

Abstract— In this paper, we investigate the various service

composition mechanisms and provide the impact of each of them
on user-centric service development issues. We classify service
composition mechanisms into three categories: automatic service
composition, semi-automatic service composition, and static
service composition. As services are today mainly driven by the
user's needs, the following survey essentially focus on automatic
service composition and semi-automatic service composition. This
enables users to conceive theirs own personalized applications.

I. INTRODUCTION

Service oriented architecture (SOA [1]) is a mature
architecture concept, broadly adopted in both telecoms
industry and internet industry. The main objective of SOA is to
build applications as reusable services and then to enable the
composition of these applications in order to reduce the time
to market. As far as service composition is concerned, SOA
developers usually:

• search available web services in a service repository,

where the service is described with a WSDL (Web
Service Description Language) document,

• invoke the needed ones through SOAP (Simple Object
Access Protocol),

• compose them though programming or scripting language,
• and then eventually publish a new service in the

repository, with the new WSDL document.

Thereafter, many works have been done on how to extend
these functionalities (search, invoke, compose and publish) to
the end users. However, end users have no knowledge on
SOAP and WSDL and they are more used to information than
to Web Services.

Besides, telecommunication companies still works on how
to develop more user-centric services; services adapted to the
user's needs. To reach such aims, designers can conceive
applications that take into account the user context [2, 3] or
can conceive customizable applications. Taking into account
user context is a powerful method but the user still lack in

flexibility. Indeed, the user may need new services that are not
yet available. Moreover, the user may need a specific service
for a short period of time which is not sufficiently cost-
effective to launch a development process.

In the best of our knowledge, the listed topics (service
composition, user-centric services development and user
context aware application development) are still treated as 3
independent topics. In this survey, while we investigate service
composition methods and technologies, we give the impact of
each of them on user-centric service development. This is a
first step toward using service composition to provide user-
centric applications.

In the state of the art there are three categories of service
composition: Automatic service composition, semi-automatic
service composition, and static composition.

• In automatic service composition the user formulates a

request (in natural or formal language) and then the
composition mechanism processes the request and
generates the composite service.

• Semi-automatic service composition consists in the
management of the composition by the end user through a
graphical interface (e.g. YAHOO PIPES [4], EZWEB [5],
and MARMITE [6]) or using a formal language.

• By static composition we mean a composition that is
achieved by a person who has development skills and who
knows the existing services. This person then builds a
composed service with a programming language by
invoking existing services.

The rest of the paper is organized as follows. Section 2

reviews the different composition categories. Section 3 lists
composition related technologies such ontology databases
languages, microformat and service descriptions means.
Section 4 introduces the requirements of a composition
framework for user-centric services. The comparison between
compositions methods – regarding requirements – is made in
section 5. We conclude the paper in section 6 with future
directions of our research.

User-centric services and service composition, a
survey

Nassim Laga1, 2, Emmanuel Bertin1, and Noel Crespi2,

1Orange Labs Orange Labs - France Telecom R&D, 42, rue des Coutures, 14000 Caen France,
{{nassim.laga, emmanuel.bertin}@orange-ftgroup.com}

2Institut TELECOM SudParis, Mobile Networks and Multimedia Services Department, 9 Rue Charles
Fourier, 91011, Evry Cedex, France, {noel.crespi@it-sudparis.eu}

II. RELATED WORK

In this section we investigate the different approaches of
service composition. As mentioned, we have categorized
mechanisms of service composition into: (A) automatic service
composition, (B) semi-automatic service composition, and (C)
static service composition:

A. Automatic service composition

Research work has been done extensively on automatic
service composition, in order to build a customized service
directly from a user request. Most of the approaches assume
that services are deployed on a Service Oriented Architecture
(SOA). In this section we do not expose in detail the
algorithms that manage the composition. We describe instead
the required (and the most used) black boxes to perform
automatic service composition.

Challenges that have to be considered here are:
• Firstly, how to transform the user request – provided in

natural language – to a formal request,
• Secondly, what are the required services that respond to

that request? (Service discovery),
• Thirdly, what is the execution sequence of these services

that responds to the user request?
• Finally, does the composite result match the user request?

Fig. 1. SPICE service automatic service composition architecture

Many research work has been done on automatic service

composition such as [7], [8], and [9]. However, in this section
we focus on results of SPICE project1 [10, 11] which we
consider as the most comprehensive one in the automatic
service composition issues. Figure 1 shows SPICE
composition environment architecture. It summarizes perfectly
the listed challenges.

