
Building a user friendly service dashboard: Automatic and non-intrusive
chaining between widgets

Nassim Laga1, 2, Emmanuel Bertin1, and Noel Crespi2,

1Orange Labs Orange Labs - France Telecom R&D, 42, rue des Coutures, 14000 Caen France,
{{nassim.laga, emmanuel.bertin}@orange-ftgroup.com},

2Institut TELECOM SudParis, 9 rue Charles Fourier, 91011, Evry Cedex, France,
 {{Nassim.Laga, noel.crespi}@it-sudparis.eu}

Abstract

End-users self service and end-users as co-developers
are two main characteristics of web 2.0 paradigm. They
will harness the great potential of the Internet of services.
However, today's service exposure tools and service
composition tools are too complex to be used by ordinary
end-users. They are based on technologies such as REST,
WSDL, and SOAP which are hardly understandable by
the end-user. In this paper, we propose a widget based
service exposure and service creation tool. Our
framework creates links between loaded widgets
automatically; additional functionalities are thus added
automatically to existing widgets as long as the end-user
loads other widgets to his personal environment; in the
same way as he launches an application on his Windows
environment. This mechanism is definitely more intuitive
than SOA technologies as it is based on the user interface.

1. Introduction

Tim Oreilly introduced in [1] the Web 2.0 paradigm
and gave in the same document its characteristics such as:

• software packaged as services,
• competition for data owning,
• users as co-developers,
• harnessing collective intelligence,
• services on heterogeneous devices,
• customer self service,
• and rich user interfaces
Today we have already reached some of these

characteristics. Indeed, big Internet firms (such as Google,
Amazon, and Yahoo) enable third party developers to use
their software logic through reusable services and APIs,
and thus to add quickly more functionalities to their
services, websites and even to their desktop applications.
In the last years, even telecom operators have joined this
philosophy [20]. They have opened their infrastructure
through reusable APIs such as phoning, SMS, MMS,
Presence, and IM. Examples of such operators are British
Telecom's Web21C SDK [2] and Orange Partner [3].

However, it seems that opening software functionalities
through reusable services is necessary but not sufficient to
enable end-users to load their own services, nor to create
them, nor to harness the collective intelligence. This is
especially due to the nature of today service oriented
architecture SOA [4] which is more developer centric.
Indeed, it is based on complex standards and technologies
(such as WSDL [5], SOAP [6], REST [7], and WS-BPEL
[8]) which address perfectly the machine to machine
communication issues but still remain too complicated to
be used directly by the end user himself.

Thereafter, user-centric service creation tools have
emerged. We witnessed the emergence of widgets and
widget aggregator concepts. Widgets are small client-side
web applications that provide the end-user with a single
functionality of a service. Widgets paradigm provides
service providers with another way to publish their
services. A way which is definitely more intuitive for the
end-user as it is based on user interfaces. Widget
aggregators such as [9], iGoogle [11], and Netvibes [12]
are customizable web environments which enable the end
user to aggregate their preferred widgets (i.e.
functionalities). Moreover, FAST European project [13]
goes further than simple aggregation of widgets. In their
implemented platform (EZWEB [13]) they also enable the
end-user to set up communications between two widgets
by mapping outputs of a widget with inputs of another.
This enables end-users to implement small changes in
their business processes by chaining widgets.

In addition, OPUCE [14] is another European project
which aims to provide the end-users with intuitive tools
that enable them to create their own services. These tools
are based on graphical chaining of existing services. They
are very close to Yahoo PIPES [15], Microsoft POPFLY
[16], and MARMITE [17], they enable the end user to
chain a set of services by mapping inputs and outputs.

These projects and mechanisms have significantly
improved the intuitiveness of service creation tools. But
we think that there are more things to do in order to
enable ordinary end-users to chain existing services.
Indeed, ordinary users do not understand what is an input
parameter of a service or an output parameter of another.
They can not detect compatible parameters and chain

them. Therefore, we propose in this paper a framework
named "communication manager" which enables an
automatic and non-intrusive chaining between widgets. It
is automatic because end-users have nothing to do to
detect matching between inputs and outputs of services.
And it is non-intrusive because it is up to the end users to
activate them or not using actions as simple as a click.
This framework consists then in detecting, at the run time,
all input/output matching between loaded widgets. We
expose these links to the end-user directly in his
environment so that he can activate them directly.

