
Mashup Services to Daily Activities – End-user

Perspective in Designing a Consumer Mashups
Zhenzhen Zhao, Sirsha Bhattarai, Ji Liu, Noel Crespi

Institut Télécom, Télécom SudParis

91000 Evry, France

{zhenzhen.zhao, sirsha.bhattarai, ji.liu, noel.crespi}@it-sudparis.eu

ABSTRACT

Mashups have been gaining wide popularity over the past few

years. Several tools and platforms exist to support user-created

mashups, however working with them is still complex, and their

inability to directly impact existing activities and daily lives of end-

users provide little motivation for their adoption and sustained use.

This paper aims to design and implement a user-centered mashup

system which provides greater motivation for mashups usage, by

relating every-day calendar events to useful gadgets. The system

offers high level of abstraction to end users, which eliminates the

need for programming and the burden of knowing about data flows

from one service to the other. The platform exhibits context-

orientation, personalization and socialization features which are

believed to improve user experience in the system. Strong focus on

functionality integration rather than data integration is believed to

create greater usefulness and motivation in using the system. The

system is evaluated by 131 end-users to test for usability. Also, the

system is used as a representative example in proposing a user-

acceptance model for consumer mashups.

Categories and Subject Descriptors

H.5.3 [Information Interfaces and Presentation]: Group and

Organization Interfaces – evaluation/methodology, organizational

design, web-based interaction.

General Terms

Design, Experimentation, Human Factors.

Keywords

Calendar, Consumer mashups, Event, Personalized service, User

acceptance model, User-centered design, UTAUT.

1. INTRODUCTION
The future internet is envisioned as an open garden for services.

Most services are created for a specific domain and their

functionalities are usually limited, there is an increasing demand for

composing individual and heterogeneous services into more

complex or new services to meet user's needs. Mashups are web

applications which combine data, content and application

functionality from multiple sources, to result in a single value-

added application, and have been gaining wide popularity over the

past few years. Due to inherent programming difficulties required

in integrating data and services from multiple sources, mashups

have largely been a programmer‟s affairs [1]. In order to allow non-

expert users to be engaged in this innovative practice, perceived

usefulness and perceived ease-of-use are the primary factors to

consider since they have a direct and positive impact on users to

accept and use any technology.

The aim of our work is to design a “useful” and “easy-to-use”

consumer mashups system for the web-savvy users without

computational thinking. Followed by a literature review of overall

studies on end-user‟s perspective on service mashups, this paper

presents a consumer mashup framework based on daily activities,

to firstly acquire the context information through user generated

daily event, followed by the recommendation and aggregation of

precisely relevant contextual services. Compare to the existing web

mashup approaches, our main contributions are four-fold:

Firstly, the proposed framework strong emphasizes on

functionality integration rather than data integration, in which

services can communicate with daily events, in order to make the

usefulness of our system apparent to users.

Secondly, the proposed framework presents a high level of

abstraction to end-users, as it targets the relatively less program-

savvy population. Users can visually select services from the

recommended pool of services by a simple click of button, without

having to worry about programming like visual data flow diagrams.

Thirdly, the proposed framework is context-oriented in the sense

that the service recommendation logic is performed taking into

account the overall parameters of the event details to analyze

related services, i.e. the user plays a more active role in the context

acquisition through event creation.

Fourthly, the proposed framework integrates social sharing and

collaboration features, in which users can not only share their

created events and personalized service mashups, but also

participate in each other‟s events, which are believed to reduce the

learning curve and create greater motivation in using the system,

and also keep user interested in the community in the long run.

The system is evaluated by 131 end users to test for usability.

Results show that users perceive the system to have high values for

perceived usefulness and ease-of use. Also, the system is used as a

representative example in proposing a user-acceptance model for

service mashups, the model being based on the popular Unified

Theory of Use and Acceptance of Technology (UTAUT) [2].

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

iiWAS2011, 5-7 December, 2011, Ho Chi Minh City, Vietnam.

Copyright 2011 ACM 978-1-4503-0784-0/11/12...$10.00.

