
Social Discovery and Composition of Web
Services

Abderrahmane Maaradji1,2, Hakim Hacid1, Ryan Skraba1, Adnan Lateef1,
Johann Daigremont1, Noël Crespi2

1 Alcatel-Lucent Bell Labs France, Route de Villejust, 91620 Nozay, France
{firstname.lastname}@alcatel-lucent.com

2 Telecom SudParis, 9 Rue Charles Fourier, 91000 Evry, France
{firstname.lastname}@it-sudparis.eu

Abstract. In this paper, we propose a new approach for services rec-
ommendation to assist services composition in a Mashup environment
capturing and analyzing social interactions. This approach uses an im-
plicit social graph inferred from the common composition interests of
users. We describe in detail the transformation of users-services interac-
tions into a social graph and a possible means to leverage that graph to
derive service recommendation. This proposal was implemented within
a platform called SoCo and the experiments show interesting results.

1 Introduction

By providing building blocks of data provisioning and transformation, Web ser-
vices composition makes it possible to create new and unexpected services based
on existing services one of the reasons why these compositions have proven so
successful. This has been an area of great interest and research from both aca-
demic and industrial perspectives [1][2]. Current efforts aim to improve these
techniques by addressing issues such as selecting the appropriate relevant services
among those available to best reach a user’s goal in what we call semi-automatic
approach. This approach guide users in the composition process, enabling their
explicit participation in constructing powerful new services without overwhelm-
ing them with details, such as Mashups. Besides, this approach aims at exploiting
the information they have generated implicitly, such as their personal user data
or the data generated by their community. This is especially true in an business
context where community knowledge may be used.

With the emergence of collaborative environments, service composition has
become relevant to environments outside the enterprise. The Web has become a
place where users can create and share data and user-generated content (UGC),
as well as the means to access and use this information by means of building
blocks that can be combined. We believe that service composition is poised to
become increasingly important and ubiquitous. Moreover, with the popularity
of social networks, this ongoing collaboration has taken on a daily importance
in users’ social lives and tasks. In this context, how can Web 2.0 and social

2 Authors Suppressed Due to Excessive Length

networks be leveraged to provide a socially-aware Mashup creation environment
for end users?

One of the possibilities that has emerged as a technique for semi-automatic
service composition is a new way to dynamically recommend services, thereby
supporting composite service combination in a Mashup environment. We con-
sider the problem of Mashup creation and propose a contribution from the per-
spective of social network analysis. The approach is based on the implicit con-
struction of a social network from data generated in a Mashup environment
according to common interests shared by users and the services they interact
with. Service recommendations are then calculated on top of this social network
to help end users to build and complete their Mashup service(s).

The rest of this paper is organized as follows: Section 2 gives an overview of
existing and related work to our research work. Section 3 presents our contribu-
tion to dynamic services recommendation in Mashup environments. In Section 4,
we show experimental results regarding the performances of the proposed ap-
proach. Finally, Section 5 concludes the paper and discusses the algorithm and
its possible improvements.

2 Related work

A Mashup is certainly the most interesting instantiation of end users’ services
composition. A Mashup is a Web application that combines existing services
(API, data sources, etc.) into a single integrated service. An example could be
the use of cartographic data and interfaces from Google Maps3 to add location in-
formation about real estate data [3]. This creates a new and distinct Web service.
Just as Web2.0 technologies enable the well-known concept of User Generated
Content (UGC), Mashup creation environments enable User Generated Services
(UGS). Semi-automatic services composition systems, and particularly Mashups,
which involve users, contain an unexploited repository of information. Indeed,
the different types of interactions between entities involved in semi-automatic
composition, i.e., users and services, could feed many systems.

Furthermore, the explosion of the number of Web services and APIs exposed
through the Web has only accentuated the need for such service composition
platforms. Dynamic service recommendation could be a solution to enable service
discovery and composition (our proposed method). Through a use-case approach,
Floyd et al. [4] highlight the proliferation of APIs on the Web in parallel with
the number of creative Web users. Their study shows the multiple benefits of
collaboration between end users and developers that combines the innovation and
creativity of end users with the expertise of developers. Automating this process
is the important challenge we address here. In the same vein, an interesting
study [5] describes the interactions of Yahoo!-Pipes users and how they can be
used to extract social structures based on an analysis of user interactions. In
addition, those users interact with services via the Mashups they themselves
create.
3 http://maps.google.com/

