware Service /
Knowledge base Operation

Number / Sof tware
Service / Knowledge base

(1) (2)

(3) (4)

Figure 7 Finite state machine diagram of the selection rules language.

World Wide Web

Author's personal copy

The keyword $Context enables the Interpreter to identify the actual service to invoke to
get the end-user location. knowledge.phoneNumber key word refers to the input values
provided by the end-user. selectedService.country key word refers to the country covered by
an actual service. To be selected. selectedService.country must be equal to the end-user
location.

b. Static Parameters

Static parameters are also resolved at the runtime by the Interpreter component. Static
parameters are related to a service. Therefore, they are referred to using “selectedService.-
parameterTag” key word. For example, “selectedService.price refers to the price of the
service being assessed regarding the rule. When such kind of parameter is present in the
rule, the Interpreter component retrieves the actual value within the database.

c. Input Values

Input values provided by an end-user to execute a virtual service can also be used in as
criteria in the service selection process. They are referred to through knowledge.inputTag
key word. For example, knowledge.phoneNumber refers to the phone number parameter
needed as an input for the virtual service being executed. These parameters are natively
known by the Interpreter component as they are received as input parameter for the
Interpreter

To interpret such a language, we used LEX1/YACC2 tools to generate a compiler and an
evaluator for the grammar, as illustrated in Figure 7. More precisely, we used JLex3 and
CUP4 Java libraries. Basically, these tools receive as input the finite state machine diagram
and automatically generate the corresponding Java code for a compiler and for an evaluator.
The generated code is then integrated as part of the Interpreter component. The Interpreter
component is implemented as a Java Servlet. It is exposed through an Http API; it is
accessible through a URL using the Get or Post method. Table 2 shows the different
parameters that must be transmitted.

5.1.2 Virtual service implementation

To create a virtual service three steps must be followed by the marketplace administrator.
First, the target functionality tag of the virtual service must be identified (e.g., Send_SMS).
Second, the administrator must create and associate a set of selection rules that could be
applied for that virtual service. Third, he/she must create the GUI that enables the end-user to
execute the virtual service. Each step is discussed hereafter. Figures 8 and 9 summarize the
three steps.

a. Identifying Functionality

In its current implementation, the functionalities, the inputs they expect, and the outputs
they generate are defined as list of RDF (Resource Description Framework) triplets. A
virtual service can be created through a Web page we implement (Figure 8a). This Web page
displays the list of available functionalities extracted from the RDF graph. To start the
creation of a virtual service, the marketplace administrator must select one of those

1 Lex tutorial: http://dinosaur.compilertools.net/lex/index.html, accessed on August 12th, 2010.
2 Yacc tutorial: http://dinosaur.compilertools.net/yacc/index.html, accessed on August 12th, 2010.
3 JLex: www.cs.princeton.edu/~appel/modern/java/JLex/, accessed on August 12th, 2010.
4 CUP: www.cs.princeton.edu/~appel/modern/java/CUP/, accessed on August 12th, 2010.

World Wide Web

Author's personal copy

http://dinosaur.compilertools.net/lex/index.html
http://dinosaur.compilertools.net/yacc/index.html
http://www.cs.princeton.edu/~appel/modern/java/JLex/
http://www.cs.princeton.edu/~appel/modern/java/CUP/

functionalities (e.g., Send_SMS functionalities). In the current implementation we used
MySQL database to store the list of virtual services.

b. Associating Selection Rules

The second step to be performed by the administrator of the marketplace is
associating selection rules to the virtual service to be created. In our implementation,
this is performed through a Web page displayed just after the previous step (see
Figure 8b). This Web page displays the list of available rules, extracted from the
database. The administrator has just to choose those to associate to the virtual service
and validate. A new rule can be added to the database as illustrated in Figure 8. In
the current implementation we used MySQL database to store the rules and the
associations with different virtual services.

c. Creating the GUI

The GUI provides the end-user with the capability of visualizing the selection rules,
applying some of them (defining his/her own selection policy), entering the required inputs,
viewing the service selection results, and finally invoking one of the selected services. It is
implemented using Web standards (XHTML, JavaScript, and CSS). The URL of the GUI is
also provided in the virtual service definition process as illustrated in Figure 8c.

Figure 9 is a screenshot of a send_SMS virtual service GUI. Our implementation is based
on Widgets to encourage lightweight composition; a new composition approach trend as
detailed in [20, 21, 25]. Three modes must be implemented in the Widget: the configuration
mode, the view mode, and the selection mode.