Various hypotheses are proposed to show relations between the

variables proposed in the model, which ultimately are used to

model „intention to use‟. Almost all proposed hypotheses have

been statistically verified to be true, by means of correlation.

The paper is structured as follows. We first summarize and classify

different terminologies of web mashups in Section 2. The related

work on mashup developments and end-user research on consumer

mashups are discussed respectively. Section 3 presents the system

design principle. A usage scenario and design details are described

in Section 4 and Section 5 respectively. Section 6 discusses the

usability test methodology and results. Finally, Section 7 concludes

the paper.

2. RELATED WORK AND MOTIVATION

2.1 Mashup Classification and Development
There has been a large interest over the past few years in mashup

technologies, and many mashup development platforms/tools have

emerged on a fast pace. Mashups are developed for various

purposes: some are developer-centric and some are user-centric. It

is useful to draw similarities and differences on the names and

corresponding functionality which mashups have been given

(Figure 1). There are different basis on which mashups have been

classified. The first one is “Client Mashup” and “Enterprise

Mashup”. Client Mashups are usually created for a personal use

for situational problem solving, but could be shared among peers.

Enterprise Mashups are developed for problem solving in

businesses and enterprise domain, and require greater collaboration

among people for carrying our business processes in a coordinated

manner. Often, analogous terms “Consumer Mashup” and

“Business Mashup” are used to describe Client and Enterprise

mashup respectively.

Another approach for mashup classifications is: “Web Page

Customization Mashup” and “Process Mashup”. Web page

customization mashups are used to change websites by removing

elements, adding additional widgets and changing the user

interfaces (UIs) of websites. Process mashups allow for

aggregation of data, content and services, and include them in

automated sequential processes [3].

A similar way to categorize mashups is as “Front-end Mashup”

and “Back-end Mashup”. Front end mashups help to build web

front ends like dashboards using widgets/gadgets and little to no

programming (iGoogle, Netvibes, PageFlakes). Back-end Mashups

combine web-accessible data and services into more useful web

services that can be called easily using a RESTful interface

(Kapow, Yahoo Pipes).

Another similar terminology for mashup classification is

“Horizontal Mashup” and “Vertical Mashup”. Horizontal

mashups can be seen as a process of grouping sets of typically

similar or complementing services to aggregate their outputs, in

which there is no interaction between service modules, but the

customizable front-end offers more value to the end-users to solve

a particular task. Vertical mashup, on the other hand, is a process

of orchestrating outputs from some services into the inputs of other

services, where service modules are connected together, and the

parameters are passed between the modules to get a new enhanced

service.

Extensive research works have been done in web page

customization mashups, process mashups and enterprise mashups.

In front-end side, authors in [4] design a university-oriented

personalizable web 2.0 mashup portal called iNIU, the portal

exploits the Web 2.0 technology to mash-up a variety of existing

Web services that NIU students frequently use, including Blog,

Weather, Clock, Calendar, News, Facebook Profile Viewer, and

Search. In [5], authors propose the idea of gadget creation so that

extracted data can be immediately reused on personal portals

through an unsupervised web data extraction approach. [6]

proposes a widget based service exposure and service creation tool:

a tool creates links between loaded widgets automatically, while

additional functionalities are added automatically to existing

widgets as long as the end-user loads other widgets to his personal

environment.

To make Process Mashup development simpler and to enable even

non-experienced end-users to mash up their own web applications,

a number of development tools and frameworks have been

proposed. [7] introduces a recommendation tool called

MashupAdvisor. Based on the current state of a mashup, the

MashupAdvisor exploits a repository of mashups to estimate the

popularity of specific outputs (goals), and makes suggestions using

the conditional probability that an output will be included. When a

suggestion is accepted, MashupAdvisor uses a semantic matching

algorithm and a metric planner to modify the mashup to produce

the suggested output. Similarly, [8] presents an efficient syntactical

approach for actively discovering web service candidates for

service mashups. The authors use syntactical, natural language

approaches to predict when the underlying web services messages

are related.

