
Abstract

NGN promise more innovative services that will blend
telecom services and web information. However, there
is no real implementation of such converged services
today. In this paper, we highlight the benefits of
adopting web 2.0 technologies for telecom services. As
the services are today mainly driven by the user's needs,
we proposed the concept of unique customizable
service interface. To prove this idea, we have specified,
built and deployed a dashboard that blends web
information and telecom services at the presentation
layer, on a single web page.

Introduction

With the standardisation of the IMS architecture
[1][2][3], the service development methods of telecom
operators become more and more similar to the web
development methods. Indeed, service development
environment of telecom operators is based on
reusability of the basic enablers (e.g. presence,
messaging) which is very similar to a service oriented
architecture (SOA) approach [4] that has proved its
usefulness in the decade. Moreover, several operators
have even opened their network through OSA/ParlayX
[5] web services to facilitate the development of new
telecom services. However, the promised innovative
services take a long time to appear because of
difficulties to manage the real time applications in the
web environment.

The web community has otherwise gained in
experience of real time applications (e.g. googleTalk,
and webMessenger) that uses web 2.0 [6] technologies
such as AJAX [7][8]. Moreover, innovative
applications have appeared on the public web, such as
web aggregators, mashups, and social networking.
These applications are characterized by the aggregation
of services, sharing, participation and personalization.

Web aggregators (like Netvibes [9] and iGoogle [10])
are applications that give access to many web feeds
(data format used to provide users with dynamic
content such as news and weather) of many providers
from a single web page; these feeds are displayed as
independent blocs in the page (e.g. weather feeds,
sport feeds, political news feeds…).

The goal of this paper is to show how telecom
operators can benefit from web technologies to
provide a unified point of access to user's services
(web information and telecom services). We consider
the unified interface concept as a first step toward
those innovative services. Therefore, we have
developed a customizable dashboard that blends both
telecom real-time services and web information
services on a single web page. This enables the user
to access, to monitor, and to use all its preferred
services simultaneously. Our solution is implemented
at the presentation layer. This is a definitely a new
approach for the convergence of the telecom domain
and the web domain. The real-time issues are handled
using web 2.0 [6] technologies.

The rest of this paper is organized as follow. We
review the related work in section (1). Section (2)
illustrates through motivating and concrete examples
the added value of services aggregators for both the
operator and the end user. Section (3) details our
contributions and the functional description of the
proposed framework. A high level overview of the
architectural design is described in section (4). We go
over the implementation issues and chosen solutions
in section (5) and then conclude in section (6) with
future directions of our research work.

1 Related work

Customizable web feed aggregators such as Netvibes
[9] and iGoogle [10] provides the user with (1) the
ability to access many feeds from a single web page,

A unique interface for web and telecom services:
From feeds aggregator to services aggregator

Nassim Laga1, 2, Emmanuel Bertin1, and Noel Crespi2,

1 {{nassim.laga, emmanuel.bertin}@orange-ftgroup.com}

2 {{ noel.crespi@it-sudparis.eu}

1Orange Labs Orange Labs - France Telecom R&D, 42, rue des Coutures, 14000 Caen France,
2Institut TELECOM SudParis, Mobile Networks and Multimedia Services Department, 9 Rue Charles

Fourier, 91011, Evry Cedex, France,

(2) the ability to integrate third party feeds, and (3)
personalization capabilities.

1.1 The ability to access many feeds from a single

web page
This is definitely the main characteristic of web
aggregators. Each module, named widget or portlet [11],
is defined with an URI that refers to its presentation
layer. The aggregator requests the URIs of all modules
chosen by a given user, and then displays the widgets as
independent services in the same web page. Each
interaction between the presentation layer of a module
and its business logic is handled using AJAX
technology. AJAX technologies enable the framework
to update a module according to its business logic,
hosted on the server, without refreshing the whole page.
This mechanism enables the framework to keep
modules independent each from others.

