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Abstract— Personal communications are facing many challenges 

created by mobility and convergence in today’s communication 

networks. People often find themselves interacting with their 

devices in attention-constrained environments and deal with a 

bewildering variety of communication services, devices and 

access technologies. Many solutions tried to resolve this issue by 

relying on context-awareness. However, they suffered from 

drawbacks that hinder their deployment in the consumer market. 

In this paper, we discuss the implementation of INCA (Intelligent 

Network-based Communication Assistant), a multi-layered agent 

for context-aware adaptation of personal communications. This 

agent relies on a generic layer model that is applied to each of its 

layers, therefore enabling an intuitive and easy to implement 

architecture. 

I.  INTRODUCTION 

The concept of personal communications has much evolved 
since the early days of telephony. This evolution is driven by 
two main factors: mobility and convergence. Both factors 
provide undeniable advantages to the user. Mobility (mostly 
associated to the development of wireless communications) 
allowed users to be reached anywhere and anytime. 
Convergence, on the other hand, allowed users to access a wide 
variety services using any available device and/or network. 

Still however, both factors have also their negative impacts. 
For example, mobility allowed users to be reached in 
inconvenient situations (e.g. work meetings) and attention-
constrained environments (e.g. driving). On the other hand, 
convergence, which is occurring at three levels simultaneously 
(service, terminal and network levels [8]), creates confusion for 
the average user by forcing him to choose among a plethora of 
services (e.g. voice call, SMS, email, instant messaging), 
devices (e.g. fixed phones, mobile phones, laptop PCs, PDAs, 
smartphones) and networks (e.g. GSM, GPRS, UMTS, 
WLAN, xDSL). 

Most of the solutions developed to address mobility and 
convergence issue relied on context awareness, which consists 
of using information about the user and his environment (such 
as user activity, location, device capabilities and network 
status) to assist him in handling his communications. The 
problem however is that these solutions focused more on the 
modeling and provisioning aspects of context information and 
did not sufficiently tackle the adaptation aspect, in other words 

the exploitation of this information to adapt communications 
according to communication constraints and user preferences. 

We believe that tackling the adaptation issue is very 
important for building successful context-aware 
communication solutions, and that it involves studying three 
distinct albeit inter-related levels: session level where user 
communications are materialized as protocol-specific sessions 
for signaling and media exchange, communication level where 
user communications are integrated into a full fledged 
communication environment involving various concepts 
(including users, locations, devices and networks) and user 
level where user profiles, preferences and expectations are 
modeled to provide personalized services. Studying the 
relations between these levels is also very important in order to 
mirror, as closely as possible, the relations between these levels 
in the real world. 

In this paper, we discuss the design and implementation of 
INCA, an Intelligent Network-based Communication Assistant 
that provides services for user communications (e.g. filtering, 
redirection, content adaptation and automatic initiation of 
sessions) based on context information about the user and his 
surrounding environment [4]. We start by defining a generic 
layer model (section II). This model is then used to build 
INCA’s architecture by applying it successively to each of its 
layers (section III). Finally, we provide a brief discussion of 
related work in this field (section IV). 

II. INCA’S GENERIC LAYER MODEL 

A. Motivation for layered control 

 A key issue for achieving successful context-aware 
adaptation of communications is relying on a comprehensive 
model of the real world where communications are actually 
taking place. This model is gradually built and updated using 
context and communication signaling information and provides 
support for deciding on actions that affect this environment. 
We view the world model as being decomposed into three main 
levels: session level involving protocol-specific sessions for 
signaling and media exchange, communication level involving 
a communication environment representing various concepts 
(such as user identities, locations, devices and networks) and 
user level focusing on user-specific information such status, 
profiles and preferences. Therefore, the best way to deal with 



this decomposition is to develop a multi-layered architecture 
where each layer interacts with the world model at one of its 
levels. 

