User-centric services and service composition, a
survey

Nassim Laga? Emmanuel Bertify and Noel Crespi

'Orange Labs Orange Labs - France Telecom R&D, 42, rue des Coutures, 14000 Caen France,
{{nassim.|laga, emmanuel.bertin}@orange-ftgroup.cpm

?|nstitut TELECOM SudParis, Mobile Networks and Multimedia Services Department, 9 Rue Charles
Fourier, 91011, Evry Cedex, France, {noel.crespi @it-sudparis.eu}

flexibility. Indeed, the user may need new servited are not
yet available. Moreover, the user may need a dpessfvice
for a short period of time which is not sufficignttost-
effective to launch a development process.

In the best of our knowledge, the listed topicsryise
composition, user-centric services development arseér
context aware application development) are stiated as 3
independent topics. In this survey, while we iniggge service
composition methods and technologies, we give riipgact of
each of them on user-centric service developmehis & a
first step toward using service composition to jevuser-

[. INTRODUCTION centric applications.

Service oriented architecture (SOA [1]) is a mature N the state of the art there are three categarfieervice
architecture concept, broadly adopted in both tefec COMposition: Automatic service composition, senteauatic
industry and internet industry. The main objectiW&OA is to ~ Service composition, and static composition.
build applications as reusable services and thesn&ble the
composition of these applications in order to redtle time °
to market. As far as service composition is conegrrSOA
developers usually:

Abstract— In this paper, we investigate the various service
composition mechanisms and provide the impact of eh of them
on user-centric service development issues. We dig service
composition mechanisms into three categories: autatic service
composition, semi-automatic service composition, d&n static
service composition. As services are today mainlyriden by the
user's needs, the following survey essentially foswon automatic
service composition and semi-automatic service comsgition. This
enables users to conceive theirs own personalizeppdications.

In automatic service composition the user formuslage
request (in natural or formal language) and thea th
composition mechanism processes the request and
generates the composite service.

in the

search available web services in a service repgsito®
where the service is described with a WSDL (Web
Service Description Language) document,

invoke the needed ones through SOAP (Simple Object

Semi-automatic service composition consists
management of the composition by the end user gftrau
graphical interface (e.g. YAHOO PIPES [4], EZWERB, [5
and MARMITE [6]) or using a formal language.

By static composition we mean a composition that is
achieved by a person who has development skillsdmad
knows the existing services. This person thendsud
composed service with a programming language by
invoking existing services.

Access Protocol), .
» compose them though programming or scripting laggua
« and then eventually publish a new service in the
repository, with the new WSDL document.

Thereafter, many works have been done on how tendxt
these functionalities (search, invoke, compose @rtgish) to The rest of the paper is organized as follows. iGec2
the end users. However, end users have no knowledge reviews the different composition categories. $ect lists
SOAP and WSDL and they are more used to informatian composition related technologies such ontology lukas
to Web Services. languages, microformat and service descriptions nsiea
Besides, telecommunication companies still workshow Section 4 introduces the requirements of a comiposit
to develop more user-centric services; serviceptadato the framework for user-centric services. The comparisetween
user's needs. To reach such aims, designers careigeen compositions methods — regarding requirements made in
applications that take into account the user cdngx3] or section 5. We conclude the paper in section 6 vutare
can conceive customizable applications. Taking extoount directions of our research.
user context is a powerful method but the usel Isiilk in

Il. RELATEDWORK service. First, it retrieves request-related sewifrom the
service repository and their non-functional proigsrfrom the
non-functional properties component. Using the ugeals
extracted from the request, the component builésctusal
link matrix (CLM) [12] or the extended CLM (CLM+ gl).
While CLM is a matrix that represents all matching
possibilities between inputs and outputs of sesyicthe
extended one takes into account the non-functiprigerties.
A. Automatic service composition The matching between two parameters is staticalpntified
Research work has been done extensively on aummaaiccording to an ontology database e.g. OWL [14] #rid
service composition, in order to build a customizeivice based on logical relations between them. Table dwshan
directly from a user request. Most of the approachssume €xample of such quantification.
that services are deployed on a Service Orientethif&cture
(SOA). In this section we do not expose in detdé t