Social Discovery and Composition of Web Services 3

Soriano et al. [6] emphasize the growing importance of the user-service rela-
tionship in a Service Oriented Architecture (SOA) for composing services. These
authors introduce EZWeb, an environment for sharing Mashups between col-
leagues, as a basis for co-production in an enterprise context. In addition, [7]
emphasizes the phenomenon of what they call ”social interaction” between ser-
vices. In fact, the aspects of trust and reliability between services may indeed
impact the service selection for composition. Yu and Woodard [8] propose a very
interesting view of Mashup ecosystems. Their study of an API repository4 shows
that utilization of services follows a long-tail effect (power-law distribution), one
of the principle and most interesting properties of social networks [9].

From the end users’ perspective, the semi-automatic composition of Web
services generally takes the form of Mashups. The major Web players (such as
Microsoft, Yahoo!, IBM, etc.) each offer environments to allow Web users to
create new services. In these environments, users can discover exposed services,
and create their own services as needed by combining and composing existing
ones. To assist users in the editing phase of a new service (the semi-automatic
composition process), current environments offer a multitude of features. These
features facilitate the services discovery process by operating at the service de-
scription level (abstraction, categorization, etc.) or by providing search tools.

From the services recommendation perspective, some systems are based on
user preferences (user profile) to suggest services [10]. Others rely instead on
the concept of domain-specific knowledge. Knowledge (also called language) ex-
pressed in a specific area (science, business, etc.) is processed to extract rules
that are used to help build services’ recommendations [11]. In addition, another
team [12] has proposed a community-based approach by recommending popular
composition schema.

Our proposal is focused on extracting useful information from social networks
to feed a service recommendation construction and assistance feature. Indeed,
we believe that we must distinguish between two approaches: one based on com-
munities and the other based on social networks. By definition, a community
develops social links between people on the basis of a single common interest
(e.g., free software community, medical community, etc.) while a social network
develops interesting interactions based on a variety of particular interests. In our
approach, we introduce recommendations based on the knowledge generated in
social networks through implicit social interaction analysis.

3 A SNA based Mashups auto-completion

In Web 2.0, people can create, use, and share services in communities and social
networks. The question we are addressing is: can we define social structures in
the services area? If yes, how could we leverage such structures to facilitate the
resolution of the problems involved in SOA? To resolve this problem statement
and approach the related work, we propose a general framework, called Social

4 http://programmableweb.com

4 Authors Suppressed Due to Excessive Length

Composer (SoCo), for services discovery and composition. SoCo is based on the
transformation of user → services interactions to user → users social network,
on top of which statistical processes are applied to determine recommendations
for assisting a user in constructing a Mashup (a composition of services). Before
detailing our proposal, we clearly define the notion of social network in our
context, which is an abstraction of interactions that occur between people and
services in Web service environments in the form of a social graph translating the
behavior of social entities, i.e., users. This structure may be inferred or extracted
directly from common interests between the users of the composition platform.

The explicit social relation has been addressed in our previous work [13] and
we focus here on the implicit case, which is richer and enables more sophisti-
cated tasks. An implicit social relation is one that is inferred according to the
activities of different users, e.g. when one person uses several services created
by another person. As in the explicit case, a graph can be developed, linking
the users according to their interests and defined by their composition activities.
Social networks, as they are currently constructed, include a profile for each user
containing information that describes his/her special interests and preferences,
and the history of his/her interactions with the system (i.e., a dynamic profile).
Typically, these include statistics on services utilization (consumption and com-
position). This information allows the system to learn about the expertise of a
given person in a particular area, and thus the relevance of services used by that
person. A social network also includes a description of the links that define the
social network itself. These links are used to calculate the social proximity be-
tween two users according to a particular context. This information then allows
us to calculate the service recommendation confidence between two individuals
based on specific joint interests. To leverage this information, it is therefore very
important to extract, analyze and model the information contained in a social
network.

Information regarding users’ interactions is used by the recommendation step
that helps SoCo’s users during the creation of new Mashups, which dynamically
suggests services according to the current status of the services composition
process, i.e. which service is likely to come after the currently selected service?
Thus, it intervenes in the services selection process. This recommendation logic
considers different parameters to determine the user’s position within their so-
cial network, and evaluates the information on the use of services by the social
neighbors. To interpret and leverage social interactions in a Mashup environ-
ment, one needs to process users → services interactions into a social graph
between users. In fact, we have two sets of distinct inputs: users and services.
There may very well be several techniques for processing these interactions. We
describe our approach in the following section.