In the following section we illustrate a motivating
example of an inter-widget communication tool. We
summarize then its requirements in section 3. Section 4 is
an architectural overview of the proposed framework. We
detail its implementation in section 5. We provide the
end-user view of the implemented framework in section 6.
And finally, we review the related work and conclude the
paper in section 7 and 8.

2. Motivating examples

In this section we will illustrate through two concrete
examples the benefits that come from chaining widgets
each with others using inter-widget communication tools.
The first example is about business process based widgets
and the second one is about telecom based widgets.

2.1. Business process based widgets example

As an illustrative scenario consider a simplified

customer order fulfillment process illustrated in Figure 1.

Figure 1: Customer order fulfilment.

The first step of this process is the creation of an order

by the customer. When the supplier receives this order, he
books the corresponding product, edits the invoice and
sends them to the customer. Current technologies enable
well the implementation of this process. Indeed, WS-
BPEL, BPEL4WS, and even user interface based tools
such as Microsoft POPFLY, Yahoo PIPES, and
MARMITE are perfectly tailored for such usage.
However, dynamicity of today's working methods implies

frequent changes of business processes; changes that are
not expected by process developers, and current
technologies do not allow a rapid adaptation to these
changes. Indeed, users must wait for another development
process performed by the IT team or advanced users.

Using widget paradigm however, users can add easily
new services and process tasks to their environment. More
important is if the user can link these widgets, he can
perform intuitively the new process without being forced
to recreate it.

Figure 2: Supplier view of the process.

In the described scenario of Figure 1, consider a new

business process which forces the supplier to check the
availability of the ordered products before booking them.
Using the widget paradigm and inter-widget
communication tools, the supplier can add a widget which
checks the availability of products and thus he can launch
this task automatically or semi-automatically when he
receives an order. Figure 2 displays the supplier view of
the new process implemented with widgets and inter-
widget communication tool.

2.2. Telecom services based widgets

In this example we will illustrate the benefit of using

widget paradigm and inter-widget communication tools to
build the end-user communication environment. Consider
an employee who frequently uses a conference call
application, phone, contact list application, agenda
application, email, and IM application. In addition to
these applications, he can use, less frequently, an SMS
service, a location service, and a directory service. The
current implementations of these applications are made so
that they are independent each from the others. Indeed, the
end-user can not add a click-to-call button to his directory
and contact list applications. He can neither add a click-
to-initiate-conf-call button to his agenda entries nor a
click-to-locate a contact to the directory applications.

The advantage of widgets and widget aggregators is the
ability of the employee to access all these applications
from a single environment as we detailed in [9]. In [9] we

have also introduced the idea of implementing inter-
widget communication mechanisms as these widgets are
loaded into the same environment. The inter-widget
communication mechanism creates then other
functionalities inside existing widgets as long as the end-
user adds widgets to his environment.

Figure 3: Inter-widget created links.

As an illustrative scenario, let us consider that a

booked meeting in the employee's agenda is about to start.
The employee is reminded with an alert. He goes to the
agenda widget in order to have more details about the
meeting. He notices that he is the organizer and the
meeting should be held by call. So he should initiate and
manage the conference call. With the inter-widget
communication tool, the employee will find automatically
a click-to-initiate-conf-call on his agenda widget. During
the conference call, the employee would like to know who
are the connected people, he loads for that the directory
widget, and then, the inter-widget communication tool will
add automatically a button to the conference call widget
so that the employee can search each attendee information
details in the directory. With the inter-widget
communication tools, the employee can add intuitively
many functions to conference call application, such as
send instant message, share a document, and localize a
user; he has just to load the widget into his environment in
the same way as he launches applications in a Windows or
Linux environment. Figure 3 illustrates different links
between widgets and a corresponding business action
realized by the end-user. It illustrates also that inter-
widget communication tools enable end-users to add
telecom functionalities to existing business process
applications.

3. Requirements

From the above illustrative examples we can already

deduce some requirements for an efficient inter-widget
communication tool. We need at first to create links

between widgets so that the end-user can launch
functionalities of a widget from another (e.g. initiate a call
session from the contact list widget). This action (link
creation) requires a shared semantic as the created links
involve widgets of heterogeneous providers. These links
can be defined explicitly by the end-user himself such as
EzWeb platform [13], and MARGMASH [23], but this
requires knowing how to map compatible inputs/outputs;
which is not obvious for ordinary users. Therefore, we
introduce in this paper to detect automatically compatible
inputs/outputs of widgets of heterogeneous providers.