The configuration mode contains the selection rules. This enables saving the
chosen selection rules for further use by the same user (to avoid having the end-
user reconfigure the selection rules each time he/she accesses the same virtual
service). The constraint rules are displayed as check-boxes. The end-user can choose
several of constraint rules to apply during the selection process. Some constraint rules
can be configurable (e.g., Price). The objective rules however are displayed as radio-

Table 2 Interpreter invocation details.

Parameter name Value example Description

User_id alice@host.com The identifier of the virtual
service
consumer (end-user).

Format Json (or xml) Specifies the format of the output
(list of selected services) of the
Interpreter. Current supported
formats are JSON and XML.

Functionality Send_SMS The functionality of the virtual service.

Constraint_rules [“$Context(identifier:
knowledge.phoneNumber).location.country
00 selectedService.country;”, …]

The list of constraint rules to apply
during the selection process.

Objective_rule MIN(selectedService.price); The objective rule to apply during
the selection.

Input values list [callerPhoneNumber:0123456789] The input values provided by the end-user
for the execution of the needed
functionality.

World Wide Web

Author's personal copy

boxes, because only one objective rule can be applied. Nevertheless, each objective
rule can refer to several parameters (e.g., in linear objective function). The combina-
tion of a set of constraint rules and an objective rule defines the selection policy of
the end-user.

The view mode contains the form that enables the end-user to provide the required
inputs. As the end-user enters the required inputs, AJAX requests are sent to the
Interpreter component. It responds with a JSON array containing the selected services.
This array is displayed in the selection mode area for validation by the end-user. This
area is updated each time the Widget receives a new selected services array. The
AJAX requests contain the selection policy (set of selection rules) and current inputs
provided by the end-user.

Once a service is selected and validated by the user, it is invoked using AJAX requests. In
the current implementation, each actual service when invoked, respond with a GUI defined
using Web technologies (XHTML, JavaScript, and CSS) and displayed directly within the
view mode of the virtual service Widget.

Figure 8 Virtual service creation.

World Wide Web

Author's personal copy

5.2 Scenario and validation

In this section, we validate our implementation of the virtual service concept. We first summarize
the scenario of use of our implementation. Then, we detail usage feedback gathered from the
different demonstration we made internally and externally to France Telecom – Orange. Finally,
we validate our implementation against the requirements we have defined in this paper.

5.2.1 Scenario of use

To demonstrate the usefulness of the mechanisms we introduce in this paper, we detail in
Table 3 the different virtual services we have implemented. We also enumerate the different
actual services we have considered; some of which are available on the Web, while others
are private services used within France Telecom-Orange. Figure 9 shows an end-user
environment that makes use of various virtual services.

For this demonstration, we have implemented aWidget aggregator [20, 21]; a customizableWeb
application that enables an end-user to display the different (preferred) Widgets on the same Web
page. Figure 10 is a screenshot of the Widget aggregator. Our interest is in the Widgets we have
implemented; those referring to virtual services. The screenshot shows the seven Widgets that
correspond to the seven virtual services listed in Table 3. For example, it shows the “GetContacts”
virtual service, which can be configured to select actual services according to the end-user activity
context (work or home). Thus, if the end-user is at home, the selection mechanism will choose the

Constraint
rules

Objective
rule

Edition Mode: The user
chooses the rules to apply
in the selection process
(Definition of the selection
policy)

View Mode: Displays the
form to the user to enter the
inputs required by the
functionality

Selection Mode: Displays the
services that have been
selected by the Interpreter. It
is refreshed dynamically as
the user modifies the rules
and the inputs

Constraint
rule

configuration

Figure 9 Illustration of a Send SMS virtual service.

World Wide Web

Author's personal copy

personal contact list, and if the end-user is at work, the selection mechanism will choose the
professional contacts. This selection rule requires the invocation of an actual service, referenced in
the rule, to get the context information of the end-user.

The Widget aspect enables end-users to configure the rules they want to apply only once.
Indeed, in further use of the same virtual service, the mechanism will apply the same
selection rules; unless they are changed by the end-user.

5.2.2 Usage validation

This demonstration has been shown within the European project SERVERY5 (Service Platform
for Innovative Communication Environment). The project aims to build a marketplace of

Table 3 Virtual services and actual services list.

Virtual services Actual services

Functionality Rules

SendSMS - Selection according to recipient location. - Orange Partner Send SMS API
(http://www.orangepartner.com).

- Selection according to sender (end-user)
location.

- Telefonica Send SMS API
(http://open.movilforum.com)

- Selection according to the price per SMS.