In this section we investigate the different apples of
service composition. As mentioned, we have categdri
mechanisms of service composition into: (A) automservice
composition, (B) semi-automatic service composijtiamd (C)
static service composition:

TABLE |
QUANTIFICATION OF SEMANTIC MATCHING OF PARAMETERS

algorithms that manage the composition. We desdribiead

the required (and the most used) black boxes tdoimer Logic meaning | gjgnification Value

automatic service composition. S1=S2 Semantic of S1 is exactly the same as | 1

Challenges that have to be considered here are: semantic of S2 according to an ontology

. i _ ; €]
Firstly, how to transform the user request — presidn 1552 S17s 2 subclass of 52 73
natural language — to a formal request, S1>5S2 S2is a subclass of S1 13

» Secondly, what are the required services that respo S1#S2 S1 is different from S2 0
that request? (Service discovery),

« Thirdly, what is the execution sequence of theseicas The quantification of semantic matching between
that responds to the user request? parameters enables the quantification of the wiolaposite

« Finally, does the composite result match the usguest? service quality. Therefore, it allows users andedi@pers to

select the best composite service between others.
Request in a natural language

Lines of the CLM refer to all entries parameters adif
services. CLM's columns refer to all inputs of segg and to
the goals of the user request. An element in thiel @La set of
vectorsV (, ¢ = (Si, value)whereSi is a service that has as
input |, andvalue is a semantic matching value between an

3 . output ofSi and the corresponding column parameter ¢ (which
peveioper W is an input of another service), as indicated inetd.. Figure 2

shows an example of a CLM.

‘ Natural request processing ‘

‘ Composite Factory Service

repository) :
S1: company directory S2: global directory
Inputs: employe_name Inputs: person_name
Outputs: manager_name, Outputs: person_address,
Non Functional work_phone_number, email, phone_number
. work_address
properties =
Fig. 1. SPICE service automatic service compasiéichitecture
employe_name person_name manager_address
Many research work has been done on automaticcservi \
composition such as [7], [8], and [9]. However this section - {(s1,2/3)} -

employe_name

we focus on results of SPICE proje¢l0, 11] which we
consider as the most comprehensive one in the atitom
service composition issues. Figure 1 shows SPICkerson_name - {(52, 13) }
composition environment architecture. It summarpedectly
the listed challenges.

Natural request processing is a component thasftvems
the user request from a natural language to a i{denguage
that can be processed by the composite factory coer.

Composition Factory is the main component of théig. 2. CLM simple example
architecture; it receives as input a user requgstessed in a
formal language in which we can easily retrievetbguested ~ Once the CLM is constructed, algorithms such asCHa2]

services. This component is in charge of providingiposite and graph based algorithms [13] build the compasstwice.
Figure 3 displays the SPICE composite factory camepb

details.

Cause person_address (output of
S2)is a super-class of
manager_address (according to
an ontology &)

Cause manager_name (output of
S1)is asubclass of person_name
(according to an ontology &)

! http://www.ist-spice.org/

Described

Service repository
using

SPTEL or
Relevant Setof ws.BPEL
services A

services
Composite process }
CLM(+)
databases

based
construction Compositio
FaCTH R

Fig. 3. SPICE composite factory component details.

Service discovery

Formal
Request
(SPATEL)

Service
reasoning over
ontology

Pa4C is a recursive algorithm that runs on the dbghe
CLM. It has as input the constructed CLM, a setdilable
web services (WS), initial user inputs that repnégle initial
knowledge base (KB), and the user goals (B). Therdhm
then populates the KB with reached parameters g¢hro/'S
set until all user goals are reached.

Graph based algorithms follow, however the inverse

reasoning approach. Such as the Pa4C algorithnhawe as
inputs: the constructed CLM, a set of available \setvices
(WS), and the user goals (B). A set of services hhitialized
with services that have as outputs user goals B.efxrh
service (S) in N the algorithm checks if user irgpsett contains

input of translation service (text), and we linlke tbutput of
translation service (text) with an input of Yah@asch service
(String). Therefore, we composed a new service hwhic
translates a string passed as input, and seartite iveb the
translated string.