First, we consider users → services interactions as a bipartite graph [14]
which represents the usage rate that users have on the services they use. It should
be explicitly stated that the bipartite graph is based on the usage frequency of
services by users in composition schemes, with no account being taken of services
succession in those schemes. Figure 1 illustrates a bipartite graph of services and

Social Discovery and Composition of Web Services 5

users. The links represent the usage frequency, denoted by f(ui, sj), that a user
ui makes of a service sj in all the compositions she created. To transform the
bipartite graph into a social graph for successor recommendation we rely on
three main steps: (i) local information extraction, (ii) semi-global information
extraction, and (iii) global information extraction.

Fig. 1. Illustration of a bipartite graph be-
tween users and services

Fig. 2. Illustration of the output after ap-
plying a semi-global information level

3.1 Local information extraction

The local information category only considers the interaction between a specific
user and a specific service. This means that a user and a service are considered
independently of the other users and services of a system. This information tells
us whether a specific user is confident (i.e., an expertise indicator) using this
service among others. The more a given user is confident about his/her usage
of a given service, the more the recommendation of this service matters. To
materialize this idea, we define this information in a quantity called Activity
defined in equation 1 where M is the total of service a user exploited in her
different compositions.

3.2 Semi-global information extraction

This step is important in the transformation of a bipartite graph to a social
graph (directed graph). Once this step is applied on the bipartite graph, we
obtain several multi-layered directed graphs corresponding to the number of
services in the system. This is illustrated in Figure 2. In other terms, in the level
of semi-global information, we consider the interest a user may have in other
users in regards to a given service. Thus, for a given user ui we calculate how
much the service sj , recommended by the user ul matters to her. This is called
Special Interest (SI) and is calculated using equation 2.

6 Authors Suppressed Due to Excessive Length

Act(ui, sj) =
f(ui, sj)∑M

k=1
f(ui, sk)

(1) SI(ui, ul, sj) =
f(ul, sj)

f(ui, sj)
(2)

3.3 Global Information extraction

In order to have as precise a transformation as possible with the least data loss,
we add another level of information in the transformation process. Global infor-
mation extraction determines whether a pair of users share a common general
interest or not. At this stage of our study, and for simplification reasons, we
consider that the general interest of a pair of users is equal to the sum of their
specific interests, thus building the implicit graph as illustrated in equation 3.
The output of this step is a graph that aggregates all the specific interest graphs
obtained previously.

IG(ui, ul) =
M∑

k=1

SI(ui, ul, sk) (3)

3.4 Services recommendation strategy

Once the bipartite graph is transformed into a social graph thanks to the three
steps described above, we proceed to the recommendation calculation wherein a
newer service is suggested, based the predefined metrics. Thus, considering the
intrinsic user’s usage frequency (local information), the specific interest between
two users (semi-global information), and the implicit graph which expresses the
global interest between the two users, we can define the recommendation con-
fidence of a given service sk with respect to a current service sj for user ui as
follows:

RCimp(ui, sj , sk) =
N∑

l=1

SI(ui, ul, sk)×Act(ul, sk)× IG(ui, ul) (4)

Algorithm 1 summarizes the recommendation process. Given a configuration
(ui, sj) where ui represents the current user and sj the selected service, the
algorithm returns RecList, a sorted list of recommended services that are socially
relevant to be successor of sj for user ui. It should be noted that since the
output of the algorithm is a list and the selection follows a Top −K principle
(K services), the values are not necessarily inside the interval [0, 1] even though
this could be easily integrated, e.g. by maintaining the maximum value of the
recommendation to normalize the output.

Given a set of services S with |S| = M , and a set a users U with |U | = N , the
theoretical complexity of Algorithm 1 is N×M . It makes one scan for potential
successors of the current service (with M size at worst case). For each potential
successor, the algorithm scans the current user’s neighbour that is of potential
interest (with N size at worst case). Notice that Act, SI, and IG are updated
incrementally (one data access) when usage activity occurs.