- Minimizing the price (objective rule).

- Maximizing the reputation (objective rule).

GetCalendar - Selection according to the activity context
of the end-user (work/home).

- Google Calendar.

- Microsoft Exchange Calendar
(accessible only within Orange
private network)

GetEmails - Selection according to the activity context
of the end-user (work/home).

- Gmail.

- Microsoft Exchange emails (accessible
only within Orange private network).

GetContacts - Selection according to the activity context
of the end-user (work/home).

- Gmail contacts.

- Microsoft Exchange contacts (accessible
only within Orange private network).

GetWeather - Selection according to end-user
preferences.

- Meteo France

- Selection according to end-user location. - WeatherForcast (http://
www.webservicex.net)- Selection according to service price.

SearchPictures - Selection according to end-user
preferences.

- Microsoft bing search engine.

- Selection according to end-user language. - Flickr search.

- Selection according to service price. - Picasa search.

Translate - Selection according to end-user
preferences.

- Google translate.

- Microsoft bing translator.

- Yahoo babelfish translator.

5 SERVERY is an ongoing Celtic project, which has received funding from each funding public authority of
the involved countries (France, Spain, Hungary, Turkey), after having received Celtic label in 2008, http://
projects.celtic-initiative.org/servery/, accessed on August 12th, 2010

World Wide Web

Author's personal copy

http://www.orangepartner.com
http://open.movilforum.com
http://www.webservicex.net
http://www.webservicex.net
http://projects.celtic-initiative.org/servery/
http://projects.celtic-initiative.org/servery/

converged services (Telecom and Web services), where service creation, service management,
and their execution on heterogeneous platforms is supported.

The feedback collected from different project contributors (composed of non-technical
(managers) and technical (researchers and developers) people) is very positive as:

& First the concept was included as an important part of the demonstrated mechanisms in
the end review of the project.

Figure 10 Virtual services.

World Wide Web

Author's personal copy

& Second, the concept was integrated to different service composition components defined
by the project such as the natural language composer. The concept enabled from the one
hand to decouple composite services from the basic services they use, and from another
hand to perform runtime adaptation of composite services according to rules that can
refer to heterogeneous parameters such as user context, preferences, QoS…etc.

& Third, the concept was proposed and accepted for demonstration at the Orange Labs
research exhibition (June 2010).

& Finally, the virtual service concept was adopted to implement an internal mediation
entity to publish and search services within France Telecom – Orange.

This demonstration also raised two issues to be investigated. First, it is important to link the
virtual service concept to the business engine of the SERVERYproject. The business engine is
essentially in charge of defining flexible business models for services (including prepaid,
postpaid, and promotions) within the SERVERY marketplace. Thus, the virtual service concept
should interact with the business engine in order to retrieve the services that could be used by the
user (i.e., free services, or those the user is already subscribed to). Second, the price of a service is
not usually a fixed value; instead it varies from a user and another (subscription option), and from
a period to another (promotions). Consequently, in practice, it is not conceivable to define
selection rules that refer to the service price as a fixed parameter; instead, it should be considered
as a dynamic parameter which should be computed by the business engine at the runtime.

5.2.3 Validation against our requirements

We have defined three requirements to a successful implementation of virtual service
concept:

& Considering the heterogeneity of parameters that can be considered in a selection policy;
& Considering the heterogeneity of end-users’ selection policies;
& Considering the intuitiveness of the GUI that enables the end-user to define the selection

policy as an important criterion.

Table 4 summarizes how our implementation tackles these three requirements.

5.3 Scalability validation

The main technical contribution of this paper is the design and implementation of the
Interpreter component. It includes a rule engine, which enables the evaluation of selection
rules that comply with the generic model we have designed and implemented. Therefore, it
is important to evaluate the cost in terms of the response time that is added by the rule
compilation and evaluation process. In other words, this section evaluates the scalability of
the rule engine. This component was implemented as a Servlet running on Tomcat Servlet
container 5.5.26 installed on a Debian GNU/Linux 3.1 server. The server hardware charac-
teristics are: (Vendor: Intel, Model: Pentium III, Cache size: 256Kb, CPU:~1 GHz).

The response time of the rule engine essentially depends on the number of operators
(arithmetic, logical, comparison, and brackets) of the rules, the number of actual services
referenced within the rules, and the response time of each. Two experimentations are
achieved to test the impact of such parameters on the response time. In the first experimen-
tation we created 20 rules with a number of operations from 25 to 500 (25, 50, 75…etc.). In
the second experimentation, we created 10 rules with a number of calls to an actual service
from 1 to 10. It is the same actual service which is called each time.