In Enterprise Mashup domain, authors in [9] discuss the design

principles of the Enterprise mashup architecture, upcoming

intermediaries and mass collaboration. The same authors in the

following year propose a web based mashup/gadget development

tool that allows for different options to realize Business to

Business (B2B) collaborations via mashups. In their work, five

patterns for the development of enterprise mashups are identified

and characterized [10]. [11] proposes a new widget aggregator that

enables the end-user to personalize a business process by chaining

widgets according to his/her needs and habits without computing

skills.

2.2 End-user Studies on Consumer Mashups
Several, but not abundant studies have been performed in user

research. Such research starts from reviewing the current mashup

tools. Survey from [12] states that not all of these tools are easy to

understand and use, especially for normal end-users who lack the

art of computational thinking. [3] identifies six aspects of mashups,

from an end user perspective, to review current tools, viz: Levels of

Figure 1. Mashup classification.

abstraction, Learning support, Community features, Searchability,

UI design, and Software Engineering techniques. For less technical

users, generally a high level of abstraction, abundant learning

support, and community features are desired.

[12] further states that end users do see benefits in mashups for

searching, integrating, and sharing information. The authors

present the term “web-active user” to define users who are

considered to be active online. They are users who use internet on a

daily basis, and who try to find out new ways to integrate their

online activities, although they don‟t have the programming

expertise to create mashups. A survey [13] was conducted with

over 200 students who were considered to be web-active. When

explained about mashups, the users gave the feedback that

usefulness is more important to them than the perceived difficulty

of action.

[14] identifies two major factors - “Usefulness” and “Technology

initiative” from an end-user survey to have an effect on user‟s

motivation to create mashups. The study has found that people

with different levels of technology initiative have interest in

creating and using different types of mashups, with low-initiative

users preferring mashups related to people and social activity, and

high-initiative users preferring more complex data mashups.

2.3 Limitations and Motivations
From the above studies we can conclude that: on the one hand,

process mashup is still considered quite complicated and

discouraging for non-expert end-users. Survey from [14] states that

among the three processes of composing mashups, viz. data

gathering, data manipulation and data presentation, end-users

usually find the data manipulation stage most confusing. In the

development of the markets, process mashup systems are far from

being popularized among the ordinary users due to the complexity

of understanding data flows between the services. End-users who

lack the art of computational thinking [14] are not able to fully

leverage the value and benefits of mashups which require the use of

APIs, RESTful services, Atom and RSS feeds. In order to achieve a

greater user motivation for mashups use, there is the need for

existing mashup platforms to offer solutions by bringing enough

value to their existing activities and to meet their daily life needs

[9], while offering greater simplicity and usability features.

On the other hand, web page customization mashup systems are

seen to provide a convenient way for users to aggregate selected

services, referred to as widgets or gadgets in their personal

dashboard for the creation of a personalized environment. These

methods, however, lack flexibility since the gadgets cannot

communicate with each other or with any other web service.

Moreover, such systems exhibit large service databases and often

permit access to third party for increased system functionality,

which is not necessarily providing a better solution and quality of

experience for the user. Often, when services are aggregated, users

need to search for required services in a pool of services, including

many of them are not particularly useful.

Concerning user research on mashups, although user studies have

been made for development of mashup tools, little research

endeavors have examined the needs of the less programming savvy

end-users [12]. Moreover, formal model for user acceptance of

mashup technology is still missing.

Our work aims to design and implement a user friendly mashup

platform which provides greater motivation for mashups usage, by

relating every-day calendar events to useful gadgets. The platform

offers high level of abstraction to end users, which eliminates the

need for programming and the burden of knowing about data flows

from one service to the other. The platform exhibits context-

orientation, personalization and socialization features which are

believed to improve user experience in the system. Strong focus on

functionality integration rather than data integration is believed to

create greater usefulness and motivation in using the system. Also,

the system has been used as a representative example in proposing

a user-acceptance model for service mashups, targeting the

relatively less program-savvy population.

3. DESIGN PRINCIPLE
This section focuses on the design principle of our system. The

basic research question in this paper is “How end-user perspectives

help in designing a useful and easy-to-use consumer mashups?”

