
A Generic Layer Model for Context-Aware

Communication Adaptation

Bassam El Saghir Noel Crespi

RS2M Department

GET / Institut National des Telecommunications

Paris, France

{bassam.el_saghir, noel.crespi} @int-edu.eu

Abstract— Personal communications are facing many challenges

created by mobility and convergence in today’s communication

networks. People often find themselves interacting with their

devices in attention-constrained environments and deal with a

bewildering variety of communication services, devices and

access technologies. Many solutions tried to resolve this issue by

relying on context-awareness. However, they suffered from

drawbacks that hinder their deployment in the consumer market.

In this paper, we discuss the implementation of INCA (Intelligent

Network-based Communication Assistant), a multi-layered agent

for context-aware adaptation of personal communications. This

agent relies on a generic layer model that is applied to each of its

layers, therefore enabling an intuitive and easy to implement

architecture.

I. INTRODUCTION

The concept of personal communications has much evolved
since the early days of telephony. This evolution is driven by
two main factors: mobility and convergence. Both factors
provide undeniable advantages to the user. Mobility (mostly
associated to the development of wireless communications)
allowed users to be reached anywhere and anytime.
Convergence, on the other hand, allowed users to access a wide
variety services using any available device and/or network.

Still however, both factors have also their negative impacts.
For example, mobility allowed users to be reached in
inconvenient situations (e.g. work meetings) and attention-
constrained environments (e.g. driving). On the other hand,
convergence, which is occurring at three levels simultaneously
(service, terminal and network levels [8]), creates confusion for
the average user by forcing him to choose among a plethora of
services (e.g. voice call, SMS, email, instant messaging),
devices (e.g. fixed phones, mobile phones, laptop PCs, PDAs,
smartphones) and networks (e.g. GSM, GPRS, UMTS,
WLAN, xDSL).

Most of the solutions developed to address mobility and
convergence issue relied on context awareness, which consists
of using information about the user and his environment (such
as user activity, location, device capabilities and network
status) to assist him in handling his communications. The
problem however is that these solutions focused more on the
modeling and provisioning aspects of context information and
did not sufficiently tackle the adaptation aspect, in other words

the exploitation of this information to adapt communications
according to communication constraints and user preferences.

We believe that tackling the adaptation issue is very
important for building successful context-aware
communication solutions, and that it involves studying three
distinct albeit inter-related levels: session level where user
communications are materialized as protocol-specific sessions
for signaling and media exchange, communication level where
user communications are integrated into a full fledged
communication environment involving various concepts
(including users, locations, devices and networks) and user
level where user profiles, preferences and expectations are
modeled to provide personalized services. Studying the
relations between these levels is also very important in order to
mirror, as closely as possible, the relations between these levels
in the real world.

In this paper, we discuss the design and implementation of
INCA, an Intelligent Network-based Communication Assistant
that provides services for user communications (e.g. filtering,
redirection, content adaptation and automatic initiation of
sessions) based on context information about the user and his
surrounding environment [4]. We start by defining a generic
layer model (section II). This model is then used to build
INCA’s architecture by applying it successively to each of its
layers (section III). Finally, we provide a brief discussion of
related work in this field (section IV).

II. INCA’S GENERIC LAYER MODEL

A. Motivation for layered control

 A key issue for achieving successful context-aware
adaptation of communications is relying on a comprehensive
model of the real world where communications are actually
taking place. This model is gradually built and updated using
context and communication signaling information and provides
support for deciding on actions that affect this environment.
We view the world model as being decomposed into three main
levels: session level involving protocol-specific sessions for
signaling and media exchange, communication level involving
a communication environment representing various concepts
(such as user identities, locations, devices and networks) and
user level focusing on user-specific information such status,
profiles and preferences. Therefore, the best way to deal with

this decomposition is to develop a multi-layered architecture
where each layer interacts with the world model at one of its
levels.

Another reason for favoring the layered approach is
performance. In fact, most communication standards adheres to
strict real-time constraints aimed at improving user experience,
particularly by minimizing session establishment time but also
by reducing overhead time for mid-session changes (which
may prove critical for real-time and interactive
communications such as voice calls). Unfortunately, context-
aware adaptation tends to significantly increase communication
processing and signaling overhead, thus creating serious
performance issues. In this context, adopting the layering
approach optimizes overall performance by delegating simple
tasks that require fast processing to lower layers, while leaving
more complex and time consuming tasks to higher layers.