Natural request processing is a component that transforms
the user request from a natural language to a formal language
that can be processed by the composite factory component.

Composition Factory is the main component of the
architecture; it receives as input a user request expressed in a
formal language in which we can easily retrieve the requested
services. This component is in charge of providing composite

1 http://www.ist-spice.org/

service. First, it retrieves request-related services from the
service repository and their non-functional properties from the
non-functional properties component. Using the user goals
extracted from the request, the component builds the causal
link matrix (CLM) [12] or the extended CLM (CLM+ [13]).
While CLM is a matrix that represents all matching
possibilities between inputs and outputs of services, the
extended one takes into account the non-functional properties.
The matching between two parameters is statically quantified
according to an ontology database e.g. OWL [14] and it is
based on logical relations between them. Table 1 shows an
example of such quantification.

TABLE I

QUANTIFICATION OF SEMANTIC MATCHING OF PARAMETERS

Logic meaning

Signification Value

S1 ≡ S2 Semantic of S1 is exactly the same as
semantic of S2 according to an ontology
Ө

1

S1 ≤ S2 S1 is a subclass of S2 2/3

S1 ≥ S2 S2 is a subclass of S1 1/3
S1 ≠ S2 S1 is different from S2 0

The quantification of semantic matching between

parameters enables the quantification of the whole composite
service quality. Therefore, it allows users and developers to
select the best composite service between others.

Lines of the CLM refer to all entries parameters of all
services. CLM's columns refer to all inputs of services and to
the goals of the user request. An element in the CLM is a set of
vectors V (l, c) = (Si, value) where Si is a service that has as
input l, and value is a semantic matching value between an
output of Si and the corresponding column parameter c (which
is an input of another service), as indicated in table 1. Figure 2
shows an example of a CLM.

Fig. 2. CLM simple example

Once the CLM is constructed, algorithms such as Pa4C [12]

and graph based algorithms [13] build the composite service.
Figure 3 displays the SPICE composite factory component
details.

Fig. 3. SPICE composite factory component details.

Pa4C is a recursive algorithm that runs on the top of the

CLM. It has as input the constructed CLM, a set of available
web services (WS), initial user inputs that represent the initial
knowledge base (KB), and the user goals (B). The algorithm
then populates the KB with reached parameters through WS
set until all user goals are reached.

Graph based algorithms follow, however the inversed
reasoning approach. Such as the Pa4C algorithm, we have as
inputs: the constructed CLM, a set of available web-services
(WS), and the user goals (B). A set of services N is initialized
with services that have as outputs user goals B. for each
service (S) in N the algorithm checks if user inputs set contains
all required parameters for its execution. If it is the case, then
the S is removed from the list and the algorithm proceeds to
next one until N is empty. If user inputs are not sufficient to
allow the execution of the service S, then the algorithms
checks in the CLM+ if there are services that provide as
outputs the necessary parameters. If such services are found
then we remove S from the list and we add the found services
to N. The graph composite service is constructed while
populating N.

Matcher receives the composite service and checks again if
this matches the user request. Moreover, it can receive many
composite services and choose the appropriate one using
similarity function between: goals, inputs, outputs, non-
functional properties provided in the user request, and the
composite service goals, inputs, outputs and non-functional
properties.

B. Semi-automatic service composition

Semi-automatic service composition follows typically the
"web 2.0" perspective of next generation web applications,
where users are producers of contents and services. Indeed,
many examples of such applications are emerging. First of all,
YAHOOPIPES is a web application that consists in a
graphical tool that provides end-users with the service
composition ability (mashup). Figure 4 shows an example of
YAHOOPIPES graph based graphical interface. Boxes
represent services and wires represent input/output matching
between these services. In the figure 4, there are three services:
String builder service (let the user to enter the input),
translation service, and Yahoo search service. Through wires,
we link the output of string builder service (String) with an

input of translation service (text), and we link the output of
translation service (text) with an input of Yahoo search service
(String). Therefore, we composed a new service which
translates a string passed as input, and search in the web the
translated string.

As illustrated with the example, YAHOOPIPE allows users
to select and compose their own services from those that
already exist. The framework is based on inputs/outputs syntax
matching between services. However, the framework does not
manage semantic matching between inputs/outputs of the
services.