Once the inter-widget communication tool detected the
compatible inputs/outputs, it should create the links and
present them to the end-user in an intuitive way so that he
can activate them or not. The presentation of the links
should be eloquent about its target functionality. In
addition, the framework should create and remove these
links dynamically as the user loads/unloads widgets
to/from his environment.

From the above concrete examples, we also deduced
that there are two types of links: the event based links and
the data based links. The event based links are those
which are activated automatically each time a specific
event is triggered by a widget (e.g. each time a user is
connected (the event) on the conf call widget, we display
his contact card on the directory widget). The data based
links however are those which are activated by the end-
user himself such as calling a selected contact in the
contact list widget, in this case no event is associated to
the link.

In the following section we will describe the
architecture of the framework that tackles the listed
requirements.

4. Architecture description

In this section we will first describe the involved
components in our end-user environment which enables
the widgets to communicate with each others. Thereafter
we will go in depth and detail the inter-widget
communication mechanism through process views of
different steps of widgets lifecycle in the environment.

4.1. Component view of our widget aggregator

The implemented end-user environment contains four
main components: widgets, widget aggregator, and inter-
widget communication component. W3C definition [18]
of widgets is "Small client-side Web applications for
displaying and updating remote data that are packaged in
a way to allow a single download and installation on a
client machine, mobile phone, or mobile Internet device".
This definition limits a widget to data access technique. In
this paper however we extend it and propose the following

definition: "widgets are small client-side web applications
for offering atomic functionalities of an enterprise
application, packaged in a way to allow a single download
and installation on a client machine, mobile phone, or
mobile Internet device".

Widget aggregator is the end-user customizable
environment. It enables the end-user to personalize his
environment by loading only his preferred widgets;
widgets which enable him to accomplish his business
activities. As detailed in [9], this component contains four
main modules:

• Authentication manager component: It performs
the end-user authentication

• User preferences manager component: It manage
the end-user related data by reading from and
writing on the database

• Download and parser components: Which load
user preferred component into his environment,
parse the loaded modules, and modify HTTP
requests to AJAX requests.

Inter-widget communication component enables
widgets to communicate with each others. It is based on
publish/subscribe mechanism. Each subscription contains:

• a call-back function which will be invoked to
execute the service,

• a parameter type which is the type of input
parameters of the call-back function,

• and a representation icon (or label) of the
functionality which is provided by this widget

Figure 4: Widget aggregator component view.

Inter-widget communication component maintains

three main lists:
• L1: It contains all generated outputs of each

service of each loaded widget.
• L2: It contains the list of subscriptions
• L3: It is the matching list between L1 and L2. It is

deduced after semantic reasoning between inputs
parameters which are stored in L2 and outputs
parameters which are stored in L1.

Figure 4 is a component view of the framework.

4.2. Inter-widget communication mechanism
details

In this subsection we will illustrate the relationship
between all these components and how to enable the
widgets to communicate each with others. To do this we
consider the widget lifecycle. There are three main steps:
the initialization phase, the inter-widget communicating
phase, and the unloading of the widget phase. These three
steps are detailed below.

4.2.1. Initialization phase. During this phase, the inter-
widget communication component will detect all
inputs/outputs matching between the widgets and then, it
will display them as clickable icons to the user. Three
actions are realized. Figure 5 is an illustration of the
whole phase process view.

The first action is performed by the parser component
which detects inputs and outputs parameters of the loaded
widget (step 2 and 3); the inputs are associated to a call-
back function, and an icon which is representative of the
provided functionality of the call back function.

The second action is the transmission of these
parameters to the inter-widget communication component
(step 4). The inputs are transmitted as subscriptions and
they are stored in L2 (step 5), and outputs are transmitted
as publishable parameters and are stored in L1 (step 6).
The inter-widget communication component updates L3
each time it updates L1 and L2 (step 7).

Figure 5: Initialization process view.

The third and last action is performed by the inter-

widget communication component. It consists in the
modification of each widget communication area (defined
by the widget itself) whose published parameters match
inputs of other widgets (step 8); the communication
manager inserts the icon of the corresponding subscription
so that when the end-user clicks on this icon, inter-widget
communication component launches the function of the
corresponding subscription (i.e. the user will launch an
action on another widget); these actions are related to the

inter-widget communication phase which is detailed
below.