1.2 The integration of third party feeds
AJAX technologies enable aggregators to integrate
modules of different providers. Service providers and
independent developers can then develop their own
widgets. There are many ways to develop a widget.
Actually, this depends on the target aggregator (whether
this widget will be incorporated in iGoogle, Netvibes,
or another aggregator). However, the universal widget
API UWA [12] has gained a large community
(Netvibes, iGoogle, Mac, Windows vista, Yahoo!
Widgets, and Opera). Moreover, W3C has initiated a
standardization effort of widgets development API [13].

1.3 Personalization capabilities
Aggregators are powerful tools that promote the
personalization of user feeds. Indeed, each user can
personalize its aggregator by organizing his modules
into groups by adding, moving, and deleting widgets
tabs. Moreover, he can even add, move, and delete
modules.

Figure 1 is a Netvibes screenshot that shows the listed
characteristics of feed aggregators.

Figure 1: Netvibes screenshot

However, existing feed aggregators are limited to
information services (e.g. task management, notepad,
map or RSS feeds) and they do not provide telecom
services such as telephony or web-conferencing.
Indeed, one of the difficulties is how to send real
time events from a server to the web page and
especially to the presentation layer of the
corresponding module.
In the next section, through examples, we highlight
both end user benefits and operator benefits of
aggregating services in a single web page. We
underline the concept of "service aggregation"
instead of "feed aggregation" as our main
contribution is the usage of the dashboard concept,
not only to aggregate feeds but also to aggregate
services such as email, phoning, IM, and all
enterprise applications.

2 Services aggregators added value

Aggregating services into a single web page provides
many advantages to both end users and operators.

2.1 End users advantages

• Rapid interaction between independent

services: Indeed, as users can access instantly
to theirs services, they can perform
communication between two or many services
using simple and usual actions such as "copy
and paste". One motivating example amongst
others is when the user receives a call; he can
copy the phone number of the caller and paste
it on the directory service, search for the caller
information such as name, his function title,
work address and personal address, and then
decide whether to respond or not. Moreover,
suppose now that the interlocutors decide to
have a meeting at the caller office, the user can
copy the office address of the caller and paste
it on the "Map" to check how to reach it.

• Third party services integration: The user is

not limited to the services of a single operator;
he can also use services of third-party
providers. Indeed, in the example above, the
"Map" service can be provided by a company
A and the phone service by a company B.
Moreover, advanced users can create their own
services and integrate them into their personal
web page; they can even share the developed
module within a user community.

• Single authentication: As users access to

their services from a single web page, the
operator can perform a single authentication
for all provided services. This will avoid users
to re-authenticate for each service. (E.g. if the
phone service and the directory service are

provided by the same operator, the user then
performs a single authentication for both
services).

• End user personalization: This is of course an

important added value of aggregators of services.
Users can personalize theirs web page. They can
organize their services into groups through tabs.
They can also add, move, and delete services at
the run time. All configurations (tabs
configuration and modules configurations) are
saved and retrieved at each disconnection and
connection.

• Service centralization: Instead of managing

many applications and the corresponding URIs,
the user aggregates them into a single web page
(e.g. Map, Phone, Email…). For example, users
can organize their web page into a search-
engines tab, emails tab, telephony tab, and RSS
feeds tab. The search-engines tab contains
services that performs search on the web such as
the Google search engine and the Yahoo search
engine; therefore, users should no longer launch
a new instance of their web browser and open the
needed web site for each specific need, instead
they aggregate theirs preferred search engines
into a single web page.

2.2 Operator advantages

• Better know its users: Telecom operators will

be aware of the modules chosen by a given
user. This enables them to detect the main
interests of this given user and to use this
knowledge for advertising purpose.

• Reusability: Making a widget as simple as

possible is the slogan of the widgets
developers; indeed a widget is supposed to
perform a basic function, analogous to IMS
enablers [16]. This extends the reusability
principles to a wider domain and opens a new
research area that consists in the composition
of web services with IMS enablers at the
presentation layer. Indeed, telecom operators
can develop widgets that expose the basics
enablers such as presence and IM. Third party
developers can then reuse and combine these
widgets with other applications using simple
Ajax requests and JavaScript.

• Single authentication: Single accessing

interface enables the operator to manage a
single authentication for all their services. This
facilitates telecom operators in the
management of theirs services.