Therefore, as part of our efforts to develop an intuitive and
easy to implement architecture over Jena [12], we designed and
implemented a generic layer model that could be reused at each
layer by changing only the object on which it operates. The
next section introduces this generic model and describes the
interaction between two consecutive layers implemented
according to this model.

B. Description of INCA’s layer model

Fig. 1 represents two consecutive layers modeled according
to the generic layer model. Each of these layers keeps track of
its corresponding object by maintaining an internal state model
of it, and relies on the layer immediately below for receiving
events and executing actions.

Both events and actions have impact on the internal state
model of the object. An event received from the layer below is

processed by the event module to produce an assumption,
which represents the state that the corresponding object is
assumed to have when the event was dispatched. This
assumption is applied by updating the object’s current state to
the assumed state. Similarly, the execution of an action by the
action module produces an expectation, which represents the
state that the object is expected to have after being subjected to
this action. This expectation is materialized by the addition of
the expected state to the object state model.

When the object model in one layer evolves (as a result of a
received event), it may reach a state that may be relevant to the
evolution of the object model in the upper layer. This state is
called a mapping state and is associated with a mapped state in
the upper layer. In order to enforce this mapping between
states, the event module of the lower layer detects the evolution
of its corresponding object model to a mapping state and
generates an event that is transmitted to the event module of the
upper layer. The latter module translates this event to a mapped
state and transmits it to its own object model, therefore causing
this model to evolve to this new state. We note that the process
of interpreting an event as a mapped state represents actually
the assumption process.

When the object model in one layer needs to evolve to a
particular goal state (e.g. as a result of a predefined rule in this
layer), the action module of this layer infers the required action
from this evolution and transmits it to the action module of the
layer below. The latter module translates this action to a plan.
A plan consists of a sequence of expected states and a list of
associated actions where each action governs the transition
from one expected state to another. It may also contain a
sequence of events to be received in case it is correctly
executed. A plan contains one or more intermediate states, but
must always end with a mapping state in order to signal the
completion of the plan to the upper layer. This latter layer then
updates the current state of its object module by transforming
its expected state into an assumed state.

III. IMPLEMENTING INCA LAYERS

A. Overview

INCA comprises four layers ordered in increasing level of
complexity: message layer, session layer

1
, dimension layer and

user layer. Communication between two consecutive layers
follows the “interaction” concept which was already introduced
in [4]. The next sections describe how each of these layers
were implemented using our generic layer model.

B. Message layer

The message layer represents the bottom (and the most
basic) layer in INCA’s architecture. Unlike the upper layers, it
does not implement any internal object model, but it provides
the event and action modules that the upper layer (session
layer) relies on.

This layer deals with message-level interactions, also called
“reactive” interactions because they require simple yet fast
processing. An example of such interaction is detecting

1 Formerly known as operation layer in [4]

Figure 1. Generic layer model

State description:

 Past state Normal (non mapping) state

 Current (assumed) state Mapping state (layer n)

 Future (expected) state Mapped state (layer n+1)

Links description:

 State mapping Cross-layer event propagation

 Module output Cross-layer action propagation

messages that require reception acknowledgment and
dispatching the required responses. Event recognition at this
layer consists of parsing incoming messages and extracting
their headers and values. Reasoning consists of reactive rules
that analyze these values in order to determine header values
for new messages to send (if any). Action execution consists
of structuring these values into messages which are then
dispatched.

C. Session layer

1) Overview
This layer is responsible for managing communication

sessions. It maintains information about session states for
devices communicating with it. At the current stage of
implementation, it natively supports the Session Initiation
Protocol or SIP [15] (a SIP stack was especially integrated for
this purpose). However, it may indirectly support other
protocols by interfacing with special gateways via SIP (as
demonstrated for SMS [1] [2] and ISDN [3] [14]).