4.2.2. Inter-widget communicating phase. This phase
gets started when the user wants to launch an action on a
widget from another widget. To do this, He clicks on the
icon which was inserted during the widget initialization
phase. Figure 6 summarizes this process. First, the inter-
widget communication component is notified (step 9). So
he checks whether the corresponding call-back is a
JavaScript function or a server side URL (step 10). If it is
a JavaScript function then the inter-widget communication
mechanism will invoke it directly, otherwise, the inter-
widget communication component will invoke the
download component in order to load the new URL with
the corresponding parameters (step 11, 12, 13, 14, and
15). During the invocation, the generated data of the first
widget must be transmitted as inputs to the second widget.
So we have defined a data exchange protocol. This
protocol consists in providing a URL of the generated
data instead of the generated data. The second widget
should then download these data (step 13).

Figure 6: Inter-widget communication phase process

view.

Figure 7: Widget unloading process view.

4.3.3. Widget unloading phase. The widget aggregator
framework knows at real time widget loading and
unloading actions. When a widget is unloaded, users can
no longer launch them from other widgets. So we should

delete all icons (from other widgets) which refer to this
widget. Figure 7 illustrates the corresponding
process.First, the widget is unloaded from the user
environment (step 17). So, the widget aggregator notifies
the inter-widget communication component (step 18)
which updates at first its lists (step 19, 20, and 21) and the
widgets user interface by deleting all icons of the
unloaded widget (step 22).

5. Implementation

The whole framework is implemented as a web
application. The main logic resides at the client side which
is implemented with JavaScript. Download component, as
described in [9], is based on AJAX as it deals with server
side interactions. Inter-widget communication component
is a JavaScript API which is generally invoked by the
aggregator framework but it can be invoked by the
widgets as well. The API contains the following
functions:

• subscribeToData(WidgetId, dataType,
urlCallBack, iconActionUrl): This function enables
the aggregator framework to subscribe a widget
identified by "WidgetId" to a type of data
"dataType". Inter-widget communication
framework will invoke the "urlCallBack" when the
corresponding dataType will be published.
"IconActionUrl" the representative icon URL
which will be inserted into other widgets.

• subscribeToEvent(WidgetId, eventType,
urlCallBack): This function enables the aggregator
framework to subscribe a widget identified by
"WidgetId" to a type of events "eventType". Inter-
widget communication framework will invoke the
"urlCallBack" when an event of that type occurs.

• publishData(WidgetId, dataType, Message,
DestWidgetId): This function is usually inserted as
a handler of the inserted icon. But it can be
invoked by the widget itself as well. dataType is
the type of the generated data. Message is the
generated data URL. DestWidgetId is the id of the
destination widget.

• publishEvent(WidgetId, eventType, Message,
DestWidgetId): This function is usually invoked by
the widget, but it can be invoked by the aggregator
as well in order to transmit global events.
eventType is the type of the generated data.
Message is the generated data URL. DestWidgetId
is the id of the destination widget.

• Unsubscribe(WidgetId, dataType/eventType): This
function unsubscribes a widget from a dataType. It
is usually invoked by the inter-widget
communication component itself but it can be
invoked by the widget as well.

• clearWidget(WidgetId): This function is invoked
by the aggregator framework when the widget is
about to be suppressed from the environment in
order to update it.

6. End user view of the framework

In order to illustrate the benefits of the implemented
mechanisms lets consider the end-user point of view.
Consider an employee who is used to have meetings held
by conference call and wants to personalize his
environment. First, he loads the agenda widget. Then, he
loads the conference call widget, so the inter-widget
communication component will insert automatically the
corresponding icon on each entry of the agenda widget so
that the end-user can start directly a conference call from
an agenda (the conference call widget will then invite
automatically all meeting attendees). The employee knows
that sometimes unknown people might join the conference
call and he needs to search them on the directory, so he
loads the directory widget too. The inter-widget
communication component inserts automatically the
corresponding icon on the conference call widget so that
when the employee clicks on it, the directory widget
displays automatically the contact information of the
connected user. The employee knows also that during
conference calls we frequently need to share files with
other attendees, so he loads the sharing file widget and the
corresponding icon is automatically inserted into the
conference call widget.

Now, during a conference call, suppose that the
employee wants to discuss offline with an attendee. He
needs an instant messaging widget which is not yet present
in his environment. He has just to load it (at the runtime),
and the inter-widget communication component will insert
automatically the corresponding icon besides each

attendee on the conference call widget. It even inserts the
icon to a searched contact in the directory widget so that
the end-user can initiate a discussion from the directory.
Figure 8 is a screenshot of our framework realizing the
described environment.