Social Discovery and Composition of Web Services 7

Algorithm 1 The Recommendation algorithm for semi-automatic services com-
position

input ui ∈ U , sj ∈ S
for each sk where servi → servk exists do

RCK = 0
for each ul, where ul is neighbor of ui in a specific graph of sk do

RCK = RCK + Act(uk, sk)× SI(ui, uk, sk)× IG(uk, sk)
end for
Add (sk,RCk) in RecList

end for
Sort RecList in descending order of RCk

output RecList = {(sk, RCK)}

4 Experimental results

In this section, we evaluate the performance and the behaviour of the algo-
rithm regarding different parameters. To implement the proposed algorithm, we
have used the SoCo framework introduced in [15]. This framework provides a
graphical environment that users utilize to create Mashups. It includes the rec-
ommendation algorithm to provide dynamic suggestions to users. Figure 3 shows
the basic services list on the left side, and above it the suggested services list.

Fig. 3. Illustration of services suggestion (in yellow) after selecting translator service

Based on Web client/server architecture, SoCo captures user-service interac-
tions on the client side; this information is stored and then modeled to supply
the recommendation system (algorithm) to the server side. During the editing
process, the user receives dynamic recommendations computed by the algorithm.

8 Authors Suppressed Due to Excessive Length

Our implementation used the PHP programming language, the MySQL server
database, and an Apache server (Intel Core 2 Duo P8600 machine with 2.4GHz
and 2GB RAM). As the first step of our evaluation, we considered the response
time (i.e., the time required for a successor of a service to be recommended)
as a major performance indicator. We calculated how long the algorithm takes
to respond to a query for a given configuration. To ensure the system’s inter-
activity with the user it is naturally imperative that the algorithm responds
quickly to queries. For this evaluation, the following parameters were used: (i)
The size of Mashups, represented by the number of services that make up those
Mashups; (ii) The overall number of services |S| or Mashups |M | stored in the
system. The number of Mashups is generally proportional to from one to three
times the number of services according to observations of ProgrammableWeb
(|M | = 3× |S|);(iii) The number of users in the system |U |.

Another performance parameter suitable to be considered but that we do
not include here is the size of the recommendation list. In fact, the proposed
algorithm does not consider this information because it calculates the recom-
mendation confidence level for all potential successors to the current service.

Given the three performance parameters defined above, we conducted three
experiments. For each experiment, we fixed two parameters and varied the third.
Due to the lack of benchmarks, the data sets were generated randomly. More
concretely, services that compose a Mashup are independently and uniformly
selected. A less-important parameter, representing the creation of a Mashup by
a user, is also a randomly generated relation. We ran each experiment 25 times:
five times for five randomly generated pairings of (ui: current user, sj: current
service), and each point in the curves thus generated shows the average.

To measure the impact of Mashup size on the algorithm performance, we
began by fixing the number of users |U | = 15× 102 and the number of services
|S| = 1740. We varied the size of the Mashups (in terms of services composing
each Mashup) from two to seven services. Figure 4 shows the impact of Mashup
size on the behaviour of the algorithm. Generally speaking, the size of a Mashup
has a tangible impact on the algorithm which is observable in the associated
response times for recommending a service, and that the algorithm response
time increases linearly with respect to the increasing Mashup size (even though
the curve takeoff is initially not quite linear).

As a second experiment, we varied the number of services |S| in the system.
We fixed the number of users |U | = 104 and the size of Mashups was uniformly
distributed between two and five. Varying the number of services has an im-
pact on the total number of Mashups. Figure 5 shows the results. It is clear
that the algorithm’s change in response time is not exponential, but it could be
approximated by a linear regression.

For the third experiment, we evaluated the impact of the number of users
on the algorithm’s performance. We set (i) the number of services |S| = 104

(the number of Mashups |M | = 30 × 103), (ii)the size of Mashups is uniformly
distributed between two and five, and we vary the number of users |U |. Figure 6

Social Discovery and Composition of Web Services 9

shows the results and indicates where the algorithm response time is stable even
when the number of users increases up to |U | = 105.

Other simulations have been performed with more realistic statistical distri-
butions impacting the behaviour of the algorithm. Indeed, as pointed out above,
several studies [8] have shown that the popularity of services used for Mashup
creation follows a long-tail distribution, meaning that some services are much
more frequently used than other services For example, mapping services are the
they type most used for Mashups. We also note that the graphs representing
links between users are social networks, and include special features such as
small-world, power-law degree distribution, and additional information which
may be leveraged to better evaluate a system. Concretely, we have generated
datasets following a long-tail distribution (Zipf’s law) that were used for the
input to the recommendation algorithm. The results show that the recommen-
dation algorithm response time decreases compared to the response time for
uniformly distributed datasets(see Figure 7).