2) Object model
For SIP based sessions, the object state maintained by this

layer is normally the dialog state of the session at the remote
user agent. However, we designed the dialog FSM (Finite State
Machine) so that it can simultaneously represent the state at
both the local and the remote user agents, therefore eliminating
the need to maintain two separate dialog states per session.
Consequently, for sessions directly involving INCA with
another party, one dialog state is sufficient for tracking both
dialog states at the local and remote user agents. Similarly,
when INCA is acting as a back-to-back user agent (B2BUA)
for a session between two different parties [15], it maintains
two dialog states (one for each of the user agent client/server
pairs) instead of the normal four.

3) Events and actions
Events received from the message layer consist of messages

parsed as header/value pairs. Each received message is
processed by the event module in order to compute the new
current state that the session’s dialog at the other party is
assumed to have when it sent that message. In Fig. 2(a) for
example, the reception of a “200 OK” response triggers the
assumption that the dialog at the other party has already moved
to the “confirmed” state. Therefore, the internal dialog state is
updated to this assumed state.

Actions executed by the action module of the session layer
consist of header/value pairs that are transmitted to the message
layer. Before transmission of each action, the action module
computes the state that the session’s dialog at the other party is
expected to have after receiving the message. In Fig. 2(a) for
example, the transmission of an “INVITE” request triggers the
expectation that the dialog at the other party should move to the
“initiated” state after receiving this request. Therefore, this
expected state is added to the internal dialog state model.

4) Interaction with the dimension layer
An event is generated from the session layer to the

dimension layer when the dialog of a session reaches a
mapping state. For SIP sessions, we defined three mapping
states: “Initiated”, “Established” and “Terminated”. Events

generated by these states respectively indicate that session
establishment is in progress, session is already set up and
session has ended.

Figure 2. State diagram representations of SIP sessions for six scenarios

Figure 2(c). Session relaying between two parties Figure 2(d). Third party call control (3PCC) [13]

INVITE

100

Trying

200 OK

180

Ringing

ACK

Idle Idle Idle Idle

Initiated Initiated Initiated Initiated

Proceeding Proceeding Proceeding Proceeding

Alerting Alerting Alerting Alerting

Confirmed Confirmed Confirmed Confirmed

Established Established Established Established

INVITE

100

Trying

200 OK

180

Ringing

ACK

INVITE

100

Trying

200 OK

180
Ringing

ACK

INVITE

100

Trying

200 OK

180

Ringing

ACK

Figure 2(e). User-initiated session termination Figure 2(f). INCA-initiated session termination

200 OK

BYE

Established

 Terminating

Terminated

200 OK

BYE

Established

 Terminating

Terminated

200 OK

BYE

Established

 Terminating

Terminated

200 OK

BYE

Established

 Terminating

Terminated

INVITE

100

Trying 180
Ringing

200 OK

200 OK

200 OK

180

Ringing

ACK

Established

Confirmed Alerting

Proceeding

Initiated

Idle

INVITE

100

Trying

200 OK

200

OK

ACK

Idle

Initiated

Proceeding

Confirmed

Established

Figure 2(a). Session initiated by INCA to user Figure 2(b). Session initiated by user to INCA

Symbol description:

 Sent message Non mapping state

 Received message Mapping state

 Transition between user agents

Each action received from the dimension layer is analyzed
by the action module of the session layer in order to retrieve
the corresponding plan for executing it. For SIP based sessions,
a plan consists of a sequence of dialog states and the
corresponding sequence of sent messages (actions) and
received messages (events) needed for realizing it (Fig. 2).
Therefore, when an action is received from the dimension
layer, the dialog states of the corresponding plan are
successively added to the session model as expected states. At
the same time, the associated actions are successively executed
and appropriate events received, resulting in the progressive
transformation of the expected states into assumed states. We
note that if a particular plan fails (e.g. because of timeout or
because of the reception of an unexpected message), a backup
plan is executed and the dimension layer is notified
accordingly.

D. Dimension layer

1) Overview
This layer aims at integrating information about different

sessions as well as context into one single model known as the
communication environment model. This model relies on two
concepts, dimension and communication, which will be first
introduced in the following sections.