7. Related work and discussion

The proposed approach of end-user service creation is
in line with the historical evolution of engineering
methods; methods that always aim to reduce the time to
market of new services. Indeed, we began by the
definition of a function which is reused inside a program,
then a class and finally a service which is platform
independent. Services provide an opportunity to harness
the great potential of current Internet where developers
expose their applications as services through standardized
technologies such as WSDL and REST. Thus, companies
reuse not only local existing services but also third party
services. Thereafter, service composition tools appeared
such as BPEL4WS, and WS-BPEL to accelerate service
development process. They enable service developers to
chain existing services using an intuitive graphical tool.

However, currently, these tools are accessible only for
developers or at least advanced users; this is essentially
due to their complexity. Consequently, new technologies
such as widgets [18], Yahoo PIPES [15], Microsoft
POPFLY [16], MARMITE [17], EZWEB [10], and
OPUCE SCE [19, 24] which are based on the service
graphical interfaces are emerging; they promise a great
potential for the end-user. They will enable him to create
and personalize intuitively his environment.

Yahoo PIPES is a web application that consists in a
graphical tool that provides end-users with the service
composition capabilities (mashup). Figure 9 shows an
example of Yahoo PIPES composite service which is

Figure 8: End-user environment screenshot.

based on basic services user interfaces. Boxes represent
services user interface and wires represent input/output
matching between these services which are defined by the
end-user himself.

Figure 9: Yahoo PIPES screenshot.

EZWEB is a widget based web application. In this

framework each resource (service or data) is identified
with an URI and has an internal representation (XML) and
optionally a graphical interface representation (the
widget). A widget may be a composition of many
resources which is usually defined by a developer. The
particularity of this framework is that it enables the end-
user to chain widgets between each others by mapping
compatible inputs and outputs. This enables the end-user
to add functionalities of a widget to another.

Figure 10: MashMaker screenshot.

MashMaker [21, 22] and MARGMASH [23] are two

other mechanisms which enable end users to create their
own mashup from existing web sites. The most important
innovation of MashMaker is the data extraction from web
pages which contain unstructured data. The end-user can
thus map these data as inputs to another service. Figure 10
displays a "Yellowpages" web page in which MashMaker
component extracts automatically all addresses, phones
and names. Thereafter, if the user wants to display these
addresses in a Map, he has just to load a Map service such
as (Yahoo Map or Google Map). The philosophy is

almost the same in MARGMASH except that the user
extracts the data himself and maps them to other services.

Figure 11: Integration of inter-widget communication

mechanisms with service creation tools.

All these tools improve significantly the intuitiveness
of service creation tools. But we think that it remains not
intuitive enough as they are all based on chaining an
output of a service with another which is not obvious for
ordinary users. Our proposition, however, detects all
inputs/outputs matching between loaded services and
displays them to the user, and thus enables him to navigate
between a widget to another. As a consequence of this
approach, additional functionalities are automatically
created in existing widgets (services) as long as the end-
user loads widgets into his environment in the same way
as he launches an application in his Windows
environment; without any inputs/outputs matching.

However, these approaches might run complementarily
as illustrated in figure 11. Developers and advanced users
may create widgets that are based on a definition of an
orchestration using tools like Yahoo PIPES or Microsoft
POPFLY. Then, the inter-widget communication
mechanism set up links between Yahoo PIPES based
widgets, Microsoft PopFly based widgets and others to
deal with runtime and spontaneous needs of the end-user.

8. Conclusion

To make Web2.0 paradigm a reality, end-user self
service and end user service creation capabilities are a
must. Existing end-user service creation tools have made
significant advances over the last years. But we think that
these tools still remain too complex for ordinary users as
they all suppose that the end-user is able to make
matching between inputs and outputs of services. But
actually this is true only for advanced users. In this paper,
we have defined an intuitive tool that creates
automatically additional functionalities to existing widgets
as long as the end-user loads new widgets to his
environment; he performs that in the same way as he
launches an application on his Windows environment. The
defined end-user environment is a web based widget
container. The particularity of this environment is that it
creates automatically links between widgets; without any
involvement of the end-user. Thus, it enables him to

launch functionalities of a widget from another. This
mechanism enhance significantly the intuitiveness of the
mashup editing tools comparing to current platforms such
as Yahoo Pipes, EzWeb, and Microsoft PopFly in which
the end-user should know how to map outputs of services
with compatible inputs of others; which is not obvious for
ordinary users.