As illustrated with the example, YAHOOPIPE allowsets
to select and compose their own services from thbse
already exist. The framework is based on inputplatstsyntax
matching between services. However, the framewodsdot
manage semantic matching between inputs/outputghef
services.

all required parameters for its execution. If ithe case, then |

the S is removed from the list and the algorithrocpeds to
next one until N is empty. If user inputs are naffisient to
allow the execution of the service S, then the ritlgms
checks in the CLM+ if there are services that pilevas
outputs the necessary parameters. If such seraie$ound
then we remove S from the list and we add the faergices
to N. The graph composite service is constructedlewh
populating N.

Matcher receives the composite service and chegdin &
this matches the user request. Moreover, it caeiveanany
composite services and choose the appropriate civgg u
similarity function between: goals, inputs, outputson-
functional properties provided in the user requesty the
composite service goals, inputs, outputs and nanotional
properties.

B. Semi-automatic service composition

Semi-automatic service composition follows typigalthe
"web 2.0" perspective of next generation web apgbos,
where users are producers of contents and sendicgsed,
many examples of such applications are emergingt &f all,
YAHOOPIPES is a web application that consists in
graphical tool that provides end-users with theviser
composition ability (mashup). Figure 4 shows anngxa of
YAHOOPIPES graph based graphical interface.
represent services and wires represent input/outaithing
between these services. In the figure 4, ther¢haee services:
String builder service (let the user to enter thmgut),
translation service, and Yahoo search service. Ugiravires,
we link the output of string builder service (Sgirwith an

[String Buider 2=
& String i
© composition de sel }
[Translate 120"l
|
‘ Translate:l French to English :] |
[“ahool Search. HE
| |
| Search far fed fuied] |
& Site restriction i
' !
........................... o
[PipeOutput |
Fig. 4. YAHOOPIPES screenshot
MARMITE [6] is another graphical semi-automatic

composition framework with incremental execution of
mashups; users can execute composite service wt&ppand
see the intermediate results (see figure 5).ithemented as

a Firefox plug-in. Such as in Yahoo pipes, in Mdemi
composite services are a set of boxes (called tgsja
chained with wires. Marmite — by default — displays
intermediate results as a table (where each roavssucture
that has many attributes displayed in differentunuis).
However, some services should have alternative lajisp
means such as a map, and video. In the exampleeabiware
are three chained services: find events servitier fevents
service, and yahoo map service. Users can linkothput of
the find event service (which are a set of eveefindd with
attributes: event name, time, venue name, CcCityitutd,
longitude) with the input of filter events serviegich will
remove all events that satisfies a given condifeig. events
happened before 2006-11). Thereafter, users catagithese
events in a yahoo Map service — by linking the atigd finder
service to the input of Yahoo Map service — acaaydd the

Boxddace where they happened. the output However, MAHRM

authors have tested their framework on a sampééxgiersons
[6], where two of them are experienced with prograng,

and two others are experienced with spreadsheetnbut
programming, and the remaining two others are not
experienced with programming neither spreadsheeat. aA
result, three out of six did not succeed to buildomposite

service and those who have succeeded are thosehawe

the composite service with the Service Logic GrghG

knowledge in development and one of those who hay&7]). In this framework, business experts credte SLG

knowledge in spreadsheet.

EZWEB [5, 15] is another framework which we clagsif
the semi-automatic service composition categorycesiit
requires user participation to make the compositionthis
framework each resource (service or data) is ifledtivith an
URI and has an internal representation (XML) andntéwally
a graphical interface representation (XHTML).
framework allows users to make two subtype of caositjom:
wiring composition and piping composition.

Muse/play service)

Step 2: Filter Events
B (=i D

2006-11-09
2005-11-09 ...
11

Westin Work... Piltsburgh
Bynam Ir
<o

A
The 18th An...
Leany

Hoa

nea... Fims

Longiuude T Longiods) (/ \\)

= Intermediate results
15plays: View resuits for this step e e

o00 T

Show suggestions

Fig. 5. MARMITE screenshot [6]

Wiring composition is a composition between (asteao)
graphical interface representations of services.s Tis
managed by matching events and inputs (called)slots
services. To illustrate wiring composition we ched&utube
video search engine and Youtube video player seritthe
example on figure 6, when a user clicks on a mameng the
Youtube video search results, the video playeriserwill
play this given movie. This was set by the useoubh wires
tab where he first create a wire, then he seleataput of a
service, and then he select the slot that hantiegvent (see
figure 6).