Fig. 4. YAHOOPIPES screenshot

MARMITE [6] is another graphical semi-automatic
composition framework with incremental execution of
mashups; users can execute composite service step by step and
see the intermediate results (see figure 5). It is implemented as
a Firefox plug-in. Such as in Yahoo pipes, in Marmite
composite services are a set of boxes (called operators)
chained with wires. Marmite – by default – displays
intermediate results as a table (where each row is a structure
that has many attributes displayed in different columns).
However, some services should have alternative displays
means such as a map, and video. In the example above, there
are three chained services: find events service, filter events
service, and yahoo map service. Users can link the output of
the find event service (which are a set of events defined with
attributes: event name, time, venue name, city, latitude,
longitude) with the input of filter events service which will
remove all events that satisfies a given condition (e.g. events
happened before 2006-11). Thereafter, users can display these
events in a yahoo Map service – by linking the output of finder
service to the input of Yahoo Map service – according to the
place where they happened. the output However, MARMITE
authors have tested their framework on a sample of six persons
[6], where two of them are experienced with programming,
and two others are experienced with spreadsheet but not
programming, and the remaining two others are not
experienced with programming neither spreadsheet. As a
result, three out of six did not succeed to build a composite

service and those who have succeeded are those who have
knowledge in development and one of those who have
knowledge in spreadsheet.

EZWEB [5, 15] is another framework which we classify in
the semi-automatic service composition category since it
requires user participation to make the composition. In this
framework each resource (service or data) is identified with an
URI and has an internal representation (XML) and eventually
a graphical interface representation (XHTML). EZWEB
framework allows users to make two subtype of composition:
wiring composition and piping composition.

Fig. 5. MARMITE screenshot [6]

Wiring composition is a composition between (at least two)

graphical interface representations of services. This is
managed by matching events and inputs (called slots) of
services. To illustrate wiring composition we choose Youtube
video search engine and Youtube video player service. In the
example on figure 6, when a user clicks on a movie among the
Youtube video search results, the video player service will
play this given movie. This was set by the user through wires
tab where he first create a wire, then he select an output of a
service, and then he select the slot that handles the event (see
figure 6).

Piping composition is more complex for the end user since
he has to invoke existing resources and orchestrate them in
order to build a new service.

Both compositions type are achieved using the internal
representation of resources (XML).

The listed semi-automatic service composition mechanisms

are today more tailored for Internet users than for enterprise
usage. However, there are other approaches more suitable for
an enterprise usage such as in [16] where authors describes a
framework named JAVA Application Builder Center (jABC)
in which business experts (not necessarily the end users) create

the composite service with the Service Logic Graph (SLG
[17]). In this framework, business experts create the SLG
graph by drag and drop of the Service Independent Building
Blocks (SIB).

Fig. 6. EZWEB composition example

C. Static service composition

By static service composition we mean the composition that
is achieved by the developer before its consumption by the
end-user. This approach is usually based on WSDL/SOAP web
services or Representational State Transfer REST architecture,
but new presentation layer approaches that consist in the
reusability of the graphical user interfaces are emerging.

WSDL/SOAP web services [18] are a mature technology
used in both telecom industry and web world. The principle
consists in creating a service and provides its functional
description in a WSDL file (operations and theirs inputs,
outputs parameters). The WSDL file can be stored in a
Universal Description, Discovery, and Integration (UDDI)
[18] directory. Therefore, third party developers can search on
that directory and find the desired services and then they can
request them (precisely the desired operation) using a SOAP
API.

Developers can achieve composition programmatically
using SOAP API's or through the orchestration (and
choreography) languages such as Web Services Business
Process Execution Language (WS-BPEL [19]) standardized by
OASIS2 and bipartite graph representation described in [34].
WS-BPEL use XML tags to define the basic constructs that
describes a business process such as loops, conditions as well
as invoking web services, waiting for messages, and sending
messages. After describing an execution process using WS-
BPEL, developers pass it to an orchestration engine such as

2 http://www.oasis-open.org

Apache ODE that can execute the process.

REST [20] architecture, the rival of SOAP/WSDL, is

inspired from the HTTP protocol where we use an URI to
identify each service. The philosophy is little different, instead
of wrapping many operations in one single service, the REST
architecture exposes many URIs with just 4 standards
operations (GET, POST, PUT, and DELETE). The advantages
of such concepts compared to SOA architecture are the
standard way to access the service (and therefore, no need for
the developer to use SOAP APIs), and the clear separation of
the various operations (without the reference to a single
service, that may only wrap a legacy application).