However, in current web platform which hosts a huge
amount of services, the proposed framework will generate
multiple links. This makes the end-user confused, not
controlling his environment, and spending more time to
find the right link instead of performing his business
activity. Indeed, the generated links depends only on the
services and not on the user business profile and context.
In our future work, we will investigate these issues. We
will work on how to set up the links between widget
according to the business processes, context and
preferences of the end-user. We will also investigate
security issues that stems from the fact that we enable
widgets of different providers to communicate each with
others. We will provide mechanisms which enable a
service provider to define which widgets could
communicate with his owns.

.

9. References

[1] Tim O'Reilly, "What Is Web 2.0, Design Patterns and

Business Models for the Next Generation of
Software",

[2] BT. Web21C SDK. http://web21c.bt.com/.
[3] Orange Partner. http://www.orangepartner.com/.
[4] E. Newcomer, "Understanding Web Services: XML,

Wsdl, Soap, and UDDI" Addison, Wesley, Boston,
Mass., May 2002.

[5] W3C, http://www.w3.org/TR/wsdl.
[6] W3C, http://www.w3.org/TR/soap/.
[7] Roy Thomas Fielding, "Architectural Styles and the

Design of Network-based Software Architectures",
thesis dissertation, 2000

[8] A. Alves, et al, "Web Services Business Process
Execution Language Version 2.0.", committee
specification. OASIS, January 2007.

[9] N. Laga, E. Bertin, N. Crespi, "A unique interface for
web and telecom services: From feeds aggregator to
services aggregator," in ICIN 2008, Bordeaux,
France, 20-23 October 2008.

[10] J. Soriano, "Fostering Innovation in a Mashup-
oriented Enterprise 2.0 Collaboration Environment."
UK, sai: sisn.2007.07.024, Vol 1, No 1, Jul 2007, pp
62-68.

[11] Google, http://www.google.com/ig
[12] Netvibes, http://www.netvibes.com
[13] European commission, "Future Networks & Services,

Developing the Future of the Internet through

European Research",
ftp://ftp.cordis.europa.eu/pub/fp7/ict/docs/futint-
book_en.pdf

[14] Sanchez, A.; Carro, B.; Wesner, S., "Telco services
for end customers: European Perspective," in
Communications Magazine, IEEE , vol.46, no.2,
pp.14-18, February 2008

[15] Yahoo PIPE, http://pipes.yahoo.com/pipes/.
[16] Microsoft popfly, http://www.popfly.com.
[17] J. Wong, J. I. Hong, "Making mashups with marmite:

towards end-user programming for the web". In the
SIGCHI Conference on Human Factors in
Computing Systems, New York: NY, pp 1435-1444.

[18] W3C, http://www.w3.org/TR/2007/WD-widgets-
reqs-20070209/

[19] Yelmo, J.C.; del Alamo, J.M.; Trapero, R.; Falcarm,
P.; Jian Yi; Cairo, B.; Baladron', C., "A user-centric
service creation approach for Next Generation
Networks," Innovations in NGN: Future Network and
Services, 2008. K-INGN 2008. First ITU-T
Kaleidoscope Academic Conference , vol., no.,
pp.211-218, 12-13 May 2008

[20] Labrogere, P. "Com 2.0: A path towards web
communicating applications." Bell Lab. Tech. J. 13, 2
(Aug. 2008), 19-24.

[21] Ennals, R. J. and Garofalakis, M. N. "MashMaker:
mashups for the masses." In Proceedings of the 2007
ACM SIGMOD international Conference on
Management of Data (Beijing, China, June 11 - 14,
2007). SIGMOD '07. ACM, New York, NY, 1116-
1118.

[22] Ennals, R. and Gay, D. "User-friendly functional
programming for web mashups." In the 12th ACM
SIGPLAN international Conference on Functional
Programming (Freiburg, Germany, October 01 - 03,
2007). ICFP '07. ACM, New York, NY, 223-234.

[23] O. Díaz, S. Pérez, and I. Paz, "Providing
Personalized Mashups Within the Context of Existing
Web Applications," Lecture Notes in Computer
Science, Volume 4831/2007, ISBN 978-3-540-
76992-7

[24] Shin, Y., Yu, C., Chung, S., and Kim, S. 2008. "End-
User Driven Service Creation for Converged Service
of Telecom and Internet." In Fourth Advanced
international Conference on Telecommunications
(June 08 - 13, 2008). AICT. IEEE Computer Society,
Washington, DC, 71-76.