We have learned the end-user perception from the related user

research that: on the usefulness side, end-users require a mashup

system designed to offer solutions by bringing value in organizing

end-users day-to-day and social activities [9][14]; while on the

ease-of-use side, comparing to “vertical mashups”, the “horizontal

mashups” is more accepted by the less programming user group.

Followed by the end-users‟ perceptions, we direct and propose the

system design principles as follows. Note that we target the group

of less technology savvy end-user.

Usefulness: Consumer mashup framework is designed to organize

users‟ day-to-day and social activities through life events.

Ease-of-use: Consumer mashup framework is designed as web

page customization mashups at the presentation layer.

We add another term - intuitiveness - as a separate feature from

ease-of-use, which is reported to be one of the powerful factors and

almost a key for the success of consumer mashup system since it

fosters real engagement of users [15].

Intuitiveness: The intuitiveness of consumer mashup system is

improved by using the light-weight applications or components of

user interface, in the form of gadgets, instead of service APIs.

Gadgets, also known as widgets, are mini applications which

provide a graphical, simple and efficient means of user interaction

with the actual web resources (data, content, or application

functionality, e.g. text/multimedia content, RSS feeds etc),

abstracting the technical description from the functionality.

4. DEMONSTRATION SCENARIO
In this section we introduce our system - event based service

provider (EBSP), a “Calendar-based Mashup” which makes use of

the Google Calendar and iGoogle gadgets in providing valuable

solutions in organizing day-to-day activities of end users, such as

meeting, travelling, shopping, cooking, sports, games and many

more. This system attempts to bring value to meet the daily life

needs of the web-savvy yet non-programmer end-users.

Suppose a Google subscriber Fiona, is going to attend IIWAS 2011

conference, she decides to use EBSP system to organize her trip.

The various steps involved in using the system are shown below:

1. Fiona firstly browses the events blog, to see other users‟

activities. She doesn‟t find anything related, so she decides to

create an event by her own.

2. Once she starts to add an event, Google asks her to log in and

grant access to the EBSP system.

3. Fiona enters the details of the event “Attend IIWAS

conference” and agrees to publish this event to the public

(Figure 2). Then she clicks “Find Gadgets for your Event!”

4. The system automatically recommends her the gadgets (Figure

3). Gadgets are sorted according to individual sub categories

in the left panel and displayed on the right side in an order

regarding the gadget rating, user installation number and

Fiona‟s gadget selection history.

5. Fiona starts to select the precise gadgets of interest by clicking

on the “Add it now” button. After selection of gadgets, Fiona

clicks on “Go to Calendar Dashboard”.

6. The selected gadgets are mashed up on the Google Calendar

(shown as circular green icons on top of the specified event,

Figure 4), and can be accessed and used directly from the

calendar.

7. Since Fiona has agreed to share this event, the “Attend IIWAS

conference” event is published to the events blog for other

users‟ reference (Figure 5).

8. Vincent, who plans to attend the same conference, happens to

find Fiona‟s “Attend IIWAS conference” activity from events

blog. He creates the event by copying Fiona‟s event details

with a simple click. He is able to reuse Fiona‟s selected

gadgets or choose his own gadgets of interest (Figure 6).

5. DESIGN DETAILS

5.1 System Framework
Based on the design principles, this section presents a brief

overview of the principal components of the system and their

functionalities. Figure 7 shows the architecture of the system,

which is fundamentally composed of four layers: Presentation,

Logic, Data access and Data. Mashup creation is done in the

Figure 2. User input in the event details.

Figure 3. Service recommendation and user selection.

Figure 4. Service mashups on the calendar.

Figure 5. Public events blog.

Figure 6. Gadgets Reuse from Previous Events.

presentation layer. A user has two approaches to access the event

creation environment, either from direct event input or copying

events created by other users*. When he/she uses his/her device to

enter event details or copy event details from other user, the input

data (user identity, user entered data or old event data*) is passed to

the data access layer, where the data is processed, and further sent

to logic layer, where reasoning is done. Based on this, resources are

looked up from the Data layer, which is a layer for aggregation of

resources (Data).

In Data layer, reside the gadgets imported to the local system

database from the iGoogle database. The logic layer extracts from

the data access layer, the sorted gadgets according to several rules:

1) based on the event category 2) based on user‟s gadget selection

history 3) based on gadget rating (star) and user number 4) based

on gadgets selected in inherited event*.