World Wide Web

Author's personal copy

The two following graphs (Figure 11 and 12) represent the evolution of the rule engine
response time according to the number of operations and the number of calls to actual
services, respectively. The objective is to figure out the response time as a function of these
parameters in order to estimate the response time before executing a virtual service. This is
important especially for interactive and real time (e.g., emergency) applications.

Concerning Figure 12, we have set the response time of an actual service to 670 ms,
which corresponds to the average response time of a Flickr RESTAPI. This amount includes
the computing time of the service as well as the network delay.

Table 4 Implementation against requirements.

Requirement Implementation response

Heterogeneity of parameters that can be
considered in a selection policy

We have defined and implemented a seamless approach for
adding new parameters that could be considered in a selection
rule. Indeed, to add a new parameter to be considered in a
selection rule, we only need to expose it through a Web
service, thanks to the capability to refer to Web services in a
selection rule.

Heterogeneity of end-users’ selection
policies

A selection policy is defined as a combination of selection rules.
Each user can configure this combination and consequently
define the policy he wants to apply. This is why we argue that
our approach is user centric.

Nevertheless, in the definition of a virtual service, it is important
to associate several selection rules, in order to cover many
selection criteria and provide to the end-users a wide combi-
nation capability.

The intuitiveness of the GUI In our implementation we hided the complexity of the scripting
language that enables the definition of selection rules. Thus, a
selection policy is defined easily through checking and un-
checking selection rules.

Figure 11 Response time variations according to operation number.

World Wide Web

Author's personal copy

These two figures illustrate the scalability of our contribution. Figure 11 shows that the
variation of the response time according to the number of operations exactly follows a linear
function in the form of:

responseTime opNumberð Þ ¼ a1*opNumber þ b1

where “opNumber” is the variable representing the number of operations within the rules.
In our experimentation we computed a2 and b2 using the computed values of “response-

Time(opNumber)”. Following are the corresponding formulae.

a1 ¼ Avr
responseTimei � responseTimeiþ1

opNumberi � opNumberiþ1

� �
¼ 0:004

b1 ¼ Avr responseTimei � a1*opNumberið Þ ¼ 1:53

responseTime opNumberð Þ ¼ 0:004*opNumber þ 1:53 msð Þ

This function demonstrates that the weight of the operation number on the response time
is insignificant. Indeed, according to the formula, even if we raise the number of operations
to 400000, we will have a response time equal to 1.5 s.

However, Figure 12 clearly indicates that the rule engine response time is influenced when
the evaluated rules contain references to actual services. It shows two curves; each corresponds
to an algorithm strategy. The “sequential call to actual services” curve depicts the variation of
the response time when the rule engine calls involved actual services sequentially; and the
“parallel call to actual services” curve illustrates the variation of the response time when the
rule engine calls involved actual services at the same time (in parallel). Though both strategies
have a linear variation responseTime SSCallsð Þ ¼ a2 � SSCallsþ b2ð Þ , the second one (parallel
calls) shows a much better performance. “SSCalls” is the variable representing the number of
references to actual services within the rules.

Figure 12 Response time variations according to the number of calls to actual services.

World Wide Web

Author's personal copy

In our experimentation we computed a2 and b2 using the computed values of “responseTime
(SSCalls)” and following the parallel calls to actual services strategy. The corresponding
formulae are:

a2 ¼ Avr
responseTimei � responseTimeiþ1

SSCallsi � SSCallsiþ1

� �
¼ 0:114

b2 ¼ Avr responseTimei � a2*SSCallsið Þ ¼ 0:664

responseTime SSCallsð Þ ¼ 0:114*SSCallsþ 0:664ðsÞ
Thus, for the same response time (1.6 s) as above, the rule engine can evaluate a rule that

contains eight calls to actual services.
The rule engine response time according to both parameters (Number of calls to actual

services and number of operations) is:

responseTime ¼ a1*opNumber þ a2*SSCallsþ b1 þ b2;

responseTime ¼ 0:004 � opNumber þ 114*SSCallsþ 1:53þ 664 msð Þ

responseTime ¼ 0:004*opNumber þ 114*SSCallsþ 665:53 msð Þ
These formulae enable us to associate an average response time to a virtual service

execution. Consequently, the marketplace can provide an idea (average, max and min) of the
response time of each virtual service to end-users. This information is especially useful for
interactive and emergency applications.