Fig. 7. Service and listener definition example

Another approach introduced in [21] consists in a

publish/listen mechanism implemented at the presentation
layer. Each service describes its operations, generated data,
and listeners. The developed framework, then maps the
generated data of one service with listeners of another one.
Figure 7 shows description file of a service S1 (company
directory) and the listener part of description file of service S2
(global directory). As illustrated, the mapping is syntactic and
is based on name attribute of event tag and event attribute of
listener tag (S1 generates an event called
"generatePersonName" that has a parameter "managerName",
and S2 handles the event through the operation (function)
"getPersonAddress").

III. SERVICE COMPOSITION RELATED TECHNOLOGIES

Composition architectures often incorporate semantic
description of services. This enables composer component to
know what the service expects as inputs, what it provides as
outputs, and what the service does, and then, the composer will
perform a meaningful composition. There are many semantic
languages but the most used one is Web Ontology Language
(OWL [14]). The aim of OWL is to provide machines with the
ability to process semantically web information. It offers more
expressive vocabulary than XML, RDF [22] and RDF-S [23].

The language has three sublanguages: OWL lite, OWL DL,
and OWL Full. With OWL lite, developers can express basic
RDF schema such as: class, subclassOf, property, and relations
between that classes and instances such as: Equality,
Cardinality. However, developers can use OWL-DL to express
value range of parameters, union, intersections and
complement… the comprehensive list of OWL capabilities is
given in [24].

An alternative to OWL language is the microformat
approach. Indeed, microformat is an emerging concept [25]
that is basically used to annotate web pages with meaningful
tags in order to enhance efficiency of search engines. They are
a set of simple, human readable XML formats that are used to
define basic information such as person cards (hCard [26]),
calendar events (hCalendar [27]), reviews, XFN (social
relationships). While the listed microformats are accepted by
microformats community [25], other are expected such as: geo
(geographic coordinates), hAtom, hResume (publishing CV),
and rel-enclosure (for describing attached files).

Once we have a well defined semantic database, it is
important to agree on syntax that describes services. In this
area, the developer has many options: SPICE advanced service
description language for telecommunication services
(SPATEL) which is used in SPICE project, OWL-S [28], Web
Service Description Language Semantic (WSDL-S) [29] or
Semantic annotation WSDL (SAWSDL) [30] that are an
empowered version of WSDL with semantic annotations
capabilities, Web Service Modeling Language (WSML) [31],
and Web Application Description Language (WADL) [32]
which is considered as a REST version of WSDL.

Instead of WSDL that describes operations, WADL focuses
on resource descriptions and their available accessing methods
(GET, POST, PUT, and DELETE). Authors of [33] have
proposed an enhanced version of WADL that enables
developers to annotate semantically – which was not yet
available in WADL - the useful parameters such as required
inputs to query a resource.

IV. REQUIREMENTS FOR USER-CENTRIC SERVICES

To conceive user-centric services developers can implement
applications that take into account the user context, or can
develop customizable applications. To conceive customizable
applications, developers can offer to the user either a mean to
set up his preferences and react accordingly, or a mean to build
its own services. Table 2 summarizes personalization level of
each method.

TABLE II
PERSONALIZATION LEVELS

method
Personalization
level Comments

User Context Low User can not modify service
behaviour, instead, service
modifies its own behaviour
according to the user context

Preferences Medium User can modify its preferences
and then the behaviour of the
service

User
development

High User can conceive a completely
new services based on existing
enablers

As user needs are various and numerous, the best way to

satisfy a user is to empower him with service composition
capabilities. We identified the following essential
requirements in designing a service composition environment:

• Loose coupling: composition tool have to take into

account third party services. Indeed, users may need a
composition of services from different service providers
(e.g. display caller location on googleMap). The difficulty
resides in performing composition between two services
of different providers while maintaining services as
independent as possible. Indeed, the developer of
googleMap does not know whether his service will be
composed with a caller identification service, a presence
service or video game service. This will pave the way for
more innovative services.

• Simplicity: the intuitiveness of composition tools is an
important requirement to attract more users and
developers, especially in order to reduce the investment
needed from the user to build their own services.

• Time to market: how to reduce the time to market of
applications is a question that rises in most companies.

• Execution time: execution time of the composition
framework is a criterion that attracts users

V. COMPARISON

In this section we compare different composition
mechanisms according to the listed requirements. Table III
summarizes the impact of each composition method on each
requirement.