Another reason for favoring the layered approach is 
performance. In fact, most communication standards adheres to 
strict real-time constraints aimed at improving user experience, 
particularly by minimizing session establishment time but also 
by reducing overhead time for mid-session changes (which 
may prove critical for real-time and interactive 
communications such as voice calls). Unfortunately, context-
aware adaptation tends to significantly increase communication 
processing and signaling overhead, thus creating serious 
performance issues. In this context, adopting the layering 
approach optimizes overall performance by delegating simple 
tasks that require fast processing to lower layers, while leaving 
more complex and time consuming tasks to higher layers. 

Therefore, as part of our efforts to develop an intuitive and 
easy to implement architecture over Jena [12], we designed and 
implemented a generic layer model that could be reused at each 
layer by changing only the object on which it operates. The 
next section introduces this generic model and describes the 
interaction between two consecutive layers implemented 
according to this model. 

B. Description of INCA’s layer model 

Fig. 1 represents two consecutive layers modeled according 
to the generic layer model. Each of these layers keeps track of 
its corresponding object by maintaining an internal state model 
of it, and relies on the layer immediately below for receiving 
events and executing actions. 

Both events and actions have impact on the internal state 
model of the object. An event received from the layer below is 

processed by the event module to produce an assumption, 
which represents the state that the corresponding object is 
assumed to have when the event was dispatched. This 
assumption is applied by updating the object’s current state to 
the assumed state. Similarly, the execution of an action by the 
action module produces an expectation, which represents the 
state that the object is expected to have after being subjected to 
this action. This expectation is materialized by the addition of 
the expected state to the object state model. 

When the object model in one layer evolves (as a result of a 
received event), it may reach a state that may be relevant to the 
evolution of the object model in the upper layer. This state is 
called a mapping state and is associated with a mapped state in 
the upper layer. In order to enforce this mapping between 
states, the event module of the lower layer detects the evolution 
of its corresponding object model to a mapping state and 
generates an event that is transmitted to the event module of the 
upper layer. The latter module translates this event to a mapped 
state and transmits it to its own object model, therefore causing 
this model to evolve to this new state. We note that the process 
of interpreting an event as a mapped state represents actually 
the assumption process. 

When the object model in one layer needs to evolve to a 
particular goal state (e.g. as a result of a predefined rule in this 
layer), the action module of this layer infers the required action 
from this evolution and transmits it to the action module of the 
layer below. The latter module translates this action to a plan. 
A plan consists of a sequence of expected states and a list of 
associated actions where each action governs the transition 
from one expected state to another. It may also contain a 
sequence of events to be received in case it is correctly 
executed. A plan contains one or more intermediate states, but 
must always end with a mapping state in order to signal the 
completion of the plan to the upper layer. This latter layer then 
updates the current state of its object module by transforming 
its expected state into an assumed state. 

III. IMPLEMENTING INCA LAYERS 

A. Overview 

INCA comprises four layers ordered in increasing level of 
complexity: message layer, session layer

1
, dimension layer and 

user layer. Communication between two consecutive layers 
follows the “interaction” concept which was already introduced 
in [4]. The next sections describe how each of these layers 
were implemented using our generic layer model. 

B. Message layer 

The message layer represents the bottom (and the most 
basic) layer in INCA’s architecture. Unlike the upper layers, it 
does not implement any internal object model, but it provides 
the event and action modules that the upper layer (session 
layer) relies on. 

This layer deals with message-level interactions, also called 
“reactive” interactions because they require simple yet fast 
processing. An example of such interaction is detecting 

                                                           
1 Formerly known as operation layer in [4] 

Figure 1.    Generic layer model  
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messages that require reception acknowledgment and 
dispatching the required responses. Event recognition at this 
layer consists of parsing incoming messages and extracting 
their headers and values. Reasoning consists of reactive rules 
that analyze these values in order to determine header values 
for new messages to send (if any).  Action execution consists 
of structuring these values into messages which are then 
dispatched. 