The parallel call strategy for actual services is not always possible. Indeed, in some cases,
the result of one actual service is used as an input parameter in another. For example, the
following rule requires invocation of the end-user profile service before the invocation of the
context service.

$Contentðidentifier : $ProfileðuserIdÞ:mobilePhoneNumberÞ:location:country

¼¼ selectedService:country;

Since calls to actual services are time consuming and negatively impact rule engine
performance, it is recommended to reduce sequential calls as much as possible.

6 Discussion

Several topics are worth to be discussed regarding our proposal. The first topic concerns the
adopted semantic approach. In our proposal, after having first considered an automated
construction of the ontology relying only on semantic tags defined by the service providers,
we have opted for a single semantic dictionary defined and maintained by the marketplace
administrator. This approach is of course questionable as it requires from third parties to use
the marketplace semantic dictionary. In addition, adding a new concept to the ontology

World Wide Web

Author's personal copy

requires the acceptance of the marketplace administrator: services provider will have to ask
the marketplace administrator before introducing a new semantic tag (e.g., for a new
service). Despite the induced rigidity, we believe this is a good trade-off to ensure the
consistency of the ontology. Besides, we believe that this does not require a significant
additional effort from the service provider point of view as some current marketplaces
require an acceptance process when publishing services. Therefore, adding new semantic
concepts, related to a new service, could go through the same process (when the semantic
concepts are related to a new service). This acceptance process will also enable the
marketplace administrator to enforce the appropriate use of the semantic tags by the service
providers, by controlling that the same tag is used for the same functionality provided by
different services.

The second topic concerns the GUI of the virtual service. In the implementation presented
here, we have considered only SOAP and REST Web services, which do not include a GUI
part. However, the mechanism can be extended to consider services with a GUI (e.g., HTML
based web service). This can be performed by delegating the GUI management once the
service is selected. This will enable to address the services whose GUI is really tailored to
the user needs and represent thus a great part of the service value. Nevertheless, the selection
process still needs its own GUI (virtual service GUI) to enable the user to provide the inputs
and the selection rules needed during the selection process.

The third topic concerns the relationship between the virtual service concept and Enter-
prise Service Bus mediation technology (ESB). We believe that the two mechanisms can
benefit each other. The virtual service introduces an interesting concept (actual service
selection according to a selection policy specified by the requestor)concerning ESB solu-
tions. Indeed, the implementation of the interpreter component can be reused by third party
applications (services) to incorporate virtual service features (runtime service selection). It is
implemented as a web service, which accepts as inputs an ontology concept representing the
needed functionality and a set of selection rules. It generates a list of actual services
responding to the functional need and satisfying the rules. Besides, the mechanism intro-
duced in this paper could benefit from some ESB features. The proposed solution does not
support the selection among actual services providing the same functionality, but with
different signature. ESB message transformation and protocol adaptation can be used to
enhance our proposal.

The forth topic concerns the QoS parameters that could be considered in our virtual
service execution mechanism. We have supposed that QoS parameters such as bandwidth,
response time, and availability of a service, are in line with those negotiated in the Service
Level Agreement (SLA). However, it could be interesting to consider real-time values as
well in the service selection process. Unlike SLA values, real values are dynamic. The
proposed architecture can take them into account. To do that, one or several Web services,
that compute the real values of QoS parameters, considering anterior executions of the
provided service, must be provided.

Finally, the business acceptance of virtual services should be discussed. The proposed
solution relies indeed on the assumption that the providers of actual services agree to be
compared with competitors providing similar services. However, many commoditized
services, like weather forecast or SMS sending, are already directly competing. Moreover,
our mechanism can bring traffic to smaller services through the user-specific selection
policies: a service unknown by the user can appear as the best services for him. Service
providers should thus consider virtual services as a way to enhance the visibility of their
services in marketplaces because the service selection can rely on tailored policies and not
only on the “most popular” criterion, as often.

World Wide Web

Author's personal copy

7 Conclusion and future work

A novel technique to perform service selection among functionally equivalent options
has been presented. We introduce the concept of virtual service: a GUI associated to a
functionality and to a set of selection rules. The GUI enables an end user to define
his/her own selection policy by choosing the rules to apply during the process of
selecting actual services at runtime, and then to execute the selected actual service.
The selection rules are defined according to a language that provides the capacity to
seamlessly refer to both static (e.g., service price) and dynamic parameters (e.g., end-
user location and presence status). These parameters are either accessible through the
invocation of the corresponding actual service present in the marketplace (e.g., a
location actual service to retrieve an end-user’s location), or through the invocation
of the knowledge base component (e.g., to retrieve an actual service price). Adding a
new parameter to be considered in the selection mechanism only requires the pub-
lishing of an actual service that computes it to the marketplace. The defined and
implemented mechanisms are part of the European SERVERY project. The market-
place provides an open place where services are bought and sold, including service
creation tools addressed to end users and developers.