Fig. 4. Mashup size impact on algorithm
execution time

Fig. 5. Impact of the number of services on
the performances of the algorithm

Fig. 6. Impact of the number of users on
the the performances of the algorithm

Fig. 7. The long-tail distribution impact on
algorithm performance

10 Authors Suppressed Due to Excessive Length

Overall, these results are interesting and do show that this algorithm is use-
ful in an interactive application. However, they also show that the algorithm’s
response time is particularly sensitive to Mashup size, which is, according to
related studies and our observations on ProgrammableWeb, distributed between
two and five services (mostly closer to two). From a more general perspective,
we believe that there is still room for improvement by optimizing the recommen-
dation strategy.

5 Conclusion

We have presented a new approach for services recommendation in a Mashup
environment based on social network analysis. The particularity of this approach
is the creation of an implicit social graph based on the interactions between users
and services. We have described all the steps we utilized to generate this social
graph and a possible way to leverage it for services recommendation. While the
experimental results, implemented in a platform called SoCo, show the positive
potential of the proposed approach, there are still some challenging issues to
be addressed as future work: (i) the newcomers’ problem, which deals with the
algorithm behaviour regarding the lack of learning information, and (ii) the
entire Mashup auto-completion [12] format, which has the goal of suggesting a
complete composition schema.

References

1. M. H. ter Beek, A. Bucchiarone, and S. Gnesi, “Web service composition ap-
proaches: From industrial standards to formal methods,” in ICIW, 2007, pp. 15–20.

2. Y. Yuan, J. Wen, W. Li, and B. Zhang, “A Comparison of Three Programming
Models for Telecom Service Composition,” in AICT. IEEE Computer Society
Washington, DC, USA, 2007.

3. R. Ennals and M. N. Garofalakis, “Mashmaker: mashups for the masses,” in SIG-
MOD Conference, 2007, pp. 1116–1118.

4. I. R. Floyd, M. C. Jones, D. Rathi, and M. B. Twidale, “Web mash-ups and patch-
work prototyping: User-driven technological innovation with web 2.0 and open
source software,” in HICSS ’07. Washington, DC, USA: IEEE Computer Society,
2007, p. 86.

5. M. C. Jones and E. F. Churchill, “Conversations in developer communities: a
preliminary analysis of the yahoo! pipes community,” in CCT ’09. New York,
NY, USA: ACM, 2009, pp. 195–204.

6. J. Soriano, D. Lizcano, J. J. Hierro, M. Reyes, C. Schroth, and T. Janner, “En-
hancing user-service interaction through a global user-centric approach to soa,” in
ICNS ’08. Washington, DC, USA: IEEE Computer Society, 2008, pp. 194–203.

7. Z. Maamar, L. Wives, Y. Badr, and S. Elnaffar, “Even Web Services Can Socialize:
A New Service-Oriented Social Networking Model,” in INCOS’09, 2009, pp. 24–30.

8. S. Yu and C. J. Woodard, “Innovation in the programmable web: Characterizing
the mashup ecosystem,” pp. 136–147, 2009.

9. S. Wasserman and K. Faust, Social network analysis: Methods and applications.
Cambridge Univ Pr, 1994.

Social Discovery and Composition of Web Services 11

10. T. Law, “Social Scripting for the Web,” Computer, vol. 40, no. 6, pp. 96–98, 2007.
11. L. Chen, N. Shadbolt, C. Goble, F. Tao, S. Cox, C. Puleston, and P. Smart,

“Towards a knowledge-based approach to semantic service composition,” Lecture
Notes in Computer Science, pp. 319–334, 2003.

12. O. Greenshpan, T. Milo, and N. Polyzotis, “Autocompletion for mashups,” Proc.
VLDB Endow., vol. 2, no. 1, pp. 538–549, 2009.

13. A. Maaradji, H. Hacid, J. Daigremont, and N. Crespi, “Towards a social network
based approach for services composition,” in IEEE ICC’10., may 2010.

14. J. Guillaume and M. Latapy, “Bipartite structure of all complex networks,” Infor-
mation processing letters, vol. 90, no. 5, pp. 215–221, 2004.

15. A. Maaradji, H. Hacid, J. Daigremont, and N. Crespi, “Social composer: A social-
aware mashup creation environment,” in ACM CSCW ’10 (Demos session), 2010.