C. Session layer 

1) Overview 
This layer is responsible for managing communication 

sessions. It maintains information about session states for 
devices communicating with it. At the current stage of 
implementation, it natively supports the Session Initiation 
Protocol or SIP [15] (a SIP stack was especially integrated for 
this purpose). However, it may indirectly support other 
protocols by interfacing with special gateways via SIP (as 
demonstrated for SMS [1] [2] and ISDN [3] [14]). 

2) Object model 
For SIP based sessions, the object state maintained by this 

layer is normally the dialog state of the session at the remote 
user agent. However, we designed the dialog FSM (Finite State 
Machine) so that it can simultaneously represent the state at 
both the local and the remote user agents, therefore eliminating 
the need to maintain two separate dialog states per session. 
Consequently, for sessions directly involving INCA with 
another party, one dialog state is sufficient for tracking both 
dialog states at the local and remote user agents. Similarly, 
when INCA is acting as a back-to-back user agent (B2BUA) 
for a session between two different parties [15], it maintains 
two dialog states (one for each of the user agent client/server 
pairs) instead of the normal four. 

3) Events and actions 
Events received from the message layer consist of messages 

parsed as header/value pairs. Each received message is 
processed by the event module in order to compute the new 
current state that the session’s dialog at the other party is 
assumed to have when it sent that message. In Fig. 2(a) for 
example, the reception of a “200 OK” response triggers the 
assumption that the dialog at the other party has already moved 
to the “confirmed” state. Therefore, the internal dialog state is 
updated to this assumed state. 

Actions executed by the action module of the session layer 
consist of header/value pairs that are transmitted to the message 
layer. Before transmission of each action, the action module 
computes the state that the session’s dialog at the other party is 
expected to have after receiving the message. In Fig. 2(a) for 
example, the transmission of an “INVITE” request triggers the 
expectation that the dialog at the other party should move to the 
“initiated” state after receiving this request. Therefore, this 
expected state is added to the internal dialog state model. 

4) Interaction with the dimension layer 
An event is generated from the session layer to the 

dimension layer when the dialog of a session reaches a 
mapping state. For SIP sessions, we defined three mapping 
states: “Initiated”, “Established” and “Terminated”. Events 

generated by these states respectively indicate that session 
establishment is in progress, session is already set up and 
session has ended. 

Figure 2.    State diagram representations of SIP sessions for six scenarios 

Figure 2(c).    Session  relaying between two parties Figure 2(d).    Third party call control (3PCC) [13] 
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Figure 2(e).    User-initiated session termination Figure 2(f).    INCA-initiated session termination 
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Each action received from the dimension layer is analyzed 
by the action module of the session layer in order to retrieve 
the corresponding plan for executing it. For SIP based sessions, 
a plan consists of a sequence of dialog states and the 
corresponding sequence of sent messages (actions) and 
received messages (events) needed for realizing it (Fig. 2). 
Therefore, when an action is received from the dimension 
layer, the dialog states of the corresponding plan are 
successively added to the session model as expected states. At 
the same time, the associated actions are successively executed 
and appropriate events received, resulting in the progressive 
transformation of the expected states into assumed states. We 
note that if a particular plan fails (e.g. because of timeout or 
because of the reception of an unexpected message), a backup 
plan is executed and the dimension layer is notified 
accordingly. 

D. Dimension layer 

1) Overview 
This layer aims at integrating information about different 

sessions as well as context into one single model known as the 
communication environment model. This model relies on two 
concepts, dimension and communication, which will be first 
introduced in the following sections. 

2) The dimension concept 
A dimension is defined as a variable that describes a 

particular aspect of the user’s world, such as user identity, 
location, device… Each dimension has its own distinct list of 
possible values that cannot be shared by any other dimension. 
Two types of dimensions could be distinguished: 
communication dimensions and situation dimensions. 
Communication dimensions are used to characterize a 
communication (see section III.D.3) and comprises six 
dimensions (also known as the six W’s of communication): 
Who (involved persons), Which Device (communication 
devices), Where (network), What (content type), When (time 
parameters) and Why (subject or purpose of communication). 
In contrast, situation dimensions do not directly describe a 
communication but identify factors that may influence a 
communication such as location and connection bandwidth. 