2) The dimension concept
A dimension is defined as a variable that describes a

particular aspect of the user’s world, such as user identity,
location, device… Each dimension has its own distinct list of
possible values that cannot be shared by any other dimension.
Two types of dimensions could be distinguished:
communication dimensions and situation dimensions.
Communication dimensions are used to characterize a
communication (see section III.D.3) and comprises six
dimensions (also known as the six W’s of communication):
Who (involved persons), Which Device (communication
devices), Where (network), What (content type), When (time
parameters) and Why (subject or purpose of communication).
In contrast, situation dimensions do not directly describe a
communication but identify factors that may influence a
communication such as location and connection bandwidth.

3) The communication concept
A communication is defined as an abstract relation between

two or more parties involving a unidirectional or bidirectional
information exchange over a communication network. It is
identified by two sets of values of communication dimensions:
one describing the caller and the other describing the callee
(Fig. 3). Since we are focusing primarily on communication
adaptation on the callee’s side, the communication dimensions
mentioned in this paper refer by default to the callee, and all
caller dimensions will be ignored with exception of two: the
caller identity (Who) which we will refer to as “Caller” for
disambiguation, and the session subject (Why) which is
applicable only to the caller.

Based on this definition, we consider a session as being a
protocol-specific implementation of a communication. We also
note that, unlike communication dimensions, the parameters
that characterize a session are specific to the session type (e.g.
phone numbers for voice calls, email addresses for emails …),

and that each parameter could be mapped to one or more
communication dimensions. For example, a fixed phone
number is mapped simultaneously to a Who value (e.g. “Bob”)
and a Which Device value (e.g. “fixed phone”).

4) Object model
The object maintained by this layer is the environment

where communications are taking place. This environment is
described by the set of all possible values that dimensions may
have. The state of this environment at a given time is
determined by two factors: established communications and
context. Established communications are represented by
temporary bindings between dimension values that describe
these communications. For example, a communication
involving Bob’s desktop PC would be represented by links
between the values “Bob” (from the Who dimension) and
“Bob’s desktop PC” (from the Which device dimension) and a
temporary dimension value representing the communication.

As for context, however, we chose not to represent it by
specific dimensions (such as location or device) but by
relations between dimensions (e.g. a device located in a
particular location or a user owning a specific device). In our
communication model, context is materialized by links between
dimension values. The graph resulting from these links is
known as the dimension diagram.

Fig. 4 shows a part of this dimension diagram. It includes
four communication dimensions (Who, Which Device, Where
and What) and two situation dimensions (Location and
Bandwidth). A link between two communication dimensions
implies that, for any two values chosen from these dimensions,
these values cannot be parameters of the same communication
unless there is an actual link between them. A link between two
communication dimensions and a situation dimension implies
that, for any two values chosen from the communication
dimensions, these values cannot be parameters of the same
communication unless they are linked to the same value in the
situation dimension.

Information about user and environment context (such as
user presence, device profiles and locations, network
capabilities…) are received by context modules (Fig. 4) mainly
through subscriptions to context information servers (e.g.
Presence server [7], terminal capabilities server [5] and
location server). These modules interpret the received
information as changes in the appropriate links and integrate
them in the dimension diagram.

Figure 3. An example representation of a communication

Caller
side

Communication
dimension

Callee
side

Alice Who Bob

Fixed phone Which device Desktop PC

PSTN Where ADSL

Voice call What VOIP session

12:00 PM When 12:00 PM

Private Why N/A

Communication

5) Events and actions
The event module of the dimension layer receives events

about session state changes from the session layer (see section
III.C.4)). For each event it receives, it first maps the concerned
session to a communication by converting the session
parameters into communication dimension values using
information about user subscriptions. Then, it analyzes the new
state of the session (mapping state). In SIP based sessions for
example, if the mapping state is an “Initiated” state, the event
module of the dimension layer adds an expected state to its
object model indicating that the corresponding communication
will be established. If the mapping state is an “Established”
state, the latter state becomes an assumed state (i.e. the
communication is already established). If the mapping state is a
“Terminated” state, the communication is assumed to be
terminated and the temporary links between the corresponding
dimension values are torn down.