Figure 2: Web and telecom unified dashboard

3 Contributions and functional
description

We have developed a unified dashboard for Internet and
telecom services. This dashboard consists in a web page
that aggregates (as described above) both web services
and telecom services. Web services consist for example
in web search, map, and RSS feeds. And telecom
services include for instance telephony, messaging
services, and videoconferencing. Our prototype is
illustrated in figure 2 and it is available on [14] and [15].

Users can access to their services through the dashboard,
by using an Internet connection and a web browser
whatever the used device (mobile phone, PDA, laptop,
and desktop PC). Moreover, the dashboard enables the
user to download services of different providers. This
dashboard is therefore a strong driver for service
convergence.

As illustrated on figure 2, users can dynamically add,
move or delete widgets, and organize the dashboard
into tabs. Then, instead of using many different
applications, the user aggregates its preferred services
into a single unified interface. The user retrieves its
dashboard configuration after his authentication, as the
framework saves the user preferences at each session.
These mechanisms provide the users with the ability to
personalize their own page.
Our solution does not impose any API to service
developers. The only condition to integrate a widget on
the aggregator is that the service must render a well-
formed HTML document (XHTML). This provides
more flexibility on service development while
facilitating page parsing which is necessary in widget
incorporation process. However, to interact with the
dashboard in order for example to set up a
configuration form, or to react on module events
(onload, onrefresh, and onclose) the developer should
use a specific API.

4 Architectural description

In this section we give a high level architecture
description of the proposed framework. Figure 3
displays a component overview of the framework.

Components of our framework are categorized into two
parts: the server side component and the client side
component. The server side components manage the
persistent data such as user credentials, user preferences,
the catalogue of services, and the configuration
parameters of the services.
The task of the client side components consists
essentially in the web page organization according to
the user preferences, downloading the modules and
modifying their HTML content to make it compatible
with the aggregator (more details on these

modifications are reported in the implementation
issues section).

 Figure 3: Internet and telecom unified dashboard

Architecture

First of all, when the user fills the authentication
form, a request is sent to the server side that checks
in the database whether the user is recognized or not.
If the user is well authenticated, the "authentication
manager" component launches the "user preferences
manager" component that loads the user web page
according to the user preferences (number of tabs,
name of tabs, the chosen modules, the positions of
the modules, the modules of each tab, and the
configuration parameters of each module). The "user
preferences manager" can then display the tabs and
launch the "module download/parser" component
with the configuration parameters. This component
downloads the modules and parses them in order to
integrate them into the web page. The most important
action performed by the parser is the modification of
all widget links into AJAX requests in order to keep
module browsing inside the module and not to
change the whole page.

5 Implementation issues

Our implementation of the dashboard is based on
web technologies such as JavaScript, AJAX and PHP.
We have indeed implemented a comprehensive
framework for services aggregation. As presented
above, this framework consists in a client side
(executed on a web browser) and in a server side
(executed on a web server).

The client side of the framework is implemented with
JavaScript. AJAX is the basis of our framework as it
enables us to request a server side of a module and
modifying its presentation layer while keeping the
browser in the same page. Moreover, this mechanism
keeps the modules independent each from others as
actions on module A will not modify a module B.

However, for the sake of security, today most used web
browser (IE6, IE7, and Firefox) don't allow making
AJAX requests between two different domains.
However, this security measure presents a handicap in
our context. Indeed, we need to download third party
services. To circumvent this constraint, we use a proxy;
implemented in the same domain as the framework
using PHP, the proxy enable the client side part to
request third party servers. Indeed, the "module
download/parser" component does no longer make the
requests directly to the services but makes them to the
proxy with the URL of the needed module as a
parameter. The proxy then downloads the service and
renders it to the client side part. The browser does no
longer blocks the AJAX requests as the proxy and the
framework are in the same domain. However, for the
sake of security, we need to prevent all modules to
make AJAX requests outside their domains. This
control can be done in "module download/parser"
component.

 Figure 4 summarize the usefulness of the proxy.

Figure 4: circumventing security constraint of web

browsers

The server side is implemented with PHP. The main
parts are:
• As mentioned above, a proxy through which we

load all requested services.
• A component that manages users' database.
• A component that manages the users' preferences

database.