Piping composition is more complex for the end wusBce
he has to invoke existing resources and orchestha® in
order to build a new service.

Both compositions type are achieved using the riafer
representation of resources (XML).

The listed semi-automatic service composition meismas
are today more tailored for Internet users thanefoterprise
usage. However, there are other approaches mdebkeufor
an enterprise usage such as in [16] where auttemsribes a
framework named JAVA Application Builder Center B&)
in which business experts (not necessarily theuseds) create

EZWEB

graph by drag and drop of the Service IndependeiitiBg
Blocks (SIB).

Click and play

Usermaps
events and slots

Fig. 6. EZWEB composition example

C. Satic service composition

By static service composition we mean the compmwsitihat
is achieved by the developer before its consumptiprthe
end-user. This approach is usually based on WSDAFS®eb
services or Representational State Transfer RESfitacture,
but new presentation layer approaches that comsighe
reusability of the graphical user interfaces arerging.

WSDL/SOAP web services [18] are a mature technology
used in both telecom industry and web world. Thieqgiple
consists in creating a service and provides itsctfanal
description in a WSDL file (operations and theirgpuits,
outputs parameters). The WSDL file can be storedain
Universal Description, Discovery, and IntegratiodDQI)
[18] directory. Therefore, third party developeansearch on
that directory and find the desired services amth tthey can
request them (precisely the desired operation)gugairsOAP
API.

Developers can achieve composition programmatically
using SOAP API's or through the orchestration (and
choreography) languages such as Web Services Basine
Process Execution Language (WS-BPEL [19]) standacdby
OASIS and bipartite graph representation described 4j. [3
WS-BPEL use XML tags to define the basic construiot
describes a business process such as loops, omsdas well
as invoking web services, waiting for messages, serdling
messages. After describing an execution procesg) UsIS-
BPEL, developers pass it to an orchestration enguth as

2 http://www.oasis-open.org

Apache ODE that can execute the process. The language has three sublanguages: OWL lite, WL
and OWL Full. With OWL lite, developers can expréssic

REST [20] architecture, the rival of SOAP/WSDL, isRDF schema such as: class, subclassOf, propedyetations

inspired from the HTTP protocol where we use an Wikl between that classes and instances such as: Hgualit

identify each service. The philosophy is littlefdient, instead Cardinality. However, developers can use OWL-Dlexpress

of wrapping many operations in one single servibe,REST value range of parameters, union, intersections and

architecture exposes many URIs with just 4 starglardomplement... the comprehensive list of OWL capaeédits

operations (GET, POST, PUT, and DELETE). The achged given in [24].

of such concepts compared to SOA architecture hee t An alternative to OWL language is the microformat

standard way to access the service (and thereforeged for approach. Indeed, microformat is an emerging canf2p

the developer to use SOAP APIs), and the clearratpa of that is basically used to annotate web pages wéhningful

the various operations (without the reference tairsgle tags in order to enhance efficiency of search exgyifihey are

service, that may only wrap a legacy application). a set of simple, human readable XML formats thatused to
define basic information such as person cards @hq26]),

<oomponent id="Company directory” calendar events (hCalendar [27]), reviews, XFN i@oc
wilns:cw="hetp:// LEancete lecom. fr/component” relationships). While the listed microformats aceepted by
adapter="org. Adapter" microformats community [25], other are expectedchsas. geo
address="http://fran com. fr/modules/comy (geographic coordinates), hAtom, hResume (publisi@iv),
CEVENT name=’£neratePerSDnNamE>” and rel-enclosure (for describing attached files).