3) The communication concept 
A communication is defined as an abstract relation between 

two or more parties involving a unidirectional or bidirectional 
information exchange over a communication network. It is 
identified by two sets of values of communication dimensions: 
one describing the caller and the other describing the callee 
(Fig. 3). Since we are focusing primarily on communication 
adaptation on the callee’s side, the communication dimensions 
mentioned in this paper refer by default to the callee, and all 
caller dimensions will be ignored with exception of two: the 
caller identity (Who) which we will refer to as “Caller” for 
disambiguation, and the session subject (Why) which is 
applicable only to the caller. 

Based on this definition, we consider a session as being a 
protocol-specific implementation of a communication. We also 
note that, unlike communication dimensions, the parameters 
that characterize a session are specific to the session type (e.g. 
phone numbers for voice calls, email addresses for emails …), 

and that each parameter could be mapped to one or more 
communication dimensions. For example, a fixed phone 
number is mapped simultaneously to a Who value (e.g. “Bob”) 
and a Which Device value (e.g. “fixed phone”). 

4) Object model 
The object maintained by this layer is the environment 

where communications are taking place. This environment is 
described by the set of all possible values that dimensions may 
have. The state of this environment at a given time is 
determined by two factors: established communications and 
context. Established communications are represented by 
temporary bindings between dimension values that describe 
these communications. For example, a communication 
involving Bob’s desktop PC would be represented by links 
between the values “Bob” (from the Who dimension) and 
“Bob’s desktop PC” (from the Which device dimension) and a 
temporary dimension value representing the communication. 

As for context, however, we chose not to represent it by 
specific dimensions (such as location or device) but by 
relations between dimensions (e.g. a device located in a 
particular location or a user owning a specific device). In our 
communication model, context is materialized by links between 
dimension values. The graph resulting from these links is 
known as the dimension diagram. 

Fig. 4 shows a part of this dimension diagram. It includes 
four communication dimensions (Who, Which Device, Where 
and What) and two situation dimensions (Location and 
Bandwidth). A link between two communication dimensions 
implies that, for any two values chosen from these dimensions, 
these values cannot be parameters of the same communication 
unless there is an actual link between them. A link between two 
communication dimensions and a situation dimension implies 
that, for any two values chosen from the communication 
dimensions, these values cannot be parameters of the same 
communication unless they are linked to the same value in the 
situation dimension. 

Information about user and environment context (such as 
user presence, device profiles and locations, network 
capabilities…) are received by context modules (Fig. 4) mainly 
through subscriptions to context information servers (e.g. 
Presence server [7], terminal capabilities server [5] and 
location server). These modules interpret the received 
information as changes in the appropriate links and integrate 
them in the dimension diagram. 

Figure 3.    An example representation of a communication
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5) Events and actions 
The event module of the dimension layer receives events 

about session state changes from the session layer (see section 
III.C.4)). For each event it receives, it first maps the concerned 
session to a communication by converting the session 
parameters into communication dimension values using 
information about user subscriptions. Then, it analyzes the new 
state of the session (mapping state). In SIP based sessions for 
example, if the mapping state is an “Initiated” state, the event 
module of the dimension layer adds an expected state to its 
object model indicating that the corresponding communication 
will be established. If the mapping state is an “Established” 
state, the latter state becomes an assumed state (i.e. the 
communication is already established). If the mapping state is a 
“Terminated” state, the communication is assumed to be 
terminated and the temporary links between the corresponding 
dimension values are torn down. 

Actions at this layer consist of control instructions aimed at 
starting, relaying, modifying and terminating communications. 
Examples of control instructions for a communication with a 
single party or between two parties were already given in Fig. 
2. For each action aimed at a particular communication, the 
action module converts the dimension values of the concerned 
communication into session parameters before relaying the 
action to the session layer. 