Actions at this layer consist of control instructions aimed at
starting, relaying, modifying and terminating communications.
Examples of control instructions for a communication with a
single party or between two parties were already given in Fig.
2. For each action aimed at a particular communication, the
action module converts the dimension values of the concerned
communication into session parameters before relaying the
action to the session layer.

6) Interaction with the dimension layer
An event is generated from the dimension layer to the user

layer when the dialog of a session reaches a mapping state.
Unlike the session layer however, the mapping states for the
dimension layer are not predefined, but depend on the user
preferences at the user layer. In fact, the condition part of each
preference in the user layer is used to compute the links of
interest of this preference in the dimension layer diagram.
When changes in the diagram involve these particular links,
they create a mapping state that, in turn, triggers an event
which is propagated by the event module of the dimension
layer to the user layer.

E. User layer

1) Overview
This topmost layer in INCA hierarchy is mainly responsible

for implementing user preferences. These preferences mainly
consist of monitoring the communication environment for
relevant changes (in context as well as communications) and
triggering actions that manipulate communications such as
forwarding, modification of parameters, termination and
initiation of new communications. The next sections describe
how user preferences are implemented according to the generic
layer model.

2) Object model
Each preference in the user layer is a combination of two

parts: condition part and action part. The condition part is
associated to a condition verification state that, when assumed,
indicate that the corresponding conditions are met. The action
part is associated to an action execution state that, when
assumed, indicates that the corresponding actions were
correctly executed. Preferences may share the same condition
part (meaning that they are triggered by the same events, e.g.
preferences (b) and (c) in Fig. 5), or they may share the same
action part (meaning that they trigger the same actions, e.g.
preferences (c) and (d) in Fig. 5).

3) Events and actions
The condition part of each preference specifies the links in

the dimension layer diagram that must be monitored in order to
trigger this preference. When these links reach the desired

Figure 4. Dimension layer diagram

Links description:

(a) owns (or has right to use) (f) has interface to

(b)(d) is located in (g)(h)(k) supports

(c) has subscription to (i) can render

(e) covers (j) requires

Symbols description:

 Communication dimension Context information

 Situation dimension Context Module

Device

capabilities

manager

Device

profiles

(a)(c)

Presence &

Subscription

manager

User Presence

& subscriptions

Network

capabilities

manager

Network

profiles

(j)

(a)

Which

Device Where

Who

Location

What

Bandwidth

(b) (c)

(d) (e)

(f)

(i) (k)

(g) (h)

(e)(h)(k)

(f)(g)(i)(j)

Spatial

inference

engine

User & device

locations

(b)(d)

Completed

Figure 5. User layer preference model

Condition

set 1

Action

set 1

Condition

set 2

Action

set 2

Condition

set 3

Action

set 3

Idle

Symbol description:

 Condition verification event Condition verification state

 Preference execution action Action execution state

 Action confirmation event Original/final state

(a)

(b)

(c)

(d)

states, the event module of the dimension layer detects a
mapping state and transmits a condition verification event to
the event module of the user layer (see section III.D.6). This
latter module matches the event to the relevant preference(s),
causing the corresponding condition verification state to
become an assumed state. Then, the corresponding action parts
are executed by the action module, causing the corresponding
action execution state to become an expected state. Once the
user layer receives event confirming the completion of these
actions, this latter state becomes an assumed state, indicating
that the corresponding preferences were correctly applied.

IV. RELATED WORK

Many context-aware systems have been developed to
demonstrate the benefits of context-aware computing. One of
the earliest systems of this kind was the Active Badge Location
System [17] which provides phone call redirection based on the
location of the called person. Although it was developed more
than fifteen years ago, this solution, and later context-aware
solutions, did not make their way through from research labs to
the consumers market. This is especially true for the personal
communications domain, in spite of the readily available
wireless network infrastructures.

We believe that the main reason behind this problem is that
most of the previous solutions focused mainly on developing
infrastructures and mechanisms for context provisioning (i.e.
acquisition, modeling and dissemination) and did not
sufficiently consider the next and more crucial step: context-
based adaptation. For example, the Context Broker
Architecture (CoBrA) [11] was primarily developed for
supporting context-aware systems by addressing issues such as
context modeling and reasoning, knowledge acquisition from
different context sources and user privacy protection. The
Service-Oriented Context-Aware Middleware (SOCAM)
proposed in [10] aimed at supporting acquisition, discovery,
and interpretation of context information to build context-
aware services.