<param element="manageriame"/ > Once we have a well defined semantic databases it i

</eventr important to agree on syntax that describes sesvilre this

</ comwponent s

area, the developer has many options: SPICE addameice
description language for telecommunication services
(SPATEL) which is used in SPICE project, OWL-S [28]eb
pub lisher Service Description Language Semantic (WSDL-S) [28]
Event: Semantic annotation WSDL (SAWSDL) [30] that are an
subscriber=rgloBaT directory” empowered version of WSDL with semantic annotations
operation="getPersoniddress"/ capabilities, Web Service Modeling Language (WSNR1],
and Web Application Description Language (WADL) [32
which is considered as a REST version of WSDL.

Instead of WSDL that describes operations, WAD Lufss
on resource descriptions and their available agugssethods
(GET, POST, PUT, and DELETE). Authors of [33] have
proposed an enhanced version of WADL that enables
developers to annotate semantically — which was yeit
available in WADL - the useful parameters such eguired
inputs to query a resource.

<listener id="global directoryListener™
wmlna="http://fragoetelecom. fr/ integration”

directary’™

TCotnpan

Fig. 7. Service and listener definition example

Another approach introduced in [21] consists in
publish/listen mechanism implemented at the presiemt
layer. Each service describes its operations, géegrdata,
and listeners. The developed framework, then mdmss t
generated data of one service with listeners othemoone.
Figure 7 shows description file of a service Slnfpany
directory) and the listener part of descriptioe fiif service S2
(global directory). As illustrated, the mappingsismtactic and
is based on name attribute of event tag and ewugititae of

. IV. REQUIREMENTS FOR USERCENTRIC SERVICES
listener tag (S1 generates an event called

"generatePersonName" that has a parameteménagerName”, To conceive user-centric services developers cpiement
and S2 handles the event through the operationctiur) applications that take into account the user cantex can
" getPersonAddress”). develop customizable applications. To conceivearnitable

applications, developers can offer to the usereeithmean to
set up his preferences and react accordingly,noean to build
. SERVICE COMPOSITION RELATED TECHNOLOGIES its own services. Table 2 summarizes personalizdéeel of

Composition architectures often incorporate semantFaCh method.

description of services. This enables composer ooet to
know what the service expects as inputs, whatavides as
outputs, and what the service does, and thenaimpaser will
perform a meaningful composition. There are manyasgic
languages but the most used one is Web Ontologguzge
(OWL [14]). The aim of OWL is to provide machinegwthe
ability to process semantically web informationofers more
expressive vocabulary than XML, RDF [22] and RDIE23].

TABLE Il TABLE Il

PERSONALIZATION LEVELS SERVICE COMPOSITION MECHANISMS COMPARISON
Personalization
method level Comments - -
]) Static service
User Context Low User can not modify service Auto_matlc Semi-] composition
behaviour, instead, service service Autqmatlc
modifies its own behaviour composition service Event
according to the user context composition | SOA Based
Preferences Medium User can modify its preferences
and then the behaviour of the Loose 0 0 1 1
service coupling
User High User can conceive a completely
development new services based on existing
enablers Simplicity 1 0 -1 -1
As user needs are various and numerous, the bgstowa| _) .
. 7. Time to Low Low Medium Mediu
satisfy a user is to empower him with service CoSfEIN | . arket m
capabilities. We identified the following essehtig
requirements in designing a service compositiorirenment:))
Execution High Low Low Low
. . .| time
» Loose coupling: composition tool have to take int

account third party services. Indeed, users mayl reee
composition of services from different service pdavs Simplicity of the composition tool usage is an impat
(e.q. display caller location on googleMap). Thifigilty criterion to attract more users. Unfortunately, the SOA
resides in performing composition between two s&wi based composition which gives good performanceiseirother
of different providers while maintaining services arequirements, user investment in the compositicvcgss is
independent as possible. Indeed, the developer wéry high since he needs to master a programmirsgripting
googleMap does not know whether his service will beanguage to perform the composition himself. Evdn i
composed with a caller identification service, asgnce graphical tools might be used to generate this raraging
service or video game service. This will pave tla/for code, these tools are not intuitive to master. Harein
more innovative services. automatic service composition, the users havetquisirmulate

* Simplicity: the intuitiveness of composition toadls an a request in their natural language to get the csitgservice.
important requirement to attract more users anf8emi-automatic service composition states the insestment
developers, especially in order to reduce the imvest in the middle. Indeed, it requires more user astimnperform

needed from the user to build their own services. the composition, but these actions remain intuiieeause the
 Time to market: how to reduce the time to market afiser can experiment and see immediately the resuilt
applications is a question that rises in most corngsa concrete services.
e Execution time: execution time of the composition All composition mechanisms reduce the time to miarke
framework is a criterion that attracts users However, the benefit is fewer in static service position

since there still a development process, whereasmetic
service composition and semi-automatic service @mitipn
V. COMPARISON are achieved directly by the end user.