These gadgets are pooled, and sent to the presentation layer, as

service recommendation to the user. Of the recommended services,

the user selects the gadgets of interest. The selection of gadgets

sends a trigger to the logic layer to record the selection for that

user, and update it to the system database (gadget selection log and

user log). The finalization of service selection triggers the event

and gadget reasoning engine to communicate with the Google

server, using Google calendar API, to upload the selected gadgets

to user‟s Google calendar. The Google server sends the uploaded

gadgets to the presentation layer for display to the user. At the

same time, the current event and selected gadgets are shared in the

public events blog. The aggregation of selected gadgets will allow

end users to create a mashups application. The mashup is done in a

visually intuitive manner, without skills being required for

programming.

5.2 Process Flow in the System
The process flow in the system is shown by means of a flowchart in

Figure 8. When a user connects to our system and starts creating an

event, the first process is authorization for Google Calendar

Service. The OAuth authorization method [16] is invoked during

this process. After authentication, a single-use OAuth token is

made available to our system. This token made for calendar

application when the user gets logged in and is later used or the

communication as user authorization between our system and the

calendar API.

Now the system is in ready to use state. The user enters or copies*

the details of the event, and input parameters (title, type, date,

start_time, end_time, place, publish, people and user_id) are

passed to the data access layer. If all required fields for the event

are entered, and the event information for this event are correct, the

event is regarded as a simple event and will be uploaded to Google

calendar through the calendar API and updated the system database

as well as Events blog, when the user clicks on „Find Gadgets for

your event!”.

At the same time, based on the given event context (user input),

this layer looks up the corresponding event category, user‟s history

of gadgets (gadget_log_frequence), gadget rating (gadget_star),

gadget installation number (gadget_user) and gadgets used in the

copied event* (user_log_gadget). For a new user, initially there will

be no record of gadget selection log and user log, but the system

will update usage once the person starts selecting gadgets. For a

user having previous experience using the system, the data access

layer dynamically computes the subcategories that are to be output

(subcategory_output) along with appropriate gadgets

(gadget_output) (in logic layer). The discovery of appropriate

gadgets (“service discovery”) is done though a hierarchical

directory-based-search mechanism, described in section 5.3.

The computed subcategories and gadgets are then sent to the

presentation layer, this process referred to as “gadget

recommendation”. The user can select gadgets of interest. Google

calendar API is used to tunnel the selected gadgets to the calendar

Figure 7. System framework.

Figure 8. Flowchart of the system process.

via a piping mechanism (executed by service composition engine in

logic layer but proceed in data access layer). The gadgets are then

sent by the Google server from the data layer to presentation layer

of the calendar for display. The uploading of gadgets into calendar

is achieved in real time, the mashup phenomenon is done in the

presentation layer, and the events blog is updated, by a simple click

of the button “Go to Calendar Dashboard”.

Meanwhile, in our system, when the user selects one or more

gadgets, user‟s selection is recorded, and for that user (user_id), the

selected gadgets (gadget_id) are identified. The frequency of use

(gadget_log_frequence) is increased by once per selection and

updated to the gadget selection log database and also recorded in

user log.

5.3 Matching Between Event and Gadgets
To look up the exact gadgets of interest in the system database

(service discovery), a hierarchical, directory-based search has been

implemented. Before describing the search mechanism, the

framework of an event hierarchy is presented.

5.3.1 Event Hierarchy
Since our system aims at bringing the concept of event to explore

the user intention for service integration and management, the first

challenge is how to define event in an efficient way to retrieve and

organize relevant services, i.e. the functional description of the

event. In current event-based system, the related event elements are

nothing less than event theme, occurrence place, occurrence time

and involved people, which can be expressed as what, where, when

and who. In our approach, we follow the same definition of event

elements. Each event element comprises a hierarchy of related

information organized in a dependent manner. Each element

(attribute) of the event answers a question inside the event. Each

question is related to the user‟s goal, which is further associated

with the functional description of the event to retrieve relevant

services (see Table 1). What defines the user‟s main objective,

which is associated with the event type/category; Where is

associated with location and presence service; When is functionally

related to the time based service and notification service; and

finally, Who defines whether the event is a personal or a social

event, which is associated with personalized service,

communication and social service. Note that the event attributes are

regarded as the first layer of the event hierarchy.