Even the few existing work that deals with communication
adaptation (such as [6] and [16]) did not propose any detailed
adaptation mechanisms. The only significant work in this area
is the personal assistant proposed by Cisco [9]. Its main
drawback, however, is that adaptation rules are very limited
and should be explicitly specified by the callee.

V. CONCLUSION AND FUTURE WORK

In this paper, we described the implementation of INCA
(Intelligent Network-based Communication Assistant). We first
introduced a generic layer model that could be reused across
INCA layers, therefore enabling a well-structured and easy to

implement architecture. Then, for each layer, we described
how this model is implemented and how interaction with
adjacent upper and lower layers takes place. Future work will
mainly focus on extending INCA’s compatibility to include
session protocols other than SIP. Performance and conflict
management issues at each of INCA layers will also be studied.

REFERENCES

[1] 3GPP TS 23.204, “Support of Short Message Service (SMS) over
generic 3GPP Internet Protocol (IP) access; Stage 2 (Release 7),” v7.3.0,
June 2007.

[2] 3GPP TS 24.341, “Support of SMS over IP networks; Stage 3 (Release
7),” v7.1.0, June 2007.

[3] 3GPP TS 29.163, “Interworking between the IP Multimedia (IM) Core
Network (CN) subsystem and Circuit Switched (CS) networks (Release
7),” v7.7.0, June 2007.

[4] B. El Saghir, N. Crespi, “An Intelligent Assistant for Context-Aware
Adaptation of Personal Communications”, IEEE Wireless
Communications and Networking Conference (WCNC), March 2007.

[5] B. El Saghir, N. Crespi, “A New Framework for Indicating Terminal
Capabilities in the IP Multimedia Subsystem”, IEEE GLOBECOM-
ISET, November 2006.

[6] W. Li, F. Kilander and C. G. Jansson, “Toward a Person-Centric Context
Aware System,” Workshop on Requirements and Solutions for
Pervasive Software Infrastructures, May 2006.

[7] 3GPP TS 22.141, “Presence service; Stage 1 (Release 7),” v7.0.0,
December 2005.

[8] 3G Americas, “Convergence: An Outlook on Device, Service, Network
and Technology Trends,” July 2005.

[9] Cisco Systems, “Cisco Personal Assistant 1.4,” Datasheet, 2005.

[10] T.Gu, H. K. Pung and D. Q. Zhang, “A service-oriented middleware for
building context-aware services,” Journal of Network and Computer
Applications, Vol. 28, Issue 1, pp. 1-18, January 2005.

[11] H. Chen, “An Intelligent Broker Architecture for Pervasive Context-
Aware Systems,” Ph.D. Dissertation, University of Maryland, December
2004.

[12] J. J. Carroll, I. Dickinson, C. Dollin, D. Reynolds, A. Seaborne and A.
Wilkinson, “Jena: implementing the semantic web recommendations,”
Proceedings of the 13th international World Wide Web conference,
alternate track papers and posters, New York, USA, May 2004.

[13] J. Rosenberg, J. Peterson, H.Schulzrinne, G. Camarillo, “Best Current
Practices for Third Party Call Control (3pcc) in the Session Initiation
Protocol (SIP)”, RFC 3725, April 2004.

[14] G. Camarillo, A. B. Roach, J. Peterson and L. Ong, “Integrated Services
Digital Network (ISDN) User Part (ISUP) to Session Initiation Protocol
(SIP) Mapping,” RFC 3398, November 2002.

[15] J. Rosenberg et al., “SIP: Session Initiation Protocol,” RFC 3261, June
2002.

[16] A. Schmidt, A. Specker, G. Partsch, M. Weber and S. Hoeck, “An agent-
based telecooperation framework,” In Proceedings of CoBuild'98,
Darmstadt, Germany, February 1998.

[17] R.Want, A.Hopper, V. Falcao and J Gibbons, “The active badge location
system,” ACM Transactions on Information Systems, Vol. 10, Issue 1,
pp. 91-102, January 1992.