In this paper, we tested and experimented with the concepts in relation to two
different aspects: how useful would this framework be in the current service market-
place, and its scalability in terms of response time. The usage study provided essential
information regarding the possible application of these concepts to current services
available today in the Web. The scalability study validated the scalability of the
framework and estimated the cost added by the generic model we introduced to
specify the selection rules. We have thereby successfully considered various services
available today in the Web, proving the pertinence of applying the concepts we
defined in the emerging services marketplaces; and we have also demonstrated that
the response time of the rule engine is not sensitive to the number of operations of a
rule, but that it varies linearly according to the number of actual services referenced
within a rule.

In addition to the usefulness and the scalability of the work presented in this paper, the
two concepts we introduce also highlight a new opportunity to investigate, namely service
composition based on virtual services. This general concept embraces different approaches
in service composition: automatic composition based on natural end-user language, end-user
mashup creation tools, and composition performed by developers. In our recent activities
within the SERVERY project we have integrated the concept of virtual service to the
different composition tools defined within the project. By performing service composition
based on the concept of virtual service, we provided several additional features and resolved
some issues faced by current service composition tools.

& Virtual service-based composition enhances the loose coupling between service integra-
tors and the providers of the basic actual services used. Indeed, since it is service
integrators that will define the compositions of virtual services, which are in turn defined
by the marketplace provider and linked dynamically at runtime to a given actual service,
the changes that occur at the actual service provider level would not affect the
composition.

& Virtual service-based composition provides an automatic adaptation of a composite
service according to the evolution of marketplace services, as well as based on the
changes that occur to different parameters, such as end-user context.

World Wide Web

Author's personal copy

Acknowledgment The authors first thank the reviewers of this article for their very valuable inputs. They
also wish to thank Mathieu Boussard, Benoit Christophe, Mariano Belaunde, Abderrahmane Maaradji, and
Sivasothy Shanmugalingam for their comments. This work was partially supported in part by SERVERY
(Service Platform for Innovative Communication Environment), a CELTIC project that aims to create a
Service Marketplace that bridges the Internet and Telco worlds by merging the flexibility and openness of the
former with the trustworthiness and reliability of the latter, enabling effective and profitable cooperation
among actors.

References

1. Aggarwal, R., Verma, K., Miller, J., and Milnor, W.: Constraint Driven Web Service Composition in
METEOR-S. In Proceedings of the 2004 IEEE international Conference on Services Computing (Sep-
tember 2004). IEEE Computer Society, Washington, DC, 23–30.

2. Apple Inc. Apple app store.: Available at: www.apple.com/iphone/appstore/, accessed on May 22nd, 2012.
3. Atzeni, P., Catarci, T., Pernici, B.: Multi-Channel adaptive information Systems. World Wide Web 10(4),

345–347 (2007)
4. Baresi, L., Bianchini, D., Antonellis, V.D., Fugini, M.G., Pernici, B., Plebani, P.: Context-aware Com-

position of e-Service. In Technologies for E-Services: Third International Workshop, vol. 2819, 28–41,
TES 2003, Berlin, German, 2003.

5. Ben Hassine, A., Matsubara, S., Ishida, T.: In Proceedings of the 5th international conference on The
Semantic Web (ISWC’06), Isabel Cruz, Stefan Decker, Dean Allemang, Chris Preist, and Daniel Schwabe
(Eds.). Springer-Verlag, Berlin, Heidelberg, 130–143 (2006).

6. Blum, N., Dutkowski, S., Magedanz, T.: InSeRt - An Intent-based Service Request API for Service
Exposure in Next Generation Networks. In Proceedings of 32nd Annual IEEE Software Engineering
Workshop. Porto Sani Resort, Kassandra, Greece, 2008 pp21–30.

7. Boussard, M., Fodor, S., Crespi, N., Iribarren, V., Le Rouzic, J.P., Bedini, I., Marton, G., Moro Fernandez,
D., Lorenzo Duenas, O., Molina, B.: SERVERY: the Web-Telco marketplace. ICT-Mobile Summit 2009,
Santander (2009)

8. Cabrera, Ó., Oriol, M., Franch, X., Marco, J., López, L., Fragoso, O., Santaolaya, R.: WeSSQoS: A
Configurable SOA System for Quality-aware Web Service Selection. CoRR 2011, abs/1110.5574.