Considering the loose coupling requirement, the SOA based
service composition imposes fewer constraints. Indeed, in the
other composition mechanisms (automatic service
composition, semi-automatic service composition, and event
based composition), we impose to the different service
providers to agree on a common semantic whereas in static-
service composition there is no need of semantic annotations
since the composition is performed by a developer that knows
about the existent services and theirs parameters.

TABLE III
SERVICE COMPOSITION MECHANISMS COMPARISON

Static service
composition

Automatic
service
composition

Semi-
Automatic
service
composition SOA

Event
Based

Loose
coupling

0

0

1

-1

Simplicity

1

0

-1

-1

Time to
market

Low

Low

Medium

Mediu

m

Execution
time

High

Low

Low

Low

Simplicity of the composition tool usage is an important

criterion to attract more users. Unfortunately, in the SOA
based composition which gives good performances in the other
requirements, user investment in the composition process is
very high since he needs to master a programming or scripting
language to perform the composition himself. Even if
graphical tools might be used to generate this programming
code, these tools are not intuitive to master. However, in
automatic service composition, the users have just to formulate
a request in their natural language to get the composite service.
Semi-automatic service composition states the user investment
in the middle. Indeed, it requires more user actions to perform
the composition, but these actions remain intuitive because the
user can experiment and see immediately the result on
concrete services.

All composition mechanisms reduce the time to market.
However, the benefit is fewer in static service composition
since there still a development process, whereas automatic
service composition and semi-automatic service composition
are achieved directly by the end user.
 Concerning the execution time of the composition process
(including user request processing, service discovery, and
composition mechanism), it is very high in automatic service
composition. This is essentially due to the natural language
processing component and the semantic reasoners components.
User involvement in composition process reduces the
execution time considerably.

VI. CONCLUSION AND FUTURE WORK

In this paper we have investigated different composition
mechanisms and have detailed how to use these mechanisms
for user-centric service development. We have compared these
composition mechanisms and outcome with the following
conclusions:

• Both static service composition and semi-automatic
service composition are useful and both have their roles in
the composition platform. While the former is more
appropriate for frequently long-term use applications and
reduce the time to market of innovative services by using
the existent enablers, the later will provide the user with
the ability to compose their own services, and then,
reaching a customizable platform. However, semi-
automatic service composition mechanisms need an
intuitive user interface that performs the composition
which is difficult to perform in limited devices (automatic
service composition is more appropriate in that case since
it does not need a complicate interface).

• We have to find the trade-off between accuracy of
semantic annotations of information and their simplicity.
While ontologies are more accurate, microformats are
simpler to use. Ontology databases are richer and facilitate
new concepts integration and then more dynamicity in the
development, instead microformats are static and
integration of new concepts must follow an acceptance
process by the community. However, ontology reasoners
are more time consuming than microformat reasoners.

• A specific API in the development is probably needed to
ensure the semi-automatic service composition and inter-
service communication. The API must still as simple as
possible to let the developer deals with the service
functionalities instead of bothering with composition
issues.

In the future works, we plan to define a comprehensive
architecture that takes advantages of composition mechanisms
to facilitate the design of user-centric services. This
architecture will provide a simultaneous access to services
through a dashboard concept. By combining a dashboard
concept with service composition and communication, we can
leverage user context (What are user's services? What does the
user do?) to compose services more pertinently.

To step toward the industrialization of the architecture,
whatever the chosen semantic annotations technology
(ontology databases or microformat), we have to model
company functional information in order to provide developers
with a referential.

The architecture will even take into account the intuitiveness
of the composition mechanism. The intuitiveness will depend
essentially on users feed back. Therefore, the work will follow
a cyclic development process.

REFERENCES

[1] E. Thomas, Service-Oriented Architecture: A Field Guide to Integrating
XML and Web Services. Prentice Hall, Upper Saddle River, NJ, 2004.

[2] H. van Kranenburg, M.S. Bargh, S. Iacob and A. Peddemors, “A context
Management Framework for Supporting Context-Aware Distributed
Applications”, Communications Magazine, IEEE, Aug 2006, pp. 67-74.

[3] J.M. Serrano and J. Serrat, “Information Modeling and Handling for
Context-Aware Multimedia Services”, Wireless Communications, IEEE,
Oct 2006, pp. 104-111.