In this section we compare different compositionConcerning the execution time of the compositioncpss
mechanisms according to the listed requirementgleT#l (including user request processing, service disgovand
summarizes the impact of each composition methogamn COMPosition mechanism), it is very high in automatervice
requirement. composition. This is essentially due to the natlaaguage

Considering the loose coupling requirement, the S@sed Processing component and the semantic reasone EocemLs.
service composition imposes fewer constraints. drdén the USer involvement in composition process reduces the
other composition mechanisms (automatic servicgxecution time considerably.
composition, semi-automatic service compositionj ament
based composition), we impose to the different iserv
providers to agree on a common semantic whereasatit- VI. CONCLUSIONAND FUTUREWORK
service composition there is no need of semantimtations In this paper we have investigated different coritjms
since the composition is performed by a developat knows mechanisms and have detailed how to use these nisgtsa
about the existent services and theirs parameters. for user-centric service development. We have coetpthese

composition mechanisms and outcome with the folgwi
conclusions:

Both static service composition and semi-automati@l

service composition are useful and both have tioéés in
the composition platform. While the former is more
appropriate for frequently long-term use applicagi@and

reduce the time to market of innovative servicesuising (7]

the existent enablers, the later will provide tlseruwith

the ability to compose their own services, and then
semi®!

reaching a customizable platform. However,
automatic service composition mechanisms need
intuitive user interface that performs the composit
which is difficult to perform in limited devicessmatic
service composition is more appropriate in thaecisce
it does not need a complicate interface).

We have to find the trade-off between accuracy dtll

semantic annotations of information and their siaifgl

While ontologies are more accurate, microformats afi2]

simpler to use. Ontology databases are richer atitithte
new concepts integration and then more dynaminityhé

development, instead microformats are static an

integration of new concepts must follow an accegtan [14]
process by the community. However, ontology reasonel1°!

are more time consuming than microformat reasoners.
A specific API in the development is probably netde
ensure the semi-automatic service composition atet-i
service communication. The API must still as simate
possible to let the developer deals with the servic
functionalities instead of bothering with compausiti
issues.

In the future works, we plan to define a compreh&ns [1g]

architecture that takes advantages of compositiechamisms

to

architecture will provide a simultaneous accessseovices
through a dashboard concept. By combining a dastboa
concept with service composition and communicatiea,can
leverage user context (What are user's services® Wdes the |,
user do?) to compose services more pertinently.

To step toward the industrialization of the arattitee,
whatever

facilitate the design of user-centric serviceEhis

the chosen semantic annotations

company functional information in order to providevelopers [
with a referential. [

The architecture will even take into account thaitiveness
of the composition mechanism. The intuitiveness délpend
essentially on users feed back. Therefore, the wdfkollow

[30]
(31]
[32]

a cyclic development process.

(1]
(2]

(3]

(4]

REFERENCES

E. ThomasService-Oriented Architecture: A Field Guide to Integrating
XML and Web Services. Prentice Hall, Upper Saddle River, NJ, 2004.
H. van Kranenburg, M.S. Bargh, S. lacob and A. Reulufs, ‘A context
Management Framework for Supporting Context-Aware Distributed
Applications’, Communications Magazine, IEEE, Aug 2006, pp.78i7-
J.M. Serrano and J. Serrat, “Information Modelimgl &Handling for
Context-Aware Multimedia Services”, Wireless Comications, IEEE,
Oct 2006, pp. 104-111.

J. Soriano,Fostering Innovation in a Mashup-oriented Enterprise 2.0
Collaboration Environment. UK, sai: sisn.2007.07.024, Vol 1, No 1, Jul
2007, pp 62-68.