9. Casati, F., Ilnicki, S., Jin, L., Krishnamoorthy, V., Shan, M.: Adaptive and Dynamic Service Composition
in eFlow. Lecture Notes in Computer Science, Volume 1789/2000, 13–31, 2000.

10. Cibrán, M. A., Verheecke, B., Vanderperren, W., Suvée, D., and Jonckers, V.: “Aspect-oriented Program-
ming for Dynamic Web Service Selection, Integration and Management.” In Proc. World Wide Web 2007,
pp. 211–242.

11. Crespi, N., Boussard, M. Fodor, S.: Converging Web 2.0 with telecommunications. eStrategies Projects,
Vol. 10, 108–109. British Publishers, ISSN 1758–2369, June 2009.

12. Dey, A.K., Salber, D., Abowd, G.D.: A conceptual framework and a toolkit for supporting the rapid
prototyping of context-aware applications. Hum. Comput. Interact. 16, 1–67 (2001)

13. Ding, Q., Li, X., and Zhou, X.: Reputation Based Service Selection in Grid Environment. In Proceedings
of the 2008 international Conference on Computer Science and Software Engineering - Volume 03
(December. 2008). CSSE. IEEE Computer Society, Washington, DC, 58–61.

14. Fielding, R.T.: Architectural Styles and the Design of Network-based Software Architectures. Thesis
dissertation, 2000.

15. Franch, X., Grünbacher, P., Oriol, M., Burgstaller, B., Dhungana, D., López, L., Marco, J., Pimentel, J.:
Goal-driven Adaptation of Service-Based Systems from Runtime Monitoring Data. REFS 2011.

16. Frolund, S., Koisten, J.: QML: A Language for Quality of Service Specification. HP Labs technical
reports. Available at http://www.hpl.hp.com/techreports/98/HPL-98-10.html, accessed on May 22nd,
2012.

17. Google. Android market.: Available at: www.android.com/market/, accessed on May 22nd, 2012.
18. Google. Intents and Intent Filters.: Available at http://developer.android.com/guide/topics/intents/intents-filters.html,

accessed on May 22nd, 2012.
19. Gu, X., Nahrstedt, K., Yuan, W., Wichadakul, D., Xu, D.: An Xml-Based Quality of Service Enabling

Language for the Web. Technical Report. UMI Order Number: UIUCDCS-R-2001-2212., University of
Illinois at Urbana-Champaign.

20. Laga, N., Bertin, E., and Crespi, N.: Building a User Friendly Service Dashboard: Automatic and Non-
intrusive Chaining between Widgets. In Proceedings of the 2009 Congress on Services - I (July 06–10,
2009). SERVICES. IEEE Computer Society, Washington, DC, 484–491.

World Wide Web

Author's personal copy

http://www.apple.com/iphone/appstore/
http://www.hpl.hp.com/techreports/98/HPL-98-10.html
http://www.android.com/market/
http://developer.android.com/guide/topics/intents/intents-filters.html

21. Laga, N., Bertin, E., and Crespi, N.: Business Process Personalization Through Web Widgets. In
Proceedings of the 2010 IEEE international Conference on Web Services (July 05–10, 2010). ICWS.
IEEE Computer Society, Washington, DC, 551–558.

22. Liu, Y., Ngu, A. H., and Zeng, L. Z.: QoS computation and policing in dynamic web service selection. In
Proceedings of the 13th international World Wide Web Conference on Alternate Track Papers &Amp;
Posters (New York, NY, USA, May 19–21, 2004). WWWAlt. ’04. ACM, New York, NY, 66–73.

23. Malik, Z., Bouguettaya, A.: Rater credibility assessment in Web services interactions. World Wide Web
12(1), 3–25 (2009)

24. Martin, D. et al.: OWL-S: Semantic Markup for Web Services. W3C member submission, available at
http://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/, accessed on May 22nd, 2012.

25. Nestler, T., Namoun, A., Schill, A.: End-user development of service-based interactive web applications
at the presentation layer. EICS 2011: 197–206.

26. Newcomer, E.: Understanding Web Services: XML, Wsdl, Soap, and UDDI. Addison, Wesley, Boston,
Mass., May 2002.

27. O’Reilly, T.: What Is Web 2.0, Design Patterns and Business Models for the Next Generation of Software.
28. Piessens, F., Jacobs, B., Truyen, E., Joosen, W.: Support for Metadata-driven Selection of Run-time

Services in .NET is Promising but Immature. vol. 3, no. 2, Special issue: .NET: The Programmer’s
Perspective: ECOOP Workshop, 27–35. 2003.