Table 1. Functional description of Event

Event

attributes
Questions

Functional

descriptions

What
What‟s the type of the event you

deal with?

Event

type/category

When When is the event happen?
Time

Notification

Where
Where do you carry out this

event?

Location

Presense

Who
Who else participate in this

event?

Social

Communication

The implementation of the event hierarchy is shown in Figure 9.

The functionalities for “who” are based on Google calendar‟s

functionalities like inviting people, sharing calendars (events and

gadgets), and also system-based functionalities like

social/communication. The functionalities for “where” are based

on Google calendar‟s functionalities like „Google Map‟, and also

on system-based location/presence functionalities (like driving

directions, route planning, weather information etc). The

functionalities for “when” are based on Google calendar‟s

functionality of adding reminders/notifications for the event (email,

SMS, pop-up). The functionality for “what” and specifically “event

category” is the most significant in our system. In providing

relevant services (gadgets) in response to the input, the event will

be composed not only of the four attributes (what, when, where

and who) but one more attribute will be added to it, i.e. “how”,

meaning how can the event be carried out, provided that relevant

information are given by the recommended gadgets.

5.3.2 Event Category
Among those attributes the event category is the most important

factors in choosing related services, which is defined further firstly

by the related functional requirements, and then the specific

Figure 9. The implementation of event hierarchy.

Figure 10. An example of event category hierarchy.

Figure 11. Flowchart of gadget recommendation process.

services. The contributions of this event category hierarchy are

two-fold. On the one hand, it defines the useful functionality inside

each event activity/type for purposes of filtering out less useful or

useless services, i.e. increase the accuracy of retrieved services; on

the other hand, it provides the relationships among different events,

thereby enabling reusability of the functionality for different

events.

An example of event category is shown in Figure 10. The category

is prepared by trying to encompass diverse forms of activities and

events in daily lives of people, spanning different hobbies, interests

and professions, which are available in the iGoogle gadgets

database. In some cases, one category maybe reused in the other,

for e.g. “Meeting” can require “Travelling”, hence “Travelling”

maybe reused in the former. The event type entered by the user is

matched with one of these categories. On finding the appropriate

category, a second level directory of “sub-categories” is opened,

which are functionalities required for the corresponding upper layer

category (e.g. organization, communication, documentation

functionalities may be required for the event category meeting).

5.3.3 Gadget Discovery and Recommendation
The final gadgets are discovered via a hierarchical directory-based

search mechanism, based on the input for event hierarchy. After the

gadget discovery, the gadget recommendation (i.e. the order of the

gadgets displayed in the webpage) is reasoned according to three

rules: 1) based on user‟s gadget selection history 2) based on

gadget rating and gadget user number 3) based on the gadgets

selected in the inherited event*. The flowchart of this process is

shown in Figure 11.

5.4 System Database
In total, there are five local databases in the system: event category

database (for categories like meeting, shopping, travelling etc),

gadgets database (the actual gadgets, user installation number and

gadget rating), user database (user id), gadget selection log (user id

and gadget selection history) and user log (user created event and

selected gadgets information) database. The entity-relationship

(ER) diagram for our system database is shown in Figure 12, using

the Crow’s feet notation. Here, category, gadget,

gadget_selection_log, user and user_log are the entities, and the

lines show the relationship between the entities.

5.5 Automatic System Update
Originally the iGoogle gadgets stored in our system database are

static. The drawbacks are obvious: The gadget appears unavailable

without being detected, gadget rating and user number are not

updated, while new gadgets are not discovered. Hence, we need to

build a dynamic system to update the gadget information timely.