(10]

[13]

(16]

[17]

[19]
[20]
[21]

[23]
[24]

technolob
(ontology databases or microformat), we have to ehod[27]

[33]

http://pipes.yahoo.com/pipes/

J. Wong, J. I. Hong,Making mashups with marmite: towards end-user
programming for the web". In Proceedings of the SSGCHI Conference
on Human Factors in Computing Systems, New York: NY, pp 1435-
1444.

D. Wu, E. Sirin, J. Hendler, D. Nau, and B. ParSiajtomatic Web
Services Composition Using SHOP2", 13th International Conference on
Automated Planning & Scheduling, Workshop on Plagnfor Web
services, Trento, Italy, June 2003.

R Zhang, I. B. Arpinar, B. Aleman-MezaAutomatic Composition of
Semantic Web Services', WWWO03, Budapest, Hungary: 2003.

J. Gekas, M. Fasli,Automatic web service composition based on graph
network analysis metrics’, OTM Conferences (2) 2005: pp 1571-1587.
S. Tarkoma, B. Bushan, E. Kovacs, H. Van Kranenblrdostmann, "
SPICE: A Service Platform for Future Mobile IMS Services', IIE,
Internal Symposium on a World of Wireless, MobiledaMultimedia
Networks, Helsinki, Finland: 18 - 21June 2007

D. Hunor, S. Tarkoma, "SPICE UNIFIED ARCHITECTURE",
http://ww.ist-
spice.org/documents/SPICE_WP1_unified_architecRinase%202.pdf
F. Lécué, A. Léger, Semantic Web Service Composition Based on a
Closed World Assumption” Web Services, 2006. ECOWS '06. 4th
European Conference, pp.233-242, Dec. 2006.

F. Lécué, E. Silva, L.F. Pire$A Framework for Dynamic Web Services
Composition”, Halle (Saale), Germany, November 26, 2007, WEWS07.
http://www.w3.org/TR/owl-features/

Juan J. Hierro, Till Janner, David Lizcano, Mard®syes, Christoph
Schroth, Javier SorianoEhhancing User-Service Interaction through a
Global User-Centric Approach to SOA", Networking and Services,
2008. ICNS 2008. Fourth International Conference ,omol., no.,
pp.194-203, 16-21 March 2008

Steffen B, Margaria T, Nagel R, Jorges S, KubczakMbdel-Driven
Development with the jJABC," In Hardware and Software, Verification
and Testing. LNCS N. 4383, Springer Verlag; 2007198.

T. Margaria, B. Steffen METAFrame in Practice: Design of Intelligent
Network Services," in "Correct System Design - Issues, Methods and
Perspectives”, LNCS 1710, Springer-Verlag, 1999,399-415.

E. Newcomer,"Understanding Web Services. XML, Wadl, Soap, and
UDDI" Addison, Wesley, Boston, Mass., May 2002.

D. Jordan, J. EvdemonWeb Services Business Process Execution
Language Version 2.0"

R. T. Fielding, "Representational state transfeESR)" Ph.D. Thesis,
University of California, Irvine, CA, 2000.

Jin Yu, B. Benatallah, "A Framework for Rapid Intagon of
Presentation Components". Canada: WWW 2007, Mag,82d07.
http://mww.w3.0rg/RDF/.

http://www.w3.org/TR/rdf-schema/.

http://mww.w3.org/TR/owl-ref/.

http://microformats.org/.

RFC 2426.

RFC 2445.

http://mww.w3.org/Submission/OWL-S/.
http://www.w3.org/Submission/WSDL-S/.

http:// www.w3.0rg/2002/ws/sawsdl/.
http://mww.w3.org/Submission/WSML/.

M. J. Hadley, "Web Application Description Langug§¢ADL)", SML
Technical Report Series, California, CA: March 2006

R. Battle, E. Benson, " Bridging the semantic Wel &/eb 2.0 with
Representational State Transfer (REST)", journalweb semantic,
sciencedirect, US: 2 June 2007

[34] Heiko Pfeffer, David Linner, and Stephan SteglitModeling and

Controlling Dynamic Service Compositions,” in ICWMC 2008, Athens
(Greece), July 27, 2008