[4] J. Soriano, Fostering Innovation in a Mashup-oriented Enterprise 2.0
Collaboration Environment. UK, sai: sisn.2007.07.024, Vol 1, No 1, Jul
2007, pp 62-68.

[5] http://pipes.yahoo.com/pipes/
[6] J. Wong, J. I. Hong, "Making mashups with marmite: towards end-user

programming for the web". In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, New York: NY, pp 1435-
1444.

[7] D. Wu, E. Sirin, J. Hendler, D. Nau, and B. Parsia, "Automatic Web
Services Composition Using SHOP2", 13th International Conference on
Automated Planning & Scheduling, Workshop on Planning for Web
services, Trento, Italy, June 2003.

[8] R Zhang, I. B. Arpinar, B. Aleman-Meza, "Automatic Composition of
Semantic Web Services", WWW03, Budapest, Hungary: 2003.

[9] J. Gekas, M. Fasli, "Automatic web service composition based on graph
network analysis metrics", OTM Conferences (2) 2005: pp 1571-1587.

[10] S. Tarkoma, B. Bushan, E. Kovacs, H. Van Kranenburg, E. Postmann, "
SPICE: A Service Platform for Future Mobile IMS Services", IIE,
Internal Symposium on a World of Wireless, Mobile and Multimedia
Networks, Helsinki, Finland: 18 - 21June 2007

[11] D. Hunor, S. Tarkoma, " SPICE UNIFIED ARCHITECTURE",
http://www.ist-
spice.org/documents/SPICE_WP1_unified_architecture_Phase%202.pdf

[12] F. Lécué, A. Léger, “Semantic Web Service Composition Based on a
Closed World Assumption” Web Services, 2006. ECOWS '06. 4th
European Conference, pp.233-242, Dec. 2006.

[13] F. Lécué, E. Silva, L.F. Pires, “A Framework for Dynamic Web Services
Composition”, Halle (Saale), Germany, November 26, 2007, WEWS07.

[14] http://www.w3.org/TR/owl-features/
[15] Juan J. Hierro, Till Janner, David Lizcano, Marcos Reyes, Christoph

Schroth, Javier Soriano, "Enhancing User-Service Interaction through a
Global User-Centric Approach to SOA", Networking and Services,
2008. ICNS 2008. Fourth International Conference on , vol., no.,
pp.194-203, 16-21 March 2008

[16] Steffen B, Margaria T, Nagel R, Jörges S, Kubczak C, "Model-Driven
Development with the jABC," In Hardware and Software, Verification
and Testing. LNCS N. 4383, Springer Verlag; 2007:92-108.

[17] T. Margaria, B. Steffen, "METAFrame in Practice: Design of Intelligent
Network Services," in ”Correct System Design - Issues, Methods and
Perspectives”, LNCS 1710, Springer-Verlag, 1999, pp. 390-415.

[18] E. Newcomer, "Understanding Web Services: XML, Wsdl, Soap, and
UDDI" Addison, Wesley, Boston, Mass., May 2002.

[19] D. Jordan, J. Evdemon, "Web Services Business Process Execution
Language Version 2.0"

[20] R. T. Fielding, "Representational state transfer (REST)" Ph.D. Thesis,
University of California, Irvine, CA, 2000.

[21] Jin Yu, B. Benatallah, "A Framework for Rapid Integration of
Presentation Components". Canada: WWW 2007, May 8–12, 2007.

[22] http://www.w3.org/RDF/.
[23] http://www.w3.org/TR/rdf-schema/.
[24] http://www.w3.org/TR/owl-ref/.
[25] http://microformats.org/.
[26] RFC 2426.
[27] RFC 2445.
[28] http://www.w3.org/Submission/OWL-S/.
[29] http://www.w3.org/Submission/WSDL-S/.
[30] http:// www.w3.org/2002/ws/sawsdl/.
[31] http://www.w3.org/Submission/WSML/.
[32] M. J. Hadley, "Web Application Description Language (WADL)", SML

Technical Report Series, California, CA: March 2006.
[33] R. Battle, E. Benson, " Bridging the semantic Web and Web 2.0 with

Representational State Transfer (REST)", journal of web semantic,
sciencedirect, US: 2 June 2007

[34] Heiko Pfeffer, David Linner, and Stephan Steglich, "Modeling and
Controlling Dynamic Service Compositions," in ICWMC 2008, Athens
(Greece), July 27, 2008