Here, a library called “cURL” is used to get the web page

information from Google server. We search gadget by semantic key

words defined in each subcategory. Here, WordNet [17] is used to

find the synonyms of each keyword, and the set of keywords

together are used to perform gadget search. After processing the

page information, the gadget details (name, script, url, height,

width, star, user number) are retrieved and recorded in our system

database in the corresponding category. This process is performed

periodically to update all the gadget information in the database as

well as add new gadgets.

6. USABILITY TEST
This section introduces the usability test of EBSP system. We

intend to evaluate the EBSP system by letting end-users use our

system, and collect their feedback online. To this regard, a

questionnaire is designed to gather user‟s perceptions about our

system, and service mashups as a whole. Before letting the users

experience with our system, we provided a brief video tutorial

about commercial mashup tools (iGoogle, Yahoo! Pipes, Popfly

and Intel Mashmaker) to make them familiar with mashup

technology. Then we provided a brief video tutorial on the EBSP

system, with various examples. Users are asked to complete a

given scenario, based on the tutorial, and rate their experience with

the system.

The questions used a five-point Likert scale, from Strongly

disagree to Strongly agree, such that Strongly disagree =1,

disagree=2, Undecided=3, Agree=4 and Strongly agree=5. A total

of 423 requests are sent out online, of which we received 233

partial responses. Only 131 were complete and valid for our study.

6.1 Usability Metrics
Measuring the usability of a system is not always obvious. Several

parameters and methods have been applied in the current work to

define usability of the system, like performance expectancy, effort

expectancy, time on task, scenario completion percentage, error

percentage, and overall feedback.

6.2 User Acceptance Model
User acceptance models are also used to model usability of a

system, specifically by identifying factors or constructs that play an

important role in user‟s intention to use a system. The system is

used as a representative example in proposing a user-acceptance

model for consumer mashups, to precisely identify what factors

lead to their adoption and to what extent. The proposed model is

constructed based on the UTAUT model, which is a consolidated

model derived from eight different models, and reported to

outperform the performance of each one in explaining user

acceptance for an IT system or product [2].

Figure 12. ER Diagram for the system database.

Results show that users perceive the system to have high values for

perceived usefulness and ease-of-use. The results of the hypotheses

set in the study show support to the UTAUT model. The fact that

only 36.6% of the variance in behavioral intention has been

explained suggests the need to further refine the model by

incorporating unmeasured variables. Nonetheless, this study can

provide useful directions for user acceptance of mashups. Through

the results of the study, we recommend mashup developers who

target the less programming savvy user group to pay particular

focus in bringing value to organizing better existing day-to-day

activities of average end-users rather than focusing on complex

feature extensibility in the platform. More information about the

usability test results and user acceptance model can be seen from

[18].

7. CONCLUSION
In this paper, we have presented a user friendly consumer mashups

framework to manage multiple resources in a single platform

though life events. The contributions of event hierarchy, context

association and functionality integration have been illustrated

respectively. We have further implemented a prototype and

evaluated our solution by designing a user acceptance model. The

usability test has showed that our system outperforms the classical

approaches in both usefulness and ease-of-use attributes. The

presented model can serve as a reference for mashup designers to

design platforms having better user acceptance.

8. ACKNOWLEDGMENTS
Our sincere thanks to Mr. Hui Wang and Mr. Honguang Zhang for

their efforts on system construction. This work is carried out in the

frame of the Eureka-ITEA 2 "Do-it-Yourself Smart Experiences"

project. It is supported in part by the French Ministry of Industry.

9. REFERENCES
[1] Liu, X., Hui, Y., Sun, W., and Liang, H. 2007. Towards

Service Composition Based on Mashup. In Proceedings of

the IEEE Congress on Services 2007 (Salt Lake City, Utah,

USA, July 09-13, 2007). SERVICES ‟ 07. IEEE, 332-339.

[2] Venkatesh, V., Morris, M. G., Davis, B., and Davis, F. 2003.

User Acceptance of Information Technology: Toward a

unified view. MIS Quarterly, 27, 425-478.

[3] Grammel, L., and Storey, M. A. 2008. An End User

Perspective on Mashup Makers. University of Victoria

Technical Report DCS-324-IR.