6) Interaction with the dimension layer 
An event is generated from the dimension layer to the user 

layer when the dialog of a session reaches a mapping state. 
Unlike the session layer however, the mapping states for the 
dimension layer are not predefined, but depend on the user 
preferences at the user layer. In fact, the condition part of each 
preference in the user layer is used to compute the links of 
interest of this preference in the dimension layer diagram. 
When changes in the diagram involve these particular links, 
they create a mapping state that, in turn, triggers an event 
which is propagated by the event module of the dimension 
layer to the user layer. 

E. User layer 

1) Overview 
This topmost layer in INCA hierarchy is mainly responsible 

for implementing user preferences. These preferences mainly 
consist of monitoring the communication environment for 
relevant changes (in context as well as communications) and 
triggering actions that manipulate communications such as 
forwarding, modification of parameters, termination and 
initiation of new communications. The next sections describe 
how user preferences are implemented according to the generic 
layer model. 

2) Object model 
Each preference in the user layer is a combination of two 

parts: condition part and action part. The condition part is 
associated to a condition verification state that, when assumed, 
indicate that the corresponding conditions are met. The action 
part is associated to an action execution state that, when 
assumed, indicates that the corresponding actions were 
correctly executed. Preferences may share the same condition 
part (meaning that they are triggered by the same events, e.g. 
preferences (b) and (c) in Fig. 5), or they may share the same 
action part (meaning that they trigger the same actions, e.g. 
preferences (c) and (d) in Fig. 5). 

3) Events and actions 
The condition part of each preference specifies the links in 

the dimension layer diagram that must be monitored in order to 
trigger this preference. When these links reach the desired 

Figure 4.    Dimension layer diagram 
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states, the event module of the dimension layer detects a 
mapping state and transmits a condition verification event to 
the event module of the user layer (see section III.D.6). This 
latter module matches the event to the relevant preference(s), 
causing the corresponding condition verification state to 
become an assumed state. Then, the corresponding action parts 
are executed by the action module, causing the corresponding 
action execution state to become an expected state. Once the 
user layer receives event confirming the completion of these 
actions, this latter state becomes an assumed state, indicating 
that the corresponding preferences were correctly applied. 

IV. RELATED WORK 

Many context-aware systems have been developed to 
demonstrate the benefits of context-aware computing. One of 
the earliest systems of this kind was the Active Badge Location 
System [17] which provides phone call redirection based on the 
location of the called person. Although it was developed more 
than fifteen years ago, this solution, and later context-aware 
solutions, did not make their way through from research labs to 
the consumers market. This is especially true for the personal 
communications domain, in spite of the readily available 
wireless network infrastructures.  

We believe that the main reason behind this problem is that 
most of the previous solutions focused mainly on developing 
infrastructures and mechanisms for context provisioning (i.e. 
acquisition, modeling and dissemination) and did not 
sufficiently consider the next and more crucial step: context-
based adaptation. For example, the Context Broker 
Architecture (CoBrA) [11] was primarily developed for 
supporting context-aware systems by addressing issues such as 
context modeling and reasoning, knowledge acquisition from 
different context sources and user privacy protection. The 
Service-Oriented Context-Aware Middleware (SOCAM) 
proposed in [10] aimed at supporting acquisition, discovery, 
and interpretation of context information to build context-
aware services. 

Even the few existing work that deals with communication 
adaptation (such as [6] and [16]) did not propose any detailed 
adaptation mechanisms. The only significant work in this area 
is the personal assistant proposed by Cisco [9]. Its main 
drawback, however, is that adaptation rules are very limited 
and should be explicitly specified by the callee. 

V. CONCLUSION AND FUTURE WORK 

In this paper, we described the implementation of INCA 
(Intelligent Network-based Communication Assistant). We first 
introduced a generic layer model that could be reused across 
INCA layers, therefore enabling a well-structured and easy to 

implement architecture. Then, for each layer, we described 
how this model is implemented and how interaction with 
adjacent upper and lower layers takes place. Future work will 
mainly focus on extending INCA’s compatibility to include 
session protocols other than SIP. Performance and conflict 
management issues at each of INCA layers will also be studied. 
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