29. Rasch, K;, Li, F., Sehic, S., Ayani R., and Dustdar, S.: “Context-driven personalized service discovery in
pervasive environments,” in Proc World Wide Web, 2011, pp. 295–319.

30. Reichl, P.: From ‘Quality-of-Service’ and ‘Quality-of-Design’ to ‘Quality-of-Experience’: A holistic view
on future interactive telecommunication ser-vices. In 15th International Conference on Software, Tele-
communications and Computer Networks, 2007. Soft-COM 2007. Sept. 2007. vol., no.,1–6, 27–29.

31. Rolland, C., Kaabi, R.S., Kraiem, N.: On ISOA: Intentional Services Oriented Architecture. In Advanced
Information Systems Engineering, volume 4495/2007, 158–172, June 2007.

32. Sanchez, A., Carro, B., Wesner, S.: Telco services for end customers: European Perspective. In Commu-
nications Magazine. IEEE 46(2), 14–18 (2008)

33. Santhanam, G. R., Basu, S., and Honavar, V.: On Utilizing Qualitative Preferences in Web Service
Composition: A CP-net Based Approach. In Proceedings of IEEE Congress on Services, Services - Part
I, vol., no.,538–544, 2008.

34. Spanoudakis, G., Mahbub, K., Zisman, A.: A Platform for Context Aware Runtime Web Service
Discovery. In Proc IEEE ICWS, 2007, pp233-240.

35. Tsesmetzis, D., Roussaki, I., Sykas, E.: Modeling and Simulation of QoS-aware Web Service Selection
for Provider Profit Maximization. Simulation 83(1), 93–106 (2007)

36. Wang, P., Chao, K., Lo, C., Farmer, R., and Kuo, P.: A Reputation-Based Service Selection Scheme. In
Proceedings of the 2009 IEEE international Conference on E-Business Engineering (October 21–23,
2009). ICEBE. IEEE Computer Society, Washington, DC, 501–506.

37. Wang, H., Yang, D., Zhao, Y., and Gao, Y.: Multiagent System for Reputation–based Web Services
Selection. In Proceedings of the Sixth international Conference on Quality Software (October 27–28,
2006). QSIC. IEEE Computer Society, Washington, DC, 429–434.

38. Wholesale Applications Community.: WAC Informational Whitepaper. Available at http://
www.wholesaleappcommunity.com/About-Wac/BACKGROUND%20TO%20WAC/whitepaper.pdf,
accessed on May 22nd, 2012.

39. Windows Marketplace.: Available at http://marketplace.windowsphone.com/default.aspx, accessed on
May 22nd, 2012.

40. Xu, Z., Martin, P., Powley, W., Zulkernine, F.: Reputation-Enhanced QoS-based Web Services Discovery.
Web Services, 2007. In proceedings of IEEE International Conference on Web Services, ICWS 2007. 249,
256, 9–13 July 2007.

41. Yu, Q., Bouguettaya,A.: “Multi-attribute optimization in service selection”. In Proc World Wide
Web,2012, pp. 1–31.

42. Yu, T., Zhang, Y., Lin, K. Efficient algorithms for Web services selection with end-to-end QoS constraints.
ACM Transaction Web 1, 1. Article 6, 26 pages. (May 2007),.

World Wide Web

Author's personal copy

http://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/
http://www.wholesaleappcommunity.com/About-Wac/BACKGROUND%20TO%20WAC/whitepaper.pdf
http://www.wholesaleappcommunity.com/About-Wac/BACKGROUND%20TO%20WAC/whitepaper.pdf
http://marketplace.windowsphone.com/default.aspx

	A flexible service selection for executing virtual services
	Abstract
	Introduction
	Requirements and related work
	Requirements
	Related work
	Service selection based on static parameters only
	Service selection based on static and dynamic parameters

	Limitations

	Overall approach
	Framework design
	Framework use case diagram
	Specifying a virtual service
	Functionality description
	Selection rules definition
	GUI implementation

	Actual service publication
	Interpreter component design

	Implementation and validation
	Implementation
	Rule language and the interpreter component
	Virtual service implementation

	Scenario and validation
	Scenario of use
	Usage validation
	Validation against our requirements

	Scalability validation

	Discussion
	Conclusion and future work
	References