The "module download/parser" component receives the
XHTML response of the requested service through the
proxy and makes the necessary modifications on the
module for the sake of keeping modules independent
each from others on the web page. The necessary
modifications consist essentially in the modification of
all relative URLs (relative to the page domain) to
absolute URLs (include the whole path). These URLs
are then modified so that the new one will target the
proxy with the real URL as a parameter (e.g.
http://example.com will be transformed to
http://frameworkdomain/proxy.php?url=http://example.

com). To keep browsing always inside a module, we
need to change all links and URLs to AJAX requests.
such modification avoid reloading the whole page
when a user click on a module links. Further, we
need to search about the API key words inside the
module and replace them with the necessary
functions (e.g. if the developer of the module need to
handle the onclose event, he should use the
aggregator API; he should add the following
statement: ON_UNLOAD = handler).

Another implementation issue is the trade-off
between simplicity of service development and
scalability of the framework. Indeed, defining a
specific API for service development (as this is the
case for Google or Netvibes, e.g. with the Universal
Widget API UWA) facilitates service integration in
the dashboard but is a constraint for third party
developers who need to master that API. On the other
hand, not defining an API raises security and
scalability issues. To address this problem, we
impose to developers to render a well formed
XHTML document. This simple condition is a trade-
off between flexibility in the development and
scalability of the integration. Indeed, while the
condition of rendering an XHTML document is
simple, it provides the dashboard the ability to load
and parse the document efficiently (parsing an XML
file is much faster than parsing an ordinary file using
regular expressions).

6 Conclusion

Aggregating different services in a single web page is
a typical web2.0 way to access and to use telecom
services. The user is able to compose his own
dashboard of services from those that he subscribed
to, instead of using many different applications.
Users can, in this way, access and use all his telecom
and web services (phone, calendar, visit Card…)
through a single web page.

Experimentation has been open since November
2007 for the Orange Labs staff. And the first user
feed back was very positive. Indeed, In January 2008,
after two month of experimentation, 74% of users use
the dashboard as a start page to aggregate mass-
market services as well as corporate services.

As many operators plan to open their infrastructure
through reusable components, we consider the
dashboard concept as a first step toward
communication services integration; it brings new
research fields like composition at the presentation
layer and user participation in the creation of new
services. Our future research work will investigate
this thematic in more details. We will propose
mechanisms to enhance the usability of this unified
service dashboard, for instance with the drag&drop

of information between various service widgets. We
will also study how the user can participate in the
creation of new services.

References

[1] 3GPP: http://www.3gpp.org/ftp/Specs/html-
info/23228.htm
[2] 3GPP: http://www.3gpp.org/ftp/Specs/html-
info/22228.htm
[3] Miikka Poikselka, Aki Niemi, Hisham Khartabil,
Georg Mayer, "The IMS: IP Multimedia Concepts and
Services," ISBN: 0470019069.
[4] E. Thomas, Service-Oriented Architecture: A Field
Guide to Integrating XML and Web Services. Prentice
Hall, Upper Saddle River, NJ, 2004.
[5] http://www.parlay.org/en/specifications/
[6] O'Reilly T. "What is Web 2.0. Design patterns and
business models for the next generation of software."
O'Reilly Media, 2005.
[7] Linda Dailey Paulson, "Building Rich Web
Applications with Ajax," Computer, vol. 38, no. 10,
pp. 14-17, Oct., 2005
[8] Zepeda, J.S. Chapa, S.V. "From Desktop
Applications Towards Ajax Web Applications,"
Electrical and Electronics Engineering, pp 193-196, 5-7
Sept. 2007
[9] http://www.netvibes.com
[10] http://www.google.com/ig
[11] C Kaar, "An introduction to Widgets with
particular emphasis on Mobile Widgets," Computing,
Oct. 2007.
[12] http://dev.netvibes.com/doc/uwa_specification
[13] W3C http://dev.w3.org/2006/waf/widgets-reqs/
[14] http://www.bubbletop.com/
[15] http://www.espace-utilisateur.orange-business.com
[16] http://parlay.org/en/specifications/pxws.asp