[4] Zhang, J., Karim, M., Akula, K., and Ariga, R. 2008. Design

and Development of a University-Oriented Personalizable

Web 2.0 Mashup Portal. In Proceedings of IEEE

International Conference on Web Services (Beijing, China,

September 23-26, 2008). ICWS ‟08. IEEE, 417-424.

[5] Chang, C. H., Yang, S. F., Liou, C. M., and Kayed, M. 2008.

Gadget creation for personal information integration on web

portals. In proceedings of IEEE International Conference on

Information Reuse and Integration (Las Vegas, Nevada,

USA, July 13-15, 2008). IRI ‟08. IEEE, 469-472.

[6] Laga, N., Bertin, E., and Crespi, N. 2009. Building a User

Friendly Service Dashboard: Automatic and Non-intrusive

Chaining between Widgets. In proceedings of IEEE Congress

on Services - Part I (Los Angeles, CA, USA, July 06-10,

2009). SERVICES ‟09. IEEE, 484-491.

[7] Elmeleegy, H., Ivan, A., Akkiraju, R., and Goodwin, R. 2008.

Mashup Advisor: A Recommendation Tool for Mashup

Development. In Proceedings of IEEE International

Conference on Web Services (Beijing, China, September 23-

26, 2008). ICWS ‟08. IEEE, 337-344.

[8] Blake, M. B., and Nowlan, M. F. 2008. Predicting Service

Mashup Candidates Using Enhanced Syntactical Message

Management. In proceedings of IEEE International

Conference on Services Computing (Honolulu, Hawaii, USA,

July 8-11, 2008). SCC ‟08. IEEE, 229-236.

[9] Hoyer, V., Stanoesvka-Slabeva, K., Janner. T., and Schroth,

C. 2008. Enterprise Mashups: Design Principles towards the

Long Tail of User Needs. In proceedings of IEEE

International Conference on Services Computing (Honolulu,

Hawaii, USA, July 8-11, 2008). SCC ‟08. IEEE, 601-602.

[10] Janner, T., Siebeck, R., Schroth, C., and Hoyer, V. 2009.

Patterns for Enterprise Mashups in B2B Collaborations to

Foster Lightweight Composition and End User Development.

In Proceedings of IEEE International Conference on Web

Services (Los Angeles, CA, USA, July 06-10, 2009). ICWS

‟09. IEEE, 976-983.

[11] Laga, N., Bertin, E., and Crespi, N. 2010. Business Process

Personalization Through Web Widgets. In Proceedings of

IEEE International Conference on Web Services (Miami,

Florida, USA, July 05-10, 2010). ICWS ‟10. IEEE, 551-558.

[12] Zang, N., and Rosson, M.B. 2008. What‟s in a mashup? And

why? Studying the perceptions of web-active end users. In

proceedings of IEEE Symposium on Visual Languages and

Human-Centric Computing (Herrsching am Ammersee,

September 15-19, 2008). VL/HCC ‟08. IEEE, 31-38.

[13] Zang, N. 2008. Mashups for the web-active user. In

proceedings of IEEE Symposium on Visual Languages and

Human-Centric Computing (Herrsching am Ammersee,

September 15-19, 2008). VL/HCC ‟08. IEEE, 276-277.

[14] Zang, N. 2009. Mashups on the Web: End User Programming

Opportunities and Challenges. In the proceedings of First

Workshop on Evaluation and Usability of Programming

Languages and Tools (Orlando, FL, USA, October 25-29,

2009). PLATEAU ‟09.

[15] Zhao, Z., Laga, N., and Crespi, N. 2010. The Incoming

Trends of End-user Driven Service Creation. Lecture Notes of

the Institute for Computer Sciences, Social Informatics and

Telecommunications Engineering (LNICST), Volume 21.

Springer-Verlag, 98-108.

[16] OAuth 1.0:

http://code.google.com/apis/accounts/docs/OAuth.html

[17] WordNet: http://wordnet.princeton.edu/

[18] Bhattarai, S., Zhao, Z., and Crespi, N. Consumer Mashups:

End-User Perspectives and Acceptance Model. In the

proceedings of information integration and web-based

applications & services (Paris, France, November 8-10,

2010). IIWAS ‟10. ACM, 930-933.